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Abstract
We consider the scattering of the H-polarized eigenwaves of a planar dielectric waveguide by a coplanar system of graphene 
strips in the THz range. The strips are placed along the centreline of the waveguide. Our treatment is based on the singular 
integral equations with the Nystrom-type discretization algorithm. Dependences of the scattering characteristics, near and 
far fields, are studied. Frequency scanning radiation patterns are presented. Maximum of the radiated power is observed 
near the plasmon resonances. The resonant frequency and main lobe level can be controlled by variation of the chemical 
potential. Applied optimization procedure allows to obtain the radiation pattern with the side-lobe level less than − 20 dB. 
The presented results can be used in designing of graphene leaky-wave antennas.
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Introduction

Radiating structures based on gratings embedded into a 
dielectric waveguide transforming eigenwaves to free space 
waves are promising as low-cost, low-profile, and easy-to-
fabricate elements of millimetre-wave devices such as filters 
or antennas with frequency scanning ability [1, 2].

New materials are available today, such as graphene. Gra-
phene can be considered as 2d plane of carbon atoms, ideally 
1 atom thick. It is famous for being electrically conductive, 
mechanically strong, and optically transparent. Graphene 
strips can support plasmon polariton surface waves and 
corresponding plasmon resonances at THz. The resonant 
frequency can be tuned by applying electrostatic or mag-
netostatic doping [3, 4]. This feature makes graphene per-
spective in designing of tunable THz devices. For example, 
one can adjust the equivalent impedance of the structure 
and reduce the reflection. Together with the ability of gra-
phene to absorb the electromagnetic field, it becomes a very 

promising element of absorbers [5–7]. The use of graphene 
for sensing application is also possible [8–10]. For the THz 
range, a numerical analysis of the plasmon resonances on a 
single graphene strip and corresponding sensing properties 
in the case of variation of the refractive-index of the host 
medium is given in Shapoval and Nosich [11], and for sev-
eral strips with substrate is given in Nejat and Nozhat [12].

The mutual interaction of graphene strips in the array 
is smaller than metallic ones because of the short surface 
plasmon polariton wavelength [13, 14]. This effect can be 
used in antennas to reduce their size. The configuration of 
tunable leaky-wave antenna with graphene strips embedded 
into or placed on dielectric slab is discussed in previous 
studies [15–17].

Graphene strips may be considered as zero thickness 
resistive surfaces with the restriction that the strip width 
is > 100 nm. Here one can assume that the edge effect on 
the graphene conductivity is negligible, and the electrical 
conductivity model developed for infinite graphene sur-
faces can be used. For the considered frequency range 1…4 
THz, permittivity, and chemical potential values, the spatial 
dispersion can be neglected [18]. In the absence of spatial 
dispersion and magnetostatic bias field, the conductivity of 
graphene is a scalar function � = �(f ,�c, �, T) of frequency 
f, chemical potential �c electron relaxation time � and tem-
perature T. It can be obtained from the Kubo formalism [19, 
20].
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Finite-difference time-domain method is one of pos-
sible computation instruments for graphene structures [5, 
21–24]. However, as in the case of commercial packages 
based on the finite-elements method [25], it leads to the 
huge system of equations due to the large domain of dis-
cretization. In addition, the time step is defined by the 
thickness of graphene which is only one-atom. Another 
disadvantage is inability to analytically satisfy the radia-
tion conditions that limits the accuracy of the results to 
several digits. Approximate techniques, which work much 
faster, can give reliable results and describe physical 
effects [17, 26].

Another alternative is meshless rigorous techniques 
such as methods of singular integral equations (SIEs) with 
Nystrom discretization [27–31] or method of analytical regu-
larization [32]. They provide controlled accuracy within a 
reasonable computation time.

In previous studies [27, 28, 32], several types of reso-
nances are discussed which graphene strip grating embed-
ded into dielectric slab can support. Near the plasmon reso-
nances, an increase in the total scattering and absorption 
cross section is observed. Except the plasmon resonances, 
which can arise on a single graphene strip, the grating inside 
the dielectric slab can support the grating-mode resonances. 
It is shown that in the case of plane wave incidence, near 
these resonances significant increase in scattering and 
absorption is also observed.

In the present work, we study how the radiation from the 
dielectric waveguide with finite graphene strip grating can 
be controlled in the THz range. For the solution, we use the 
method of SIEs with discretization based on the Nystrom-
type method of discrete singularities [33, 34]. Preliminary 
results were presented in the conference papers [35, 36]; 
here, results are significantly extended.

Singular Integral Equation

Let us consider planar dielectric waveguide with coplanar 
graphene strips placed as shown in Fig.1. We denote the set 
of strips as L =

N

∪
n=1

Ln , where Ln is the n th strip. The width 
of the waveguide is 2 h; its permittivity is �0�.

We will assume that the field is independent of x and con-
sider only the H-polarized waves. Hence, the electromagnetic 
field has the following components: (0,Ey,Ez), (Hx, 0, 0) , 
which satisfy the Helmholtz equation, the boundary condi-
tions at the dielectric-vacuum interface

the boundary conditions on graphene strips and outside 
the strips

(1)H+
x
= H−

x
,E+

y
= E−

y
, if z = h or z = −h

the radiation and the edge conditions. The signs “ ± ” indi-
cate the limit values of the field components from above 
(below) the interfaces.

Outside the dielectric waveguide, the radiated field is the 
field of cylindrical waves which propagate to the infinity. The 
amplitude of this field decreases as 1∕

√
k� , if k� → ∞ , where 

� is the distance. However, inside the dielectric waveguide, 
−h < z < h , the scattered field can be represented as a sum of 
the evanescent and propagating eigenwaves. The amplitude 
of the propagating eigenwaves is non-decreasing function, if 
k� → ∞ . Here, we should use the radiation condition in a spe-
cial form [37, 38].

The incident eigenwave Hp of the planar dielectric wave-
guide with number p propagates from the negative direction 
of the y-axis. The total field can be represented as a sum of the 
incident and scattered field, Htotal = Hp + Hs.

The scattered field can be expanded in terms of Fourier 
integral in each domain as follows: Hs(y, z) =

(2)E+
y
=

1

�
(H+

x
− H−

x
), z = 0, y ∈ L

(3)H+
x
= H−

x
, z = 0, y ∉ L

(4)E+
y
= E−

y
, z = 0

(5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

a(𝜉)
b(𝜉∕

√
𝜀)

1−g(𝜉
√
𝜀)
exp(ik𝜉y + ik𝛾(𝜉)z)d𝜉, z > h

∞∫
−∞

(c(𝜉) exp(ik1𝜉y + ik1𝛾(𝜉)z) + exp(ik1𝜉y + ik1𝛾(𝜉)z))
b(𝜉)

1−g(𝜉)
d𝜉,

0 < z < h,
∞∫

−∞

(f (𝜉) exp(ik1𝜉y − ik1𝛾(𝜉)z) + g(𝜉)exp(ik1𝜉y + ik1𝛾(𝜉)z))
b(𝜉)

1−g(𝜉)
d𝜉,

−h < z < 0,
∞∫

−∞

d(𝜉)
b(𝜉∕

√
𝜀)

1−g(𝜉
√
𝜀)
exp(ik𝜉 − ik𝛾(𝜉)z)d𝜉, z < −h,

Fig. 1   Structure geometry (createdin CorelDRAW X5)
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where k = �
√
�0�0, k1 = �

√
�0��0  and are wavenumbers 

in vacuum and in the dielectric waveguide, �(�) =
√
1 − �2 

with non-negative real and imaginary parts,

b(�) is unknown function. In fact, (5) is the field expansion 
in terms of plane waves which propagate in the positive and 
negative directions of the z-axis. In (5), taking into account 
(6)–(11), the boundary conditions (1) and (4) and radiation 
conditions in the domain |z| > h are satisfied automatically.

Let us consider the radiation conditions inside the 
waveguide, −h < z < h Function 1 − g(�) has zeros at the 
points�m, m = 1, 2,… ,  which correspond to the propagation 
constants of the eigenwaves of the dielectric waveguide. For 
the evanescent waves, points �m are complex numbers with 
Im �m ≠ 0 . For the propagating waves, points �m are real 

(6)

a(�) = 2�(�)
�
exp(−ikh�(�∕

√
�))(�(�∕

√
�)
√
� + �(�))

+ exp(−ih(−2k1�(�) + k�(�∕
√
�)))(�(�∕

√
�)
√
�

− �(�)))∕G(�)∕
√
�,

(7)c(�) = exp(ik1h�(�))
�
−�2(�∕

√
�)� + �2(�) − exp(2ik1h�(�))(�(�∕

√
�)
√
�− �(�))2

�
∕G(�),

(8)

f (�) = −
�
�(�∕

√
�)
√
� + �(�)

��
exp(−ik1h�(�))(�(�∕

√
�)
√
� + �(�))

+ exp(−ihk1�(�))(�(�∕
√
�)
√
� − �(�)))∕G(�),

(9)

g(�) =
�
�(�∕

√
�)
√
� − �(�)

�
exp(ik1h�(�))

�
�(�∕

√
�)
√
� + �(�)

+exp(2ihk1�(�))(�(�∕
√
�)
√
� − �(�)))∕G(�),

(10)d(�) = −a(�),

(11)G(�) = exp(ik1h�(�))
�
�2(�∕

√
�)� − �2(�) + exp(−2ik1h�(�))(�(�∕

√
�)
√
�+ �(�))2

�
,

numbers, Im �m = 0 . Points 𝛽m > 0 ( 𝛽m < 0 ) correspond to 
the waves which propagate to the positive (negative) direction 
of the y-axis. As a result, integrands in (5) have singularities 
on the integration path. They can be treated as poles. After 
that the Cauchy integral formula or residue theorem can be 
used. To calculate these integrals, the integration path should 
be transformed. First of all, we should note that integrands in 
(5) are meromorphic functions which satisfy the asymptotic 
relation

Then,  for  y → +∞(y → −∞) inside the waveguide, 
if −h < z < h expression (5) should give us waves that 
propagate to the positive (negative) direction of the y-axis 
or decay exponentially. The integration over the real axis 
can be exchanged by the integration over the contour in 
the form of semicircle in the upper or lower half-space that 
will enclose our initial path. From (12) it follows that to 

obtain convergent integral for y > 0(y < 0) we should take 
semicircle in the upper Im𝜉 > 0(lower Im𝜉 < 0)  half-space. 
For y > 0(y < 0), points𝛽m > 0 (𝛽m < 0)  must be inside the 
contour and points 𝛽m < 0(𝛽m > 0) must be outside the con-
tour. Thus, the integration path should be transformed so it 
coincides with the real axis everywhere except points �m . 
Negative points �m  should be bypassed from above, and 

(12)
integrand ∼ |𝜉|− 3

2 exp(−kyIm𝜉),when|𝜉| → ∞, |y| >> 1.

Fig. 2   Integration path (created in CorelDRAW X5)

Fig. 3   Dependences of the error-function on the order of theCheby-
shev polynomial � = 2.25, �

c
= 1eV ,T = 300K, � = 1  ps (created  in 

Origin 6.1)
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positive points �m should be bypassed from below (see 
Fig. 2). In this case, the radiation condition is satisfied.

Finally, the scattered field inside the waveguide, if 
y → ±∞ , is

The enforcement of the remaining boundary condi-
tions (2) and (3) gives us dual integral equations relatively 
unknown function b(�):

(13)

Hs(y, z) = 4𝜋
∑∞

m=0
𝛼m sin

�
k1𝛾(𝛽m)z

�
exp(ik�𝛽my�),−h < z < h,

𝛼m = lim𝜉→sgn(y)𝜉m
b(𝜉)(𝜉 − sgn(y)𝜉m).

where Z0 = 120� Ohm.
The application of Hilbert transform [39] allows us to 

reduce the dual integral equations (14) and (15) to SIE over 
the set of strips

(14)

∞

∫
−∞

b(�) exp(ik1�y)d� = 0, y ∉ L

(15)ik1

∞∫
−∞

�(�)(1 − c(�))
b(�)

1−g(�)
exp(ik1�y)d� +

2ik1
√
�

�Z0

∞

�
−∞

b(�) exp(ik1�y)d� = −
�

�z
Hp(y, 0), y ∈ L,

Fig. 4   Dependences of the a radiation, b absorption, cre-
flection, and d transmissioncoefficient on the frequency for   
h = 50 �m, d = 10 �m,�

c
= 0.3 eV (solid lines), �

c
= 0.5 eV (dashed 

lines),  �
c
= 0.6 eV (dotted lines),  �

c
= 1 eV (shot-dottedlines), 

l = 70 �m, � = 2.25, T = 300 K , � = 1ps, N = 10, dominant mode, 
and p = 1 (created in Origin   6.1)
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where Q(y, �) is the kernel function,

(16)

1

�
PV∫

L

F(�)

� − y
d� +

1

�∫
L

Q(y, �)F(�)d� = −
�

�z
Hp(y, 0), y ∈ L.

(17)
1

�∫
Ln

F(�)d� = 0, n = 1, 2… ,N,

(18)

Q(y, 𝜂) =k1

∞

�
0

(
1 + i

𝛾(𝜉)

𝜉

1 − c(𝜉)

1 − g(𝜉)

)
sin(k1𝜉(y − 𝜂))d𝜉

+

{
2ik𝜋(𝜎Z)−1, if 𝜂 ≤ y,

0, if 𝜂 > y,

F(y) can be expressed in terms of b(�) with the help of 
Fourier transform, F(y) = ik1

∞∫
−∞

�b(�)exp(ik1�y)d�.

The first integral in (16) is understood as Cauchy principal 
value integral. The kernel-function Q(y, �) (18) in the second 
integral in (16) contains poles. The integration contour is 
shown in Fig. 2. However, the integral over infinite semicir-
cle vanishes. Thus, the integration path in the kernel-function 
coincides with the real axis everywhere, except the poles �m 
, and the poles are bypassed from below. After application of 
the regularization procedure and Cauchy integral formula, the 
kernel-function becomes the regular integral. It can be calcu-
lated numerically with the use of the quadrature formula such 
as the Simpson’s or Gaussian rules.

For discretization of SIE, the quadrature rule for the 
Cauchy principal value singular integrals is used [34, 35]. 

Fig. 5   Dependences of the a radiation, b   absorption, c reflection, and d transmission coefficient on thefrequency for h = 70�m, d = 10�m . 
Other parameters are the same as in Fig. 4 (created in  Origin 6.1)
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Taking into account the edge condition and representing 
unknown function as a product of new unknown regular 
function n un(t) and function with the inverse square root 
singularity on every strip, F(Ψn(t)) = un(t)∕

√
1 − t2  , we 

can obtain system of SIEs on the standard interval (-1;1). 
Here Ψn(t) is linear transformation function of (-1,1) to 
the segment which corresponds to the n th strip Ln. After 
that, integrands are replaced with interpolating polynomi-
als. The nodes coincide with the zeros of the Chebyshev 
polynomials of the first kind. The values of y, co-called 
collocation points, are taken from the set of zeros of the 
Chebyshev polynomials of the second kind. As a result, 
the set of algebraic equations can be obtained.

Numerical Results

Convergence

The solution of (16)–(18) is unique and convergence is based 
on the theorems [40, 41]. To control the error of numerical 
results, we used the error-function defined as err(M)=|S(M)-
S(2M)|/|S(2M)|, where S is equal to the radiated power and 
M is the order of the Chebyshev polynomial. Numerical 
results are obtained using C +  + .

Let us consider the system of identical strips of a width 
2d placed equidistantly. The period is l.

Fig. 6   Dependences of the a radiation, babsorption, c reflection, and d transmission coefficient on thefrequency for h = 70�m, d = 7�m . Other 
parameters are the same as in Fig. 4 (created in  Origin 6.1)
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Figure 3 shows dependences of err(M) . The results are 
presented for several values of width of strips and frequency. 
The convergence in monotone and the error vanishes if M 
becomes larger than a certain value. With the normalized 
width of the strip kd is increased, we should take larger value 
of M.

Notice that (12) is valid for y >  > 1. To calculate the near 
field, we regularize integrals in (5) in the same way as in 
(17) and used composed Gaussian quadrature for integrals 
without singularities. Firstly, it follows from  (12) that val-
ues Tampl = 1 − 4�a1 and Rampl = −4�a−1  are reflection 
and transmission coefficients (amplitude) of the dominant 
eigenwave of the waveguide. Secondly, amplitude of the field 
inside the waveguide also equals to the reflection (or trans-
mission) coefficient. Thus,

We checked (19) numerically by increasing |y|. Equa-
tion (19) is satisfied at the level of machine accuracy. This 
allows to validate our home-made program block connected 
with the elimination of singularities in (5) and (17).

In Kaliberda et al. [34, 35], we demonstrate that the 
results of commercial software HFSS agreed well with our 
results. At the same time, the radiation patterns calculated 
with the help of HFSS show slight instability: the width and 
the angle of the main lobe vary in the interval ±20...30 ; the 
angle and magnitude of the side-lobes significantly depend 
on the size of the “vacuum box”.

(19)Hs(y, z0) → −4�a±1, if y → +∞.

Scattering Characteristics

Figures 4, 5 and 6 show dependences of the radiation, 
Rad absorption A, reflection R, and transmission T coef-
ficients (power) as functions of frequency in the case of 
the dominant eigenwave of the dielectric waveguide exci-
tation. The following relation is satisfied: Rad+A+R+T = 
1.The behaviour of the curves can be explained in terms of 

Fig. 7   Dependences of Im χ on the period l for f=2THz (solid line), 
f=3.34THz (dashed line) h = 50 �m, d = 10 �m, l = 70�m, � = 2.25,

�
c
= 1eV , T = 300K, � = 1ps, N = 10, dominant mode, p = 1  (cre-

ated in  Origin 6.1)

Fig. 8   Field distribution near the plasmon resonances for h = 70 �m, d = 10 �m, l = 70�m, � = 2.25, �
c
= 0.3eV , T = 300K, � = 1ps, domi-

nant mode p = 1. a First plasmonresonance, f = 1.5 THz; b second plasmon resonance, f  = 2.5 THz (Created in OriginPro 2015)

511Plasmonics (2022) 17:505–517
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the resonances that the structure under study can support. 
The maxima of the radiation coefficient correspond to the 
plasmon resonances (marked as Pi ). They depend on the 
parameters of individual graphene strip. The position of 
these resonances on the frequency axis can be controlled 
by variation of the chemical potential. The most effective 
radiation is observed for �c = 1eV  . For �c = 0.3eV  near 
the first plasmon resonance, the radiation efficiency is 
poor, < 20%. With an increase of the chemical potential, 
the radiated power also increases near the first plasmon 
resonance and reaches its maximum value of about 79% 
for �c = 1eV  . For greater number of strips N we do not 
obtain better radiation, if d = 10�m . Almost all non-
radiated power is absorbed by the graphene strips, so the 
radiation efficiency is also about 79%. For �c = 1eV  near 

the first plasmon resonance frequency, the reflected and 
transmitted power does not exceed 2%.As one can know, 
the natural waves and corresponding resonances can be 
excited in periodic structures. Except the plasmon reso-
nances, the structure under study can support resonances, 
which are caused by the periodicity of the displacement 
of the strips. Such resonances are marked as   Nqi . The 
position of these resonances mostly depends on the param-
eters of the dielectric slab and the period and is slightly 
perturbed by the parameters of graphene strips. Thus, it 
cannot be controlled by variation of the chemical potential. 
To identify these resonances, we considered two values of 
the waveguide width h = 50�m and h = 70�m . These reso-
nances give maxima in the dependences of R and minima 
in the dependences of Rad. In the case of the plane wave 

Fig. 9   Field distribution near the resonances of the naturalwaves of 
periodic structure for h = 70 μm, d = 10 μm, l = 70 μm, ε = 2.25, 
μc = 1 eV, T  = 300 K, τ = 1 ps, N = 10, dominant mode, p=1. a 

Resonance, N11  f   = 1.85 THz; b resonance N12,    f   = 3.14 THz; c 
resonance N22, f  = 3.5 THz (created in OriginPro 2015)
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incidence from domain z > 0, resonance N12 is identified as 
grating-mode resonance [27, 32]. Near the grating-mode 
resonances, in extremely narrow frequency band, almost 
total absorption is observed in the infinite graphene grat-
ing. These resonances do not arise in the free space. They 
are also observed in the case of the perfectly electric con-
ducting gratings inside the dielectric slab [42]. The propa-
gation constant χ of natural waves of periodic structure can 
be obtained from the following equation [43]:

(20)det
(
I − exp(−i� l)te − erer(I − exp(i� l)et)−1

)
= 0

where t and r are reflection and transmission matrixes of a 
single strip, I is the identity matrix, and diagonal matrix e 
has elements exp(ik1l�m) . Fig. 7 shows dependences of Im χ 
as a function of period l. Extremes of Im χ correspond to 
the resonances of the natural waves of the periodic part of 
the structure.

Near Field

Figure 8 shows the total field distribution near the plasmon 
resonances Pi. Field has maxima along the strip. The number 

Fig. 10   Normalized radiation patterns for various values ofthe chemi-
cal potential and frequency, �

c
= 0.1 eV (shot-dottedlines), �

c
= 0.3 eV 

(dashed lines), �
c
= 0.6 eV (solid lines), �

c
= 1 eV (dotted lines), 

h = 50 �m, d = 10 �m, l = 70�m, � = 2.25, T = 300K, � = 1 ps, do- 

minant mode, p = 1. a Plasmonresonance frequency f = 1.5 THz for 
�
c
= 0.3eV; b plasmon resonance frequency f = 2.46 THz for �

c
= 1

eV; c   N12 resonance frequency f = 3.34THz   (Created in OriginPro 
2015)
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of maxima is equal to the number of resonance i. As a rule, 
the first plasmon resonance is much more pronounced. One 
can observe much more pronounced maxima near P1 in 
Figs. 4-6 as well as a high field concentration near the gra-
phene strips.

Figure 9 shows the total field distribution near the reso-
nances of the natural waves of periodic part of the structure. 
Nqi The field distribution near the resonances Nqi signifi-
cantly differs from that near the plasmon resonances. It is 
clearly seen that the field near resonances Nqi has different 

number of variations along the y and z axes inside the wave-
guide. The total field has q maxima of the amplitude on a 
single period (l ⋅ n;l ⋅ (n + 1))  and i maxima on the interval 
0 < z < h.

Far Field

Let us study the far radiated field for various parameters. 
Fig. 10 shows the radiation patterns (power) near the first 
plasmon resonance P1 and near the resonance of natural 
wave of periodic structure N12. The patterns are normal-
ized by the global maximum which corresponds to the first 
plasmon resonance, f = 2.46 THz, �c

= 1eV  . We take the 
parameters of the structure so that only one dominant eigen-
wave of dielectric waveguide can propagate. The results are 
presented for the first plasmon resonance P1 for �

c
= 0.3eV  

and �
c
= 1eV  as well as for the resonance N12. If the 

Fig. 11   Normalized radiation patterns for various values of 
the frequency, f = 2.3THz (shot-dottedlines),  f = 2.46  THz 
(dashed lines),  f = 2.7  THz (solid lines), f = 3.2 THz (dotted 
lines) �

c
= 1 eV;h = 50 �m, d = 10 um, l = 70�m, � = 2.25, T = 300K, � = 1

ps, N = 10 , dominant mode, p = 1  (Created in OriginPro 2015)

Fig. 12   Normalized radiation patterns for constant value of the chem-
ical potential on every strip �

c
= 1 eV (solid line) and for different 

values of the chemical potential on every strip (dotted line), f = 2.7 
THz,h = 50 �m, d = 10 �m, l = 70�m, � = 2.25, T = 300K, � = 1 ps, 
N = 10, dominant mode, p = 1  (Created in OriginPro 2015)

Fig. 13   Normalized radiation patterns for constant value of the chem-
ical potential on every strip μc=1eV (solid line) and for different val-
ues of the chemical potential on every strip (dotted line), f = 3 THz, 
h = 50 �m, d = 10 �m, l = 70�m, � = 2.25, T = 300K, � = 1ps, N = 
10, dominant mode, p = 1  (Created in OriginPro 2015)

Table 1   Values of the chemical potential of graphene strips

Strip number Chemical potential for 
Fig. 12 (eV)

Chemical potential 
for Fig. 13 (eV)

1 0.544665 0.646117
2 0.579733 0.627085
3 0.729025 0.865287
4 0.828113 0.966635
5 0.893959 1.099578
6 0.946739 1.029578
7 0.949503 1.043876
8 0.972799 1.099578
9 0.939843 1.046381
10 1.073118 0.896205
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parameters of the structure correspond to the plasmon reso-
nance, amplitude of the main lobe reaches its maximum. 
The strong dependence of the graphene conductivity on the 
chemical potential allows to tune the antenna resonant fre-
quency and the main lobe magnitude.

Despite the large reflection near the resonances of natural 
waves of periodic structure Nqi for practical applications, 
resonances with even indexes can be interesting. Near N12, 
in-phase excitation of currents on strips is observed. As a 
result, the angle of the main lobe of the radiations pattern is 
90°. As we mentioned above, the position of resonances Nqi 
does not depend on the parameters of graphene strips. How-
ever, the amplitude of the main lobe here can be controlled 
by variation of the chemical potential.

As it is usual for the radiating periodic structures, the 
considered structure shows the frequency-scanning ability. 
The angle of the main lobe mostly depends on the normal-
ized period kl. Fig. 11 demonstrates the diffraction patterns 
with the frequency-dependent main lobe angle for the same 
value of the chemical potential �c

= 1eV .The possibility of 
independent biasing each strip gives additional degrees of 
freedom. In antenna design, it is required that the radiation 
pattern has the lowest side-lobe level. By variation of the 
chemical potential of every individual strip in the array, 
we are going to reduce the side-lobe level. The results are 
presented in Figs. 12 and 13 for two values of frequency, 
f = 2.7THz and f = 3 THz. The values of the strip width and 
period are the same. Our purpose is to obtain the side-lobe 
level less that -20 dB. As seen, the actual side-lobe level is 
in good agreement with the desired one. The values of the 
chemical potential are given in Table 1. We used the gradient 
descent algorithm, 150 iterations. A total of -20 dB angular 
width of the main lobe of the obtained radiation pattern is 
about 25° for f = 2.7 THz and about 20° for f = 3 THz. The 
radiation pattern for constant value of the chemical poten-
tial �c

= 1eV  is also presented for comparison.

Conclusion

We have studied the scattering of eigenwaves of the planar 
dielectric waveguide by graphene strip grating in the range 
from 1 to 4 THz. The scheme of solution is based on the 
mathematically grounded and effective method of singular 
integral equations with the discretization by the Nystrom-
type algorithm. It provides the controllable accuracy of the 
solution. The calculation time of one curve in Figs.10-12 is 
about 10 s.

The behaviour of the scattering characteristics of the 
structure has clear resonant nature. The radiated power 
and main lobe magnitude is maximal near the plasmon 
resonances. Variation of the chemical potential allows to 
tune the resonant frequency and radiated power. Near the 

resonance of natural waves of periodic part of the struc-
ture, the main lobe is perpendicular, but the reflection is 
high. Every individual graphene strip in the array can be 
biased separately. In this way, we reduce the side-lobe 
level.

We believe that presented results can be potentially used 
in designing of leaky-wave graphene antennas.
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