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Abstract
We describe an Au-MgF2-Au trilayered waveguide-coupled surface plasmon resonance (WCSPR) sensor in this article. The
characteristics of this sensing structure are compared with those of the conventional single-layered gold surface plasmon
resonance (SPR) sensor theoretically and experimentally. The experiment results show that WCSPR can provide not only seven
times smaller refractive index resolution in the bulk sensing application but also more accurate measurement results for the
biomolecular interaction analysis than the conventional single-layered gold SPR.What’s more, this high-resolution sensor is easy
to build and not sensitive to film thickness variations. The Au-MgF2-Au trilayeredWCSPRmay provide a simple and convenient
chip-based strategy for performance enhancement of SPR sensors without varying the hardware and software of measurement
instruments.

Keywords Surface plasmon resonance . Waveguide-coupled surface plasmon resonance . Residual analysis . Biomolecular
interaction analysis

Introduction

Surface plasmon resonance (SPR) is an optical sensing ap-
proach offering the advantages of high sensitivity and label
free [1–3]. Combined with the immobilized biorecognition
elements, the SPR sensor can become a powerful tool for
biomolecular interaction analysis [4–8]. Over the decades,
many efforts have been made to further improve the sensing
performance of this sensitive analytical tool including the
polarization interference interrogation [9], light source

optimization [10], resonance wavelength optimization
[11], weak-value amplification of SPR signals [12], signal
enhancement with plasmonic nanopart icles [13],
chemistry-based signal amplification [14], and chip-based
strategy [8, 14]. The chip-based strategy is expected to be
versatile and cost-effective in practical applications, and
can be readily realized without varying the hardware and
software of the SPR instruments, so it has drawn great at-
tentions in the SPR method development and there have
been many innovations presented over the past couple of
years. One important chip-based strategy is improvement of
sensor chip structure, which mainly includes the plasmonic
nanorod metamaterials [15], utilizing the transparent mate-
rial as adherent layer [16], multilayer metallic structures
[17], long-range SPR [18, 19], plasmon waveguide reso-
nance [20–25], and waveguide-coupled surface plasmon
resonance (WCSPR) [14, 26].

WCSPR is usually constructed by inserting a dielectric
waveguide layer between two metal layers [27]. WCSPR
can not only provide superior sensing performance but also
permit more resonance modes for extended applications than
the conventional single-layered SPR [28–31]. It has been re-
ported that the material of waveguide layer plays a significant
role in the coupling of SPR and waveguide resonance [32].
Different materials including optical polymer [28], ZnS-SiO2
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[33, 34], SiO2 [35], and Hafnium dioxide [36] have used to
construct the WCSPR sensor chip.

In this article, we presented an Au-MgF2-Au trilayered
WCSPR sensing structure. The MgF2 has low RI value so that
the high refractive index (RI) contrast can be achieved be-
tween it and the high RI prism, which is commonly used in
the conventional single-layered gold SPR sensors [8]. It has
been pointed out that better WCSPR sensor performance can
be achieved with higher RI contrast between the prism and
waveguide layer [32]. Besides, the MgF2 layer is easy to pre-
pare and needs no adhesive layer with Au film with common
vacuum evaporation coating [37]. The characteristics of Au-
MgF2-Au trilayered WCSPR sensing structure are compared
with those of the conventional single-layered gold SPR sensor
theoretically and experimentally to demonstrate that it can
achieve better performance without varying the hardware
and software of the common SPR instruments.

Materials and Methods

Reagents

The materials (Au, Cr, MgF2) used for vacuum coating were
acquired with 99.99% purity fromChina NewMetalMaterials
Technology Co., Ltd. (Beijing, China). Polished optical glass
substrates and prisms were purchased from Fuzhou Jiuyi
Optics Co., Ltd. (China). KH2PO4, Na2HPO4, KCl, and
NaCl are purchased from Alfa-Aesar (USA). Glucose, 3-
mercaptopropionic acid (MPA), N-hydroxysuccinimide
(NHS), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC) are purchased from the Aladdin (China),
in molecular biology grade or higher. Protein A and human
IgG were purchased from Tianze Biotechnology (Guangzhou,
China). Milli-Q water (18.2 MΩ cm, Millipore Corp., USA)
was used throughout the experiments. All the other organic
solvents and chemical reagents were purchased from
Shenzhen Tianxiang Huabo Co., Ltd. (China), and were used
as received without further purification. The composition of
PBS buffer is 1.4 mM KH2PO4, 8 mM Na2HPO4, 2.7 mM
KCl, 137 mM NaCl, pH 7.4 at 25 °C. The PBSBSA buffer is
prepared by adding 1000 μg/mL BSA to PBS. The composi-
tion of EDC/NHS solution is 20 mM EDC and 5 mM NHS.
The MPA solution is prepared by adding 100 mM MPA to
ethanol. The protein A and IgG solution is prepared by adding
protein A and IgG to the PBS buffer.

Design Optimization

The SPR and WCSPR sensor modules were carried out using
the Kretschmann prism coupling technique as shown in
Fig. 1a. Three nanometers of Cr film (n = 3.44 + 4.34i) was
deposited on SF4 optical glass substrate (n = 1.75) as the

adhesive layer. Then, an Au film (n = 0.13 + 3.65i) was de-
posited on the coated substrate to construct the SPR sensor
chip. An Au film (n = 0.13 + 3.65i) as upper Au film, a MgF2
film (n = 1.38) as waveguide layer, and another Au film as
lower Au film (n = 0.13 + 3.65i) were sequentially deposited
on the coated substrate to construct the WCSPR sensor chip.
The material RI was referred as n. The sensor chips were
placed on the polished optical glass prisms with the RI
matching oil (Cargille) to implement the sensor modules.

The SPR sensor performance can be theoretically pre-
dicted using the combined sensitivity factor (CSF) function,
which was inversely related to sensor resolution and shown
as follows:

CSFbulk ¼ Sbulk � Rmax−Rmin

FWHM
; Sbulk ¼ ∂θ

∂n
ð1Þ

CSFsurf ¼ Ssurf � Rmax−Rmin

FWHM
; Ssurf ¼ ∂θ

∂d
ð2Þ

where Rmax and Rmin are the maximum and minimum normal-
ized reflectance; FWHM is the full width at half maximum; θ
is the resonance angle; n and d are the bulk RI and binding
layer thickness; Sbulk and Ssurf are the bulk sensitivity factor in
degree angle/refractive index unit (RIU) and surface sensitiv-
ity factor in degree angle/nanometer thickness, respectively;
and CSFbulk and CSFsurf are the CSF defined for bulk and
surface sensing applications, respectively [38, 39]. Based on
the theoretical simulation algorithm [39], the correlations of
CSFbulk and CSFsurf with film thicknesses were calculated as
shown in Fig. 1b for SPR and WCSPR sensors. It can be seen
that both CSFbulk and CSFsurf vary along with the sensing film
thicknesses in SPR andWCSPR sensors. Fortunately, both the
CSFbulk and CSFsurf stay at a high level within about 15% of
the optimization film thickness in SPR and WCSPR sensors.
This indicated that the WCSPR sensor is less sensitive to the
film thickness fluctuations around the optimization value as
well as the SPR sensor, which is of great use in the practical
applications. It has been reported that continuous MgF2 film
with thickness of several hundred nanometers could be pre-
pared using the vacuum evaporation coating technique [37],
and the continuous Au film with thickness of over 40 nm
could be prepared using the direct current magnetron
sputtering technique [37, 40]. Considering these, 650 nm
was employed as the thickness of MgF2 waveguide layer,
and 40 nm was employed as the lower Au film thickness in
WCSPR sensor to balance the sensor performances in bulk
and surface sensing applications. The upper Au film thick-
nesses for WCSPR sensor would be designated after deter-
mining the smallest thickness of continuousAu film that could
be provided by the direct current magnetron sputtering tech-
nique used in this study; 60 nmwas employed as the thickness
of Au film in SPR sensor.
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Fabrication of Thin Au Film

A high-vacuum magnetron sputtering system (TA14-01D,
Tengao Machinery Manufacturing Co., Ltd., Shenyang,
China) was employed to prepare the thin Au film. The film
thickness was controlled by a quartz crystal oscillator thick-
ness monitor. Polished SF4 glass substrates are ultrasonically
cleaned in a solution consisting of ethanol and diethyl ether in
1:1 ratio, then rinsed with deionized water, and dried with
nitrogen. The substrate is heated and maintained at 400 °C
and given a negative bias voltage during the coating process.
The substrate heating decreases the gas molecules absorbed
on the surface and accelerates the movement of the metallic
particles on the surface for even film growth. The negative
bias voltage makes the gas ion impact the film surface to
average the film growth speed further and removes the weakly
bound metallic particles and the absorbed gas molecules.

The Au films with the thicknesses of 15 and 20 nm were
deposited on polished SF4 glass substrates and characterized
using an analytical scanning electron microscope (SEM,
KYKY-EM8000F, KYKY Technology Co. Ltd., China)
equipped with the energy-dispersive spectrometer (EDS,
TeamTM, EDAX company, USA), and the corresponding
EDS maps were shown in Fig. 2a. It can be seen that Au
element showed uniform surface distributions, which

indicated that the thin Au film can be prepared with the mag-
netron sputtering technique. Then, the detailed surface topog-
raphies were inspected using the image mixing the secondary
electron and backscattered electron signals achieved by a
Schottky field emission SEM (Quanta 250F, FEI, USA) as
shown in Fig. 2b. It can be seen that apparent pores and cracks
existed on the surface of 15 nm Au film, which may have
negative effect on the sensor performance in imaging applica-
tions. Considering the aforementioned factors, 20 nm was
designated to be the upper Au film thickness in a WCSPR
sensor.

Experimental Setup

A one-dimensional SPR imaging system was constructed
based on the angle interrogation for this study as shown in
Fig. 3. In this system, the light-emitting diode (A) combined
with the bandpass filter (E, center wavelength 632.8 nm,
bandwidth 10 nm, Thorlabs) is used to acquire the desired
incident wavelength, which has been demonstrated to be an
excellent choice to suppress the speckle effect in the angular
SPR imaging system [10]. A × 25 objective lens (B) was used
to focus the light emitted by a red light-emitting diode with an
electric power of 3 W on a pinhole (C). The light beam was
collimated using a convex lenses (D) and p-polarized by a

Fig. 1 a Schematic representations of SPR and WCSPR sensor modules. b Correlations of combined sensitivity factors for surface and bulk sensing
applications with the film thicknesses in SPR and WCSPR sensors
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linear glass polarizer (F). An aperture (G) was used for a
rectangular spot. After passing through a cylindrical lens (H)
with vertical axis of symmetry, the light was focused to a line
to construct an imaging channel. The SPR or WCSPR sensor
module (I) was configured in the Kretschmann manner and a
two-channel polymethyl methacrylate fluidic system (FS,
10 × 2 × 2 mm3, 40 μL), where one channel played the role
of detection channel and the other played the role of reference
channel to discriminate the nonspecific absorption in biomo-
lecular interaction analysis, was attached to the sensor chip for
sample delivery. The reflection light was collimated by anoth-
er cylindrical lens (J) with vertical axis of symmetry and re-
corded by a charge coupled device (K, 3032 × 2018 pixels,
7.8-μm pixel size, ICX413AQ, Sony) for further data analysis
in a personal computer. A temperature control system based

on thermal cycling principle was employed in this study for
sample temperature configuration as described before [7, 40].

Results and Discussion

Static Measurement

The theoretical normalized angular reflectance spectra of SPR
andWCSPR sensors were calculated based onmultiple reflec-
tance theory and Fresnel formula as shown in Fig. 4a. The
distributions of electric field enhancement factor, which was
defined as the intensity ratio of evanescent field to incident
light, in SPR and WCPWR sensors were calculated and plot-
ted against the distance from the prism surface based on trans-
fer matrix approach as shown in Fig. 4b. Water (n = 1.34), the
common solvent in the biochemical applications, was
employed as the sample. The effect of Cr adhesive layer on
the sensor performance was also taken into account. The nu-
merical calculation method was described in detail before
[39]. It can be seen from Fig. 4a that the theoretical predica-
tions showed that the WCSPR owns sharper resonance curve
than SPR, which could provide easy determination of reso-
nance angle position. It can be seen from Fig. 4b that although
WCSPR sensor has stronger evanescent electric field, it owns
the maximum evanescent electric field intensity at the film/
water interface and short penetration depth of evanescent elec-
tric field as well as the SPR sensor. The evanescent electric
field distribution characteristics of WCSPR are different from
the PWR, which achieves the sharp resonance curve and ev-
anescent electric field enhancement by increasing the

Fig. 2 a EDS maps of 15 and
20 nm Au films. b Surface
micrographs of 15 and 20 nm Au
films

B
C

D

E
F G

H

I
J

A
K

Fig. 3 Schematic of the experimental system setup. A Light-emitting
diode, B objective lens, C pinhole, D convex lens, E bandpass filter, F
linear glass polarizer, G rectangular aperture, H cylindrical lens, I SPR or
WCSPR sensor module attached with a temperature-regulated fluidic
system, J cylindrical lens, and K charge-coupled device
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interaction volume with sacrifice of surface sensing perfor-
mance [41]. These indicate that the WCSPR may achieve
better performances in both bulk and surface sensing applica-
tions than the conventional single-layered gold SPR.

The reflectance light beams of SPR and WCSPR sensors
were captured by CCD, and one hundred rows were averaged
to acquire the normalized experimental reflectance spectra as
shown in Fig. 4c. The system angular resolution was adjusted
to be higher for measuring the resonance curve of WCSPR
than SPR, and the CCD was also adjusted to an appropriate
position for each sensor to achieve as whole resonance curve
as possible with effective utilization of CCD sensing area,
which has been demonstrated to be benefit for the measure-
ment quality [22]. The nine-order polynomial fitting was
employed to determine the resonance angle represented by
the corresponding pixel position affording the minimum in-
tensity in the reflectance spectra. The polynomial fitting re-
sults and corresponding residual diagrams of normalized SPR,

and WCSPR reflectance spectra were shown in Fig. 4d. It can
be seen that the WCSPR owns not only higher determination
coefficient R2 but also lower residual sum of squares (RSS),
which indicates that more accurate resonance angle position
can be provided by using the WCSPR instead of the SPR for
sensing applications.

RI Test

The water and the glucose solutions with concentrations of 1,
2, 3, 4, 5, 6, and 7 g/L were measured serially to test the sensor
characteristics in bulk sensing applications. The sample tem-
perature is stabilized at 30 °C during the measurement period.
Fifty images are captured for each sample and the capture time
interval is 5 s.

The measured resonance angles as the function of time and
averaged measured resonance angle as the function of RI are
shown in Fig. 5a, b, respectively. The RI resolution σ was

Fig. 4 a Normalized theoretical SPR and WCSPR reflectance spectra
calculated by multiple reflectance theory and Fresnel formula with
water as the sample. b Electric field enhancement factors of the SPR
and WCSPR plotted against the distance from the prism surface. c
Normalized experimental SPR and WCSPR reflectance spectra with
water as the sample measured in the experiment. Different system

angular resolutions and CCD positions were set for each sensor to
achieve as whole resonance curve as possible with effective utilization
of CCD sensing area. d Polynomial fitted results and corresponding
residuals data of normalized experimental SPR, and WCSPR
reflectance spectra. R2 represented the determination coefficient, and
RSS represented the residual sum of squares
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usually employed to estimate the bulk sensing performance of
SPR sensors, which can be shown as follows:

Sbulk ¼ ∂θ
∂n

;σ ¼ σSO

Sbulk
ð3Þ

where θ is the resonance angle, n is the sample RI, and σso is
the standard deviation of sensor output [42]. The standard
deviation of the baseline created by the deionized water,
whose RI is free of evaporation effects, is shown in Fig. 5a,
and the Sbulk is achieved by the linear fitting in Fig. 5b. Using
these data, the SPR resolution of 6.44 × 10−6 RIU and
WCSPR resolution of 9.26 × 10−7 RIU can be achieved as
shown in Fig. 5b. It can be seen that the resolution of
WCSPR sensor could provide almost seven times smaller than
that of conventional single-layered gold SPR sensor. This in-
dicates that the WCSPR could achieve the RI resolution en-
hancement comparable to the high-resolution PWR sensor
[37, 43], and owns better RI resolution than more currently
proposed WCSPR sensors [28, 30, 34]. Besides, the WCSPR
sensing approach is one kind of chip strategies for resolution
enhancement without varying the hardware and software of
measurement instruments, so it can be easily combined with
other methods of improving SPR sensor performance, such as
enhancing the evanescent electric field [44], utilizing the inci-
dent light in infrared region [45, 46], fabricating bimetal layer
[47], and combining with other resonance modes [48–50], for
further resolution enhancement.

Biomolecular Interaction Analysis

The biomolecular interaction between protein A and human
IgG was monitored to test the surface sensing performances

of SPR and WCSPR sensors. The MPA and EDC/NHS
solutions were used to prepare the surface chemical states
for immobilizing the protein A receptors with the workflow
described before [7]. The 100 μg/mL protein A solution
was pumped into the detection channel to create the
biorecognition layer, and the PBSBSA buffer was pumped
into both detection and reference channels to block the
nonspecific sites. Finally, 25 and 50 μg/mL IgG solutions
were serially pumped into both the detection and reference
channels for the label-free analysis of biomolecular interac-
tion between protein A receptors and IgG analytes in real
time. During the measurement process, the sample temper-
ature was configured at 37 °C, namely the human body
temperature. The specific absorption effect inside the fluid-
ic channels, where the IgG analytes could be specifically
absorbed by the protein A receptors in the detection chan-
nels and had no interactions with the BSA in both detection
and reference channels, was schematized as shown in
Fig. 6(a).

The time courses of referenced SPR and WCSPR reso-
nance angle shifts measuring the IgG solutions were shown
in Fig. 6(b). The referenced resonance angle shifts represented
the difference values between the resonance angle shifts in
detection and referenced channels. It could be seen that the
interaction curve measured by WCSPR was smoother than
that measured by SPR, which should be owing to the higher
CSF provided by WCSPR than SPR for the surface sensing
applications. For quantitative comparison, the referenced in-
teraction curves were fitted to Langmuir isotherm adsorption
model between receptors at a surface and analytes in solution,
which was shown as follows:

Analyteþ receptor⇌
kd

ka
complex ð4Þ

Fig. 5 aMeasured resonance angle shift as function of time. b Averaged measured resonance angle shift as function of the RI variation. The error bars
representing the standard errors lie within the data characters
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where ka was association rate constant and kd was dissociation
rate constant. The amount of the complexes γ at time t could
be expressed as follows:

dγ
dt

¼ kaα0 β−γð Þ−kdγ ð5Þ

where α0 was the analyte concentration in solution and β – γ
was the instantaneous concentrations of the free receptors. For
the label-free optical biosensors, the amount of the complexes
γ could be indicated by the sensor output (O). Defining the
initial time t = 0 and the baseline O= 0 for complex forma-
tion, after the integral operation, Eq. (5) could be expressed as
follows:

O ¼ OS 1−e−kt
� � ð6Þ

where Os was the sensor output at saturation stage and k =
kα0 + kd.

The time courses of referenced SPR and WCSPR reso-
nance angle shifts measuring the IgG solutions were fitted to
Eq. (6) and shown in Fig. 6(c, d), respectively. It could be seen
that higher determination coefficient R2, smaller residuals, and
Os values agreeing better with the experimental results were
achieved by using the WCSPR instead of the SPR for biomo-
lecular interaction analysis with the same workflow and ex-
perimental system. These could also be owing to the higher
CSF provided by WCSPR than SPR for the surface sensing
applications. Large difference of k compared with other cases
appeared when the SPR sensor was employed to measure the
specific molecular interaction between protein A receptors
and IgG analytes with concentration of 50 μg/mL with using
the 25 μg/mL IgG solution to create the baseline. This may be
because that the molecular interaction included both the asso-
ciation and dissociation effects, and the competition between
them became more intense along with the increase of IgG
concentration. As known, the main advantage of label-free
biosensors was that they can permit process monitoring of

Fig. 6 (a) Schematic representations of specific molecular absorption on
the sensing surface inside the fluidic channels. (b) Referenced SPR and
WCSPR resonance angle shifts plotted against time measuring the IgG
solution with concentrations of 25 and 50 μg/mL serially. (c, d) Time

course of SPR, CLPWR resonance angle shifts, and corresponding fitting
results measuring 25 μg/mL IgG solution as the PBS buffer was
employed to create the baseline and 50 μg/mL IgG solution as 25 μg/
mL IgG solution was employed to create the baseline
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molecular interaction in real time for dynamic analysis. This
experiment demonstrated that the WCSPR sensor could pro-
vide more accurate and reliable measurement results for bio-
molecular interaction analysis. Therefore, the WCSPR was
experimentally demonstrated to be able to provide better per-
formance in surface sensing applications than the convention-
al single-layered gold SPR.

Conclusion

In this paper, we describe an Au-MgF2-Au trilayeredWCSPR
sensing structure. It can be readily prepared with common
vacuum film coating technique, and the theoretical calculation
shows that it permits film thickness error within 15% of the
targeted value. Owing to the coupling of SPR and waveguide
modes, the WCSPR could achieve sharper resonance curve
and stronger evanescent field than the conventional single-
layered gold SPR, whichmake that theWCSPR could achieve
seven times smaller RI resolution in the bulk sensing applica-
tion and provide more accurate measurement results for the
biomolecular interaction analysis. We believe that the
WCSPR provide a simple and convenient chip-based strategy
for performance enhancement of SPR sensors without varying
the hardware and software of measurement instruments.
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