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Abstract
In this report, Ag nanoparticles were fabricated using the single-step glancing angle deposition (SS-GLAD) technique upon 
 In2O3/TiO2 thin film. Afterward, a detailed analysis was done for the two samples such as  In2O3/TiO2 thin film and  In2O3/
TiO2 thin film/Ag nanoparticles, to inspect the field emission scanning electron microscopy (FESEM), energy-dispersive 
X-ray analysis (EDAX), X-ray diffraction (XRD), ultraviolet (UV) spectroscopy, and electrical properties. The reduction 
in bandgap energy for the samples of  In2O3/TiO2 thin film/Ag nanoparticles (~4.16 eV) in comparison with the  In2O3/TiO2 
thin film (~4.28 eV) was due to trapped e–h recombination at the oxygen vacancies and electron transmission of Ag to the 
conduction band of the  In2O3/TiO2 thin films. Moreover, under irradiation of photons Ag nanoparticles generated inorganic 
Ag–O compound attributable to the localized surface plasmon resonance (LSPR). Also, a ~90% high transmittance, ~60% 
and ~25% low reflectance in UV and visible region, fill factor (FF) of 53%, as well as power conversion efficiency (PCE) of 
15.12% was observed for  In2O3/TiO2 thin film/Ag nanoparticles than the  In2O3/TiO2 thin film. Therefore, the use of Ag nano-
particles textured  In2O3/TiO2 thin film–based device is a promising approach for the forthcoming photovoltaic applications.
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Introduction

With the growing world population, one of the greatest  
challenges our society is currently facing is that of clean 
energy. Solar energy, being abundant, presents itself as a 
lucrative solution and this led researchers all over the world 
in pursuit of various photovoltaic devices, which can con-
vert sunlight to electrical energy for numerous applications. 

While the commercial solar panels are still predominantly 
manufactured from crystalline Silicon, researchers are 
exploring various materials, configurations, and fabrication 
techniques to develop highly efficient, inexpensive, and reli-
able photovoltaic devices. Among them dye-sensitized solar 
cells [1–3], perovskites [4, 5], quantum-dots [6–8], organic 
material-based solar cells [9, 10], etc., has been explored by 
various research groups around the world in the last couple 
of decades.

One of the primary objectives of the solar cell research-
ers in any material or configuration is to achieve high 
absorption of photons, which can lead to increased effi-
ciency. To circumvent the limits posed by the ‘diffusion 
length’ of the charge carriers, researchers sometimes incor-
porate back side reflectors or attempt to ‘trap’ the photons 
inside device, which leads to increased photon path length 
or optical thickness. The later approach can be achieved by 
texturing the surface which can guide the scattered light 
within the active material, leading to longer photon path 
length and hence improved efficiency. A popular technique 
of texturing the surface is by depositing various shapes and 
sizes of metal nanoparticles. One of the first reports in this 
area was by Stuart and Hall [11], where silver nanoparticles 
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deposited on silicon-on-insulator (SOI) photodetector 
enhanced the photocurrent by an order of magnitude. This 
was achieved due to a phenomenon known as localized sur-
face plasmon resonance (LSPR) [12–14]. LSPR is induced 
when the frequency of the incoming photon matches with 
that of the oscillating electrons of the nanoparticles, lead-
ing to an increased electromagnetic field which aids in light 
concentration around the nanoparticles. This phenomenon 
of guided light, coupled with strong light scattering due to 
the nanoparticles, has led to tremendous research interest 
in recent years and several nanoparticles, viz., gold (Au) 
[15–17], silver (Ag) [18–20], aluminium (Al) [21–23] etc., 
nanorods [24–26], nano discs [27, 28], has been explored, 
leading to high efficiency.

In addition to classical solar cells based on p–n junc-
tion, novel structures such as photoelectrochemical solar 
cells [29], and solar cells based non schottky diodes [30], 
metal–insulator-semiconductor (MIS) solar cells [31], sem-
iconductor-insulator-semiconductor (SIS) solar cells [32], 
etc., have been explored by various research groups around 
the world. Among them, SIS structures showed enormous 
potential as low-cost photovoltaic devices. In SIS struc-
tures, instead of a p–n junction, the separation of charges 
are carried out by the electric field at the semiconductor-
insulator interface. Several SIS structures (e.g., ITO/
SiOx/p-Si, Al-SiOx/p-Si, PEDOT:PSS/c-Ge, etc.) has been 
fabricated and analysed since 1980s [32–34]. Combining 
the SIS structures with LSPR presents a lucrative approach 
to fabricate low-cost, high efficiency solar cells. In addi-
tion, one can also tailor the photovoltaic device to absorb 
the desired wavelengths in the solar spectrum, for specific 
applications. This can be achieved by a suitable choice of 
active materials to construct a multi-junction solar cell. 
Titanium dioxide  (TiO2)  (Eg ~3.2 eV) and indium oxide 
 (In2O3)  (Eg ~3.6 eV) are some of the most extensively used 
materials due to their availability, ease of handling, low 
cost, non-toxicity, and its optoelectronic applications [35, 
36]. By itself  TiO2 shows the properties of photovoltaic 
devices [8, 27]; however, by the incident of photons and 
incorporation of  In2O3 with  TiO2, the nanostructures boost 
up the photoexcited e–h pairs due to several scattering pro-
cesses, which lead to increase the device efficiency. Here, 
we have reported an efficient photovoltaic device for UV 
region by depositing Ag nanoparticles on the top of  TiO2 
and  In2O3 thin films, where the Ag nanoparticles enhanced 
the quantum efficiency of the device by coupling incident 
light into guided modes through LSPR effect. The device 
is fabricated using the SS-GLAD technique, without the 
requirement of any annealing step which makes the device 
inexpensive, thereby making the device attractive for 
potential commercialization.

Experimental Process

Synthesis of  In2O3/TiO2 Thin Film

ITO-coated glass substrate (99.999% pure, MTI Corpo-
ration, USA) was cleaned using methanol, acetone, and 
deionized water. For further cleaning, the substrates were 
dipped into a mixed solution of hydrofluoric acid and 
deionized water with a dilution ratio of 1:50. A dense 
thin film (~100 nm) of  TiO2 has been synthesized upon 
pre-cleaned ITO-coated glass substrate using an electron 
beam evaporator (e-beam) (HHV Co. (p) Ltd., Model-
15F6) technique with a base pressure of 0.05 mbar. A 
high vacuum chamber pressure of ~0.2 ×  10−4 mbar and 
deposition rate of 1.2 ×  10–10 m/s was maintained during 
the synthesis of  TiO2 thin film. The film substrate holder 
was held at a perpendicular distance of ∼ 16 cm from the 
evaporated material source. A similar technique has been 
followed to synthesize the  In2O3 thin film (~100 nm) over 
the  TiO2 thin film at a deposition rate of 0.5 ×  10−10 m/s.

Fabrication of Ag Nanoparticles

SS-GLAD technique has been carried out to fabricate the 
Ag (highly pure 99.999%) nanoparticles over  In2O3/TiO2 
thin film. The crucible filled with Ag pellets was placed 
at a vertical distance of < 30 cm from the substrate holder 
with an azimuthal angle and a spin of 85° and 460 rpm, 
respectively. A deposition rate of 1.2 ×  10−10 m/s was 
maintained during the fabrication of Ag nanoparticles, as 
well.

Device Fabrication

To fabricate the device, indium (In) (99.999% pure beads, 
MTI Corporation, USA) has been deposited on the sam-
ples through an aluminium mask hole (each hole diam-
eter ~1.95 ×  10−6  m2), which act as the electrode for the 
device. Here two distinct devices, viz.,  In2O3/TiO2 thin 
film and  In2O3/TiO2 thin film/Ag nanoparticles, were fab-
ricated, as shown in Fig. 1a, b, respectively.

Characterizations

FESEM and EDAX has been done to morphologically 
characterize the samples using SIGMA-300 (Zeiss). The 
XRD was done on a Bruker D8 Advance diffractometer 
to study the structural characterization. The absorption, 
reflection and transmission spectrum were recorded by a 
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Perkin Elmer LAMBDA 950 UV–VIS-NIR Spectropho-
tometer. The electrical characteristics were investigated 
using a Keysight B2902A source and measurement units 
(SMUs).

Results and Discussions

Morphological Analysis of Fabricated Structures

The morphology of the fabricated thin film and nano-
particles were shown in Fig.  2a, b. Figure  2b shows 
the FESEM image of the  In2O3/TiO2 thin film/Ag 

nanoparticles sample using SS-GLAD technique, where 
the Ag nanoparticles were densely packed and randomly 
distributed all over the thin film surface. The growth of 
densely packed nanoparticles was aided by high substrate 
temperature in the vacuum chamber [36]. This technique 
is preferred here because of its highly user-friendly inter-
face and easily controllable features (rotation speed, azi-
muthal angle, evaporation rate, substrate temperature, 
etc.) [37]. The particle size histogram (Fig. 2c) shows 
that the Ag nanoparticles range between ~4 and ~40 nm, 
and a huge percentage of the deposited particles had a 
diameter between ~7 and ~12 nm. Figure 2d shows the 
EDAX spectra of  In2O3/TiO2 thin film/Ag nanoparticles 

Fig. 1  Schematic diagram of the two fabricated devices. a  In2O3/TiO2 thin film. b  In2O3/TiO2 thin film/Ag nanoparticles

Fig. 2  Top view FESEM 
images of a  In2O3/TiO2 thin 
film and b  In2O3/TiO2 thin film/
Ag nanoparticles. c Particle 
size histogram image of Ag 
nanoparticles. d EDAX analysis 
of the sample
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sample, where the elemental composition of oxygen (O 
[K]), tin (Sn [L]), silver (Ag [L]), indium (In [L]), and 
titanium (Ti [K]) was detected. Table 1 lists the atomic 
and weight percentage of elements present in the sample.

Structural Analysis

More information about the phases, crystal orientations, 
and morphology of the  In2O3/TiO2 thin film and  In2O3/
TiO2 thin film/Ag nanoparticles samples can be analyzed 
from XRD measurements, carried out using Bruker D8 
Advanced using Cu-Kα target source under the diffraction 
angle (2θ) between 20° and 80°. Figure 3a shows the XRD 
peaks for  In2O3/TiO2 thin film. The peaks (211), (222), 
(431) corresponds to  In2O3 (JCPDS card no. 06–0416) 
[38] and the peaks (103), (200), (220), (125) corresponds 
to  TiO2 anatase phase (JCPDS card no. 89–4921) [39]. 
The planes of (111), (200), (220), and (311) correspond 
to Ag peaks (JCPDS card no. 03–0921) [39] which were 
formed due to the deposition of Ag nanoparticles over the 
 In2O3/TiO2 thin film. Additionally, the peaks (031) and 
(242) corresponds to  Ag3O4 monoclinic crystal structure  
(JCPDS card no. 84–1261) which is attributed to the for- 
mation of Ag–O compound  [36] during fabrication. 
Dwivedi et al. [39], Xie et al. [40], and Laskri et al. [41] 
also reported such type of Ag–O compound during the 
synthesis of Ag nanoparticles. Therefore, the XRD pat-
terns confirm the presence of  In2O3, TiO2 and Ag in the 
fabricated samples.

Optical Properties Analysis

Figure 4a shows the comparison of absorption spectra of 
 In2O3/TiO2 thin film with  In2O3/TiO2 thin film/Ag nano-
particles on ITO-coated glass substrate in the wavelength 
range of 200–800 nm. A ~45 nm red shift has been observed 
in the UV region for  In2O3/TiO2 thin film/Ag nanoparticles 
sample which may be the effect of localized surface plas-
mon resonance of Ag nanoparticles in the sample [42]. 
Under irradiation, the Ag nanoparticles exhibit a large elec-
tron oscillation and generated inorganic Ag–O compound,  
as previously explained in the “Structural Analysis” sec-
tion. This inorganic Ag–O compound was generated due  
to localized surface plasmon and thus absorption of light 
in the UV region by the detector has been occurred. Figure  
4b compares the measured reflectance of both samples 
using UV–Vis diffused reflectance spectroscopy (DRS), 
where  In2O3/TiO2 thin film/Ag nanoparticles exhibits a 
significantly lower reflectivity in the UV (~60%) and vis-
ible (~25%) region after applying only Ag nanoparticles 
on the seed layer (thin film). This dropping of reflectance 
can indicate the reduction of bandgap energy for the  In2O3/
TiO2 thin film/Ag nanoparticles. To demonstrate the band-
gap energy of the samples Kubelka–Munk function method 
[43]. According to the theory of P. Kubelka and F. Munk, 
the diffusive reflectance can be written as:

where “R” is the measured reflectance, “K” is the molar 
absorption coefficient, “S” is the scattering factor, “h” is the 
Planck’s constant, and [F(R)] is known as the Kubelka–Munk 
function. In the plot, the linear extrapolation over the “hν” 
axis of (F(R)hν)2 versus hν gives the values of bandgap, 
where the bandgap energy of ~4.28 eV and ~4.16 eV was 
obtained and demonstrated in Fig. 4c for  In2O3/TiO2 thin 
film and  In2O3/TiO2 thin film/Ag nanoparticles, respectively. 
The reduction in bandgap energy is accredited to the red 
shift of Ag nanoparticles coated sample which is due to the 
trapped e–h recombination at the oxygen vacancies and elec-
tron transmission of Ag to the conduction band of the oxide 
thin films [44]. The optical transmittance spectra in Fig. 4d 
shows a ~90% transmittance in the UV region, for the  In2O3/
TiO2 thin film/Ag nanoparticles as compared to ~50% of that 
of the  In2O3/TiO2 thin film. Hence, it proves that the light 
falls on the Ag nanoparticles surface completely gets trans-
mitted completely by reducing the amount of reflection loss.

Moreover, the presence of oxygen vacancies leads to add 
the additional energy levels in the bandgap, known as the 
Urbach tail. The Urbach tails of the samples were charac-
terized from the Urbach energy  (EU) (Eq. 2) plot with the 
incident photon energy.

(1)[F(R)] =
K

S
=

(1 − R)2

2R

Table 1  EDAX data

Element Weight (%) Atomic (%) K ratio

O K 3.40 15.53 0.0042
Sn L 9.61 25.01 0.0659
Ag L 55.19 37.40 0.5226
In L 29.78 18.96 0.2568
Ti K 2.02 3.09 0.0160
Total 100.00

20 30 40 50 60 70 80
0

5

10

15

20

25

Ti
O

2
A

(2
20

)

Ti
O

2
A

(1
03

)

Ti
O

2
A

(1
25

)IT
O

Ti
O

2
A

(2
00

)

IT
OIn
2O

3
(4

31
)In
2O

3
(2

22
)

In
te

ns
ity

(a
rb

. u
ni

t)

Diffraction angle (2��) (Degree)

In
2O

3
(2

11
) In2O3/TiO2 Thin Film

(a)

20 30 40 50 60 70 80
0

5

10

15

20

25

Ag
3O

4
(2

42
)

Ti
O

2A
(1

03
)

IT
O

IT
O

Ag
(3

11
)

Ag
(2

20
)

Ag
(2

00
)

Ag
3O

4
(0

31
)Ag

(1
11

)

In
te

ns
ity

(a
rb

. u
ni

t)

Diffraction angle (2��) (Degree)

     In2O3/TiO2 Thin
Film/Ag Nanoparticles

(b)

Fig. 3  XRD profiles for a  In2O3/TiO2 thin film and b  In2O3/TiO2 thin 
film/Ag nanoparticles
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where α is known as the absorption coefficient, α0 is a con-
stant, hν is incident photon energy, and EU is the Urbach 
energy [45, 46]. The  EU signifies the spread of defect energy 
states inside the bandgap. The  EU was also used to analyse 
the sample performance, since the  EU affects the carrier 
mobility, carrier lifetime, and cell performance [47]. The 
reciprocal of the slope value of the linear portion of ln(�) 
versus hν shown in Fig. 4e was utilized to estimate  EU value. 
The calculated value of  EU was 3.45 eV and 4.90 eV for the 
 In2O3/TiO2 thin film and  In2O3/TiO2 thin film/Ag nanopar-
ticles samples respectively. This enhancement in  EU was due 
to the presence of oxygen vacancies in the Ag nanoparticles 

(2)ln(�) = ln(�
0
) + (

h�

EU

)
decorated sample [48], which corroborates the previous UV 
analysis.

Figure 4f depicts the variation of light harvesting effi-
ciency (LHE) for  In2O3/TiO2 thin film with  In2O3/TiO2 thin 
film/Ag nanoparticles samples between the wavelength 
ranges of 350–800 nm. Here, the enhanced LHE charac-
teristics for  In2O3/TiO2 thin film/Ag nanoparticles samples 
suggests the enhanced light absorption due to the incorpo-
ration of Ag nanoparticles on the thin film samples [49]. 
According to the Beer-Lambert law, the LHE characteris-
tics can be further enhanced by increasing the length of the 
optical path by modifying the nanocrystalline films [50]. 
The LHE characteristics can be obtained using Eq. (3).

(3)LHE(�) = 1 − 10
−ad

Fig. 4  a Absorption spectra. b 
UV-DRS spectra (reflectance 
spectra), c Kubelka–Munk plot 
(for bandgap), d Transmit-
tance spectra, e Urbach energy, 
f Light harvesting efficiency 
(LHE) characteristics of  In2O3/
TiO2 thin film and  In2O3/TiO2 
thin film/Ag nanoparticles 
samples on a ITO-coated glass 
substrate
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where α and d is the absorption coefficient and thickness of 
the nanocrystalline film [49].

Analysis of Electrical Characteristics

The power conversion efficiency (η) of the  In2O3/TiO2 thin 
film/Ag nanoparticles device and the  In2O3/TiO2 thin film 
device need to be characterized. For this purpose, the pho-
tovoltaic parameters, namely open circuit voltage  (VOC), 
short circuit photocurrent density  (JSC), and fill factor (FF) 
were obtained. Figure 5a shows the experimental setup for 
the measurement of photovoltaic parameters, where a tung-
sten filament source is illuminating the fabricated devices 
at room temperature. A B2902A source and measurement 
unit (SMU) has been used for recording the characteristics. 
The obtained J-V curve for  In2O3/TiO2 thin film and  In2O3/
TiO2 thin film/Ag nanoparticles devices, were plotted in 
Fig. 5b. Table 2 lists the corresponding measured photovol-
taic parameters considering an effective device area of 1.8 
 mm2 for both the devices.

It has been found that the maximum current that the 
device can deliver, i.e., the short circuit photocurrent den-
sity  (JSC), or the current that flows in the circuit when the 
electrodes are shorted, was enhanced by ~136% for the 
 In2O3/TiO2 thin film/Ag nanoparticles device compared 
to that of the  In2O3/TiO2 thin film. The maximum voltage 

delivered by the device or open circuit voltage  (VOC), also 
increases for the  In2O3/TiO2 thin film/Ag nanoparticles 
device. The fill factor (FF) which is the ratio between the 
maximum power of the device and the product of  VOC and 
 JSC has been found to be 58% and 53% for the  In2O3/TiO2 
thin film/Ag nanoparticles device and the  In2O3/TiO2 thin 
film device, respectively. All these parameters leads to an 
increase of ~127 times enhancement in the power conversion 
efficiency (PCE) for the  In2O3/TiO2 thin film/Ag nanoparti-
cles device (15.12%) compared to the  In2O3/TiO2 thin film 
device (11.90%). This significant enhancement in efficiency 
is attributed due to the LSPR effect, introduced by the depos-
iting plasmonic Ag nanoparticles [49].

The overall PCE (η) was estimated at room temperature 
from the short circuit photocurrent density  (JSC), open cir-
cuit voltage  (VOC), and the fill factor of the sample (FF) to 
the power of the incident light  (Plight), as given by the Eq. 
(4) [51].

Fig. 5  a Experimental setup for 
the measurement of photovol-
taic parameters. b J-V curve for 
 In2O3/TiO2 thin film and  In2O3/
TiO2 thin film/Ag nanopar-
ticles devices. c A schematic 
illustration of the staggered gap 
diagram
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Table 2  Photovoltaic parameters for the two device structures

Device structure VOC (V) JSC (μA/cm2) FF (%) η (%)

ITO/In2O3/TiO2 thin film 0.88 22.9 58 11.90
ITO/In2O3/TiO2 thin film/

Ag nanoparticles
0.91 31.1 53 15.12
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where the FF was determined from the ratio of maximum 
power (Pmax) of the samples per unit area to the  VOC and 
 JSC [51].

Figure 5c shows the staggered gap diagram of the  In2O3/
TiO2 thin film/Ag nanoparticles device, where Φ and χ is 
the work function and electron affinity of Ag NPs,  TiO2, and 
 In2O3, respectively. When the light (hυ) is illuminated on the 
device, electrons are excited state from the highest occu-
pied molecular orbital (HOMO) to the lowest unoccupied 
molecular orbital (LUMO) [51], which are then collected. 
The Ag nanoparticles increases the photon path which leads 
to higher conversion efficiencies. Table 3 depicts the com-
parison of state of the art of this work with other reported 
work based on the device performances. Therefore, a low-
cost SS-GLAD technique of fabricating high efficiency solar 
cells which are aided by the LSPR effect of the deposited 
Ag nanoparticles has been studied. The fabrication step does 
not require further processing steps after SS-GLAD which 
makes the device inexpensive, thereby making the device 
attractive for potential commercialization.

Conclusion

A thorough analysis were done for  In2O3/TiO2 thin film 
and  In2O3/TiO2 thin film/Ag nanoparticles samples to 
inspect the morphological, structural and optical charac-
teristics. The marginal optical bandgap energy (~4.16 eV), 
high transmittance (~90%), low reflectance in UV (~60%), 
and visible (~25%) region, Jsc of 31.1 mA/cm2, Voc of 
0.91 V, FF of 53%, and PCE of 15.12% was observed for  
 In2O3/TiO2 thin film/Ag nanoparticles as compared to the   

(4)%PCE(�) =
(JSCVOCFF)

Plight

(5)FF =
Pmax

(VOCJSC)

In2O3/TiO2 thin film. Therefore, the use of Ag nanoparti-
cles textured oxide thin film–based device is a promising 
approach for the photovoltaic applications.
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