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Abstract
In this essay, a tunable metamaterial-based biosensor is proposed for simultaneous monitoring of blood components including 
cells, plasma, water, thrombus, and urine components as well as glucose, albumin, and urea. The proposed biosensor is 
based on optical sensors, and it provides real-time, label-free, and direct detection, small size, and cost-effectiveness that can 
be an alternative tool to other conventional methods. The influence of operating frequency, sample thickness, temperature, 
and radiation angle on the performance of the sensor is investigated by the finite element method (FEM). Numerical results 
show that the maximum sensitivity and figure of merit (FoM) in the high frequency are 500 (nm/RIU) and 2000, and for low 
frequency are 136 (µm/RIU) and 155, respectively. The footprint of the structure is 0.34 µm2, which is remarkably smaller 
than the other reported biosensing structures. The proposed biosensor has the potential to provide high sensitivity, high FoM, 
and a wide operating range for biomedical applications.
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Introduction

Today, prostate cancer is one of the most common diseases 
in men, especially adults. This disease may not appear in the 
early stages; in more advanced stages, it can cause problems 
in urinating, blood in the urine, or pain in the pelvic and 
waist regions during urination. Another symptom that occurs 
later is the low level of red blood cells [1–11]. For these 
reasons, the use of extremely accurate and rapid biosensors 
can be very useful in examining the components of blood 
and urine. Biosensors are highly effective tools for clinical 
and diagnostic, industrial, environmental monitoring, food 
industry, and so on [12–23]. The biosensor must be very 
accurate, highly sensitive, and show linear behavior relative to 
different concentrations. They should be small and not damage 
biological tissue for use in clinical trials. Also, a biosensor 
must perform real-time analysis that can be used to quickly 
measure analytes from human samples. The analyte should be 

stable and specific under normal storage conditions, and the 
biosensor must be portable, cost-effective, small, and usable 
by semi-skilled operators. They have several types including 
electrochemical, amperometric, potentiometric, thermometric, 
optical, and luminescent [24–33]. Amongst these, optical 
sensors are good candidates because of their high sensitivity, 
portability, sample-free label, and low-cost and high-speed 
for sample preparation [34–37]. The main problems of 
optical biosensors are related to the interaction of biological 
molecules with the sensor surface, as well as their integration 
for making small devices. The environmental monitoring 
sensors with high sensitivity are other important sensors. 
Based on their structure, optical sensors include different types 
such as photonic crystals [38, 39], metamaterials (MMs) [40, 
41], optical fibers [42], plasmon-induced transparency [43], 
and so on [44–64]. The unique properties of MMs are the 
negative refractive index and confining electromagnetic waves 
[65, 66]. MMs were introduced theoretically in 1968 by the 
Russian physicist Victor Veselago. Unlike natural materials, 
MMs can have a negative refractive index; therefore, they 
are not found in nature. To achieve such a structure, we use 
a combination of resonators (with negative µ) and an array 
of thin metal wires (with negative ε), which ultimately leads 
to a negative refractive index (n = √ϵμ). MMs have many 
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advanced applications such as cloaking [67], miniature 
antenna [68–74], superlens [75], absorber [76], and so on [13, 
56, 77–87]. In several works, MMs are used as a biosensor 
for the detection of biological tissues. Typically, the main 
components of MMs are resonators, which have a certain 
resonance frequency according to their shape and size [88]. 
The MM biosensors in terms of their operating frequency 
regime are divided into several groups of microwave [89], 
terahertz [90], and plasmonic [91]. As the frequency rises, the 
sensor’s dimensions become smaller [15, 92–94]. Thus, they 
will be able to detect samples with a very small thickness (at 
nanoscale) [95]. Also, MM biosensors can be used to detect 
DNA [96], cancer cells [97], and microfluidic applications [40] 
among other uses. The main factor for detecting the above-
mentioned cases is the variation of the dielectric constant 
of under test cells. For example, a cancerous cell has more 
water content than a normal cell, which results in a higher 
dielectric constant and electrical conductivity [98]. Also, 
blood components such as blood plasma, cells, clots, and water 
have a certain refractive index. About 55% of blood is made 
up of plasma, and the rest includes red and white cells and 
also platelets [99]. The dielectric constant also changes with 
glucose concentration in blood (or urine) [100]. Therefore, it is 
the main parameter for detecting glucose concentration. In this 
regard, several research groups have examined the changes in 
dielectric constant at different concentrations of glucose-based 
spectroscopy [101]. For instance, in Robinson and Dhanlaksmi 
[102], a photonic crystal biosensor is provided to detect the 
concentration of glucose, albumin, and urea in urine at 1550-
nm wavelength. Tao et al. [103] measured experimentally the 
concentration changes of glucose and urea in the water using 
MM-based biosensors. MMs used in this work have a substrate 
of paper. This feature partly defines the practical aspects of 
this detection method. From a practical perspective, some of 
these structures suffer from a serious problem, i.e., their big 
footprint and labeled material detection, which leads to high-
cost products [104–113].

In the present works, a MM biosensor structure is designed 
based on split-ring resonators (SRRs), in which the operating 
frequency regime can be easily tuned by changing the size 
of the system or incident angle. The main mechanism of the 
proposed structure is based on the shift in the resonance 
frequency. Besides, to show their diagnosis ability, the 
variations in the transmission and reflection amplitude of 
waves have been investigated. One of the main advantages of 
our proposed sensor is the tunability of operation frequency. 
Hence, the proposed sensor is evaluated for low-frequency 
operations (1–2 THz) and high-frequency operations (around 
193 THz), which perfectly reflect the trait of the tunable 
sensor. As will be discussed later, environmental parameters 
such as temperature and thickness of the samples can affect 
the response and performance of the sensor. Therefore, 

mentioned parameters can be well controlled under 
laboratory conditions. For computer simulations, a proper 
physical model is needed for biological tissues. One of the 
widely used models for this purpose is the Debye model. 
Finite-element-method (FEM) is applied to calculate the 
partial differential equations (PDEs) in 3D space. Numerical 
results show that the maximum sensitivity and figure of merit 
(FoM) in the high frequency are 500 (nm/RIU) and 2000, and 
for low frequency are 136 (µm/RIU) and 155, respectively. 
This study provides a path for the development of novel 
nano-scale practical biomedical applications.

The Physical Structure and Operation 
of the Proposed Sensor

In this section, the geometrical parameters of the proposed 
structure are presented. As we know, the base and foundation 
of the MM structures are the resonators, which have 
different geometric shapes. The most common resonator 
in this regard is the split ring-resonator (SRR). A metal 
(e.g., copper and gold) resonator is placed on an insulator 
substrate. Our suggested biosensor structure is based on 
frequency-selective-surface (FSS) filters. Figure 1a presents 
an overview of an FSS that includes arrays of SRRs that 
are located on a sub-layer. The waves fall in the direction 
of the red arrow. The resonators resonate at a specific 
frequency, depending on their size and shape, and pass or 
filter a particular frequency. The main sensor structure is 
shown in Fig. 1b. Here, the resonator structure is in the form 
of the square that is located on a Teflon (PTFE) substrate 
with a dielectric constant of 2.1. Also, we used a perfectly 
matched layer (PML) to confine the areas of mathematic 
computational in the simulation process for open- boundary 
problems.

For the sake of simplicity, the periodic boundary 
conditions in the FEM analysis, which refer to repeated 
cells, are considered. The basis of detection in this method 
is the variation in the refractive index of analytes that are 
placed on the sensor. Our analytes here are blood and urine. 
Changes in the level of glucose (urea or albumin) result 
in the refractive index change of the blood (urine). The 
proposed sensor has resonators with a specific resonance 
frequency under normal conditions (without any sample), 
which is a function of the environmental refractive index. 
Now, if an analyte is placed on the sensor, the resonance 
frequency of the sensor will shift. The main objective of this 
paper is to diagnose blood components such as whole blood, 
blood cells, blood plasma, thrombus, and water. Also, the 
concentrations of glucose in the blood and urine, albumin, 
and urea in urine are calculated. In the next section, we will 
examine the optical properties of these tissues.
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Fundamental Modeling Data

This section examines the parameters and models that are 
needed to simulate the biological tissues such as blood and 
urine components. The biological models are expressed in 
two frequency ranges from 0.2 to 2 THz (low frequency) 
and around 193 THz (high frequency). There are two 
reasons for using high- and low-frequency modes: First, 
the biosensor can be easily tuned by an only change in the 
sensor’s unit cell size. Second, the sensor operation at low 
and high frequencies resolves many challenges. Also, for 
the mentioned frequency ranges, the experimental refractive 
index and the dielectric constant of the samples are available. 
Debye parameters of blood components (BCs) in the 0.2–2 
THz regime were extracted from [114].

Modeling of Bio‑tissues in the 0.2–2 THz

In this work, the Debye model is used to reveal blood 
components such as whole blood, blood cells, blood plasma, 
thrombus, and water, as follows:

where �∞ is the real part of the permittivity at a high-
frequency limit, �s and �2 are static limit permittivity and 
intermediate dielectric value, �1 and τ2 are relaxation times 
of the first and second relaxation process, and ω is the angular 
frequency. The values of these parameters are shown in Table 1 
for blood components in the range of 0.2—2 THz [114].

(1)

�(�) = �∞ +

i∑

n=1

Δ�

1 + j��n
= �∞ +

�s − �2

1 + j��1
+

�2 − �∞

1 + j��2

The Debye parameters of single-pole are extracted from 
[115] according to the glucose concentration in the blood 
plasma for amounts from 0 to 16,000 (mg/dl).

Modeling of Bio‑tissues at High Frequency 
(1550 nm)

In the following, the concentration of glucose in blood 
and concentrations of glucose, albumin, and urea in 
urine are studied. For this purpose, the variation of the 
refractive index is considered. The refractive indices 
and electrical conductivities for various concentrations 
at high frequencies (about 193 THz) are taken from. 
Considering these values, it is observed that by changing 
the concentration, the refractive index changes from 
1.335 to 1.348. The electrical conductivity values are 
taken into account for losses, which are modeled as 
follows [44]:

(2)N = n + ik ≡
√
�r

Fig. 1   (a) The overall schematic 
of a FSS. (b) An overview 
of the array structure of the 
biosensor

Table 1   Debye parameters belong to blood components in the 0.2–2 
THz regime [114]

�
2
(ps)   �

1
(ps)   �

2
   �

s
   �∞ Blood components

0.1 14.4 3.8 130 2.1 Whole Blood
0.1 16.1 3.7 130 2.2 Thrombus
1.8 410.8 23.8 2.5 3.4 Blood Cells
0.1 8.0 3.6 78.8 1.7 Blood Plasma
0.1 8.4 4.5 78.8 3.3 Water
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where n and k are real and imaginary parts of the 
refractive index, respectively; σ refers to the electrical 
conductivity of the material; and ϵ0 is the vacuum 
dielectric constant.

According to the above data, the resonant frequency 
of the proposed sensor is set in the low frequency (0.2–2 
THz) and high frequency (around 193 THz). The results are 
discussed in the next section.

Results

Low Frequency

In this section, we set the frequency resonance of the 
system to operate at the frequency range of 0.2–2 THz. 
Figure 2a shows the accurate dimensions of the sensor 
unit cell. Figure 2b presents the frequency response of the 
system.

The blue and red graphs are related to the transmittance 
and reflectance of the stricter, respectively. The system, 
in this case, has a resonant frequency, about 1.94 THz. 

(3)n =

√
|�r| + ��

r

2
, k =

√
||�r|| − ��

r

2

(4)�r = �
�

r
− i���

r
= �

�

r
+ i

�

��0

Figure 3 shows the distribution of the electric field at the 
resonant frequency (1.943 THz) of the system.

By placing samples on the sensor, consider into account 
their dielectric constants, a blue shift occurred at the 
resonant frequency. Figure 4 presents the frequency response 
variations for different blood components. The lower and 
higher resonant frequencies correspond to the blood plasma 
(1.55 THz) and water (1.37 THz), respectively.

Fig. 2   (a) Structure and dimensions of the proposed sensor unit cell for operation at the low-frequency regime. (b) Frequency response of the 
proposed sensor at the low-frequency regime

Fig. 3   Electric field distribution at the frequency of f = 1.94 THz
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Figure 5 shows the frequency response of the sensor for 
different glucose densities in the blood plasma.

The dielectric constant is changed via different glucose 
concentration, and, therefore, various frequency response 
is met. Considering no sample state, the minimum and 
maximum frequency shifts correspond respectively to 1000 
and 16,000 mg/dl with the resonance frequency of these 
concentrations being 1.82 and 1.12 THz.

High Frequency (About 193 THz)

As the operating frequency of the system increases, the 
dimensions of resonators diminish. Figure 6 presents the unit 
cell dimensions of the proposed sensor for working near the 193 
THz frequencies. The sub-layer used here is Teflon, which has 
a refractive index of 1.34.

The transmittance and reflectance diagrams of the sensor 
for frequencies around 193 THz are shown in Fig. 7. The 
accurate value of the resonant frequency of the system 
is 193.4 THz (1550  nm). Figure  8 also illustrates the 
distribution of the electric field at a frequency of 193.4 THz.

Figure 9 shows the change of the resonance frequency 
as a function of the blood glucose, urine glucose, albumin, 
and urea concentrations. As can be seen, with increasing 
the concentration of these parameters in blood and urine, 
the resonance frequency of the system shifts to lower 
frequencies. Although the difference in the refractive indices 
is very low (∆n = 0.001), as can be seen, the graphs of each 
of the concentrations are separated by a good resolution. The 
minimum resolution between the concentrations is 0.01 THz. 
The lowest and highest shifts in the frequency response of 
the system are related to the refractive index of 1.35 (normal 
concentrations) and 1.348 (10  mg/dl), respectively. The 
resonant frequency values for these concentrations are 191.6 
and 190.81 THz, respectively.

Effective Parameters on the System 
Response

Thickness of Samples

The thickness of the placed samples on the sensor can 
somewhat affect the response of the system. Figure 10 
depicts the frequency response of the system for 
different thicknesses of the whole blood. As can be 
seen, by increasing the sample thickness, the system 

Fig. 4   Variation in the resonance frequency of the system for different blood samples

Fig. 5   Frequency response of the sensor as a function of the concentration 
of glucose in the blood plasma
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resonant frequency moves toward lower frequencies. At 
high thicknesses, the changes in the resonant frequency 
become negligible such that only the transmission 
amplitude is reduced.

Temperature

The ambient temperature can affect the response of the 
system [116, 117]. The fluid part of the blood, which is called 
plasma, mainly consists of water. Therefore, the temperature 
can affect this part of the blood and change its dielectric 
constant. As temperature rises, the real part of the dielectric 
constant reduces, and the electrical conductivity increases. 
Figure 11 presents the thermal effects on the dielectric 

constant and the electrical conductivity of the water. As can 
be seen, with increasing temperature from 293 to 333 K, the 
dielectric constant of water decreases from 4.6 to 3.9 and its 
electrical conductivity rises from 88 to 170 (S/m).

Figure 12 shows temperature changes in the frequency 
response of the system. According to the simulation results, by 
increasing temperature, the resonance frequency of the sensor 
shifts toward higher frequencies (less variation). Also, the 
transmittance amplitude is reduced, suggesting that the system 
will have more casualties.

Sensitivity and FoM

In this section, we will review the operation of the system. 
For this purpose, we use the sensitivity and FoM parameters. 
These parameters are defined as Sensivity =

Δ�

Δn
(
nm

RIU
) and 

FoM =
1

T

ΔT

Δn
 , where ∆λ, ∆T, and ∆n represent wavelength, 

transmittance, and refractive index variations, respectively. 
Fig. 6   The sensor unit cell dimensions for operation at a high-frequency 
regime

Fig. 7   Transmission and reflection diagram of the proposed sensor at 
high frequencies

Fig. 8   Electric field distribution at fr = 193.4 THz
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The refractive-index-unit (RIU) is used in optical biosensing, 
for evanescent wave sensors (optical waveguides, ring 
resonators, interferometers, and surface plasmon resonance). 
It is the minimum detectable change in the refractive index 
of the surface where the evanescent wave is traveling. Also, 
T is the transmission amplitude at the resonant frequency 
of the system.

Figure  13a shows the sensitivity and FoM for high-
frequency mode and Fig. 13b for low-frequency mode. In 
high-frequency mode, the maximum sensitivity and FoM are 
500 (nm/RIU) and 2000, respectively. These values in the 
low-frequency mode are 136 (µm/RIU) and 155, respectively.

As we know biosensor in different shapes and mechanism 
are considered by research groups [26, 118–139]. For 
example, Wang, Minghua, et  al. proposed bimetallic 

Fig. 9   Resonance frequency of the proposed system as a function of (a) blood glucose concentration, (b) urine glucose concentration, (c) urine 
albumin concentration, and (d) urine urea concentration

Fig. 10   Effects of sample thickness on the frequency response
Fig. 11   Relative permittivity and electrical conductivity as a function 
of frequency at different temperatures
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NiFe oxide structures derived from hollow NiFe Prussian 
blue nanobox for label-free electrochemical biosensing 
adenosine triphosphate [120]. Jia, Qiaojuan, et al. proposed 
Polyoxometalate-derived MoS2 nanosheets embedded 
around iron-hydroxide nanorods as the platform for 
sensitively determining miRNA-21 [131]. Lu and co-worker 
proposed numerical investigation of narrowband infrared 
absorber and sensor based on dielectric-metal metasurface 
[140]. Almpanis used dielectric nanopatterned surfaces for 

subwavelength light localization and sensing applications 
[141].Chopra research group proposed photonic crystal 
waveguide-based biosensor for detection of diseases 
[142]. Tavousi research group proposed high sensitivity 
label-free refractometer-based biosensor applicable to 
glycated hemoglobin detection in human blood using all-
circular photonic crystal ring resonators [143]. Finally, 
Table 2 compares several types of biosensors with different 
structures.

Fig. 12   Temperature changes versus water frequency response

Fig. 13   Sensitivity and FoM 
of the proposed system for (a) 
low-frequency mode and (b) 
high-frequency mode

Table 2   Comparison between the suggested design and those 
reported in the literature

Ref Structure Sensitivity 
(nm/RIU)

FoM Size ( ��2)

[140] Metasurface 840 84 1.1
[141] Dielectric nanostructures 263 88
[142] Photonic crystal 6.5 12
[143] Photonic crystal ring 

resonators
2500 1400 13

This work MMs 500 2000 0.34
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Conclusion

A biosensor was designed to detect blood components and 
also to measure the concentration of glucose, albumin, 
and urea in urine and blood. One of the most important 
features of this sensor is the easy adjustment, which was 
demonstrated in the present article, as well. To illustrate 
this important feature, we set the sensor to operate at low 
frequencies (around 1 THz) and high frequencies (about 
193 THz) and then measured different samples. According 
to the simulation results, the maximum sensitivity at high-
frequency is 500 (nm/RIU) and at low frequency is 136 (um/
RIU). Also, FoM in the high frequency is 2000 and in the 
low frequency is 155. The major features of this biosensor 
include real-time measurement, high speed, very small 
dimensions, cost-effectiveness, and free-label of the sample.
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