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Abstract Tip-enhanced Raman scattering (TERS), as a com-
bination of scanning probe microscopy (SPM) and surface-
enhanced Raman spectroscopy (SERS) makes a huge prog-
ress in high sensitive optical and spectral analysis field by
plasmon and plasmonic gradient enhancement. We introduce
the mechanisms and setup of TERS with several experimental
cases. Among them, high-vacuum tip-enhanced Raman spec-
troscopy (HV-TERS) is introduced in detail by describing the
plasmon-driven reactions.
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Introduction

Raman signals can provide substantial chemical information
about the target molecules, so the desire for enhanced Raman
signals necessitates a new approach.When the target molecule
adsorbed onto the metal surface, the signals can be enormous-
ly enhanced because of surface plasmon resonance (SPR).

Surface plasmon (SPs) is the free electron’s collective os-
cillations excited by the incident laser on the interface between
metal and dielectric media. And, the surface plasmon reso-
nance (SPR), excited by an excitation laser, can enormous-
ly enhance the localized electromagnetic field with the help
of a sharp metal tip and the metal film substrate. Besides,
the spatial resolution can be significantly increased. In the
meantime, the enhanced electromagnetic field is consid-
ered as the physical enhancement mechanism for SERS
[1–3] and TERS [4–8].

Therefore, as a combination of SPM and SERS, TERS
makes a huge progress in high sensitive optical and spectral
analysis field by plasmon and plasmonic gradient
enhancement.

SERS can contribute to the electric field enhancement
which is approximately 108–1011 and chemical enhance-
ment which is only 102–103. Because of LSPR [9–11]
which can enhance the Raman spectrum over a large fre-
quency range, the sensitivity of Raman spectroscopy can
be enormously enhanced, and the Raman imaging can be
observed simultaneously to provide a more explicit evi-
dence for spectral analysis [12, 13]. Besides, changes in
the electronic structure of adsorbed molecules can lead to
the chemical enhancement, and therefore, some Raman
peaks can be enhanced selectively and obviously.

As the key technique of TERS, SERS, which can overcome
the limitation of low Raman scattering cross section by optical
diffraction, is used for detecting the chemical information and
vibration modes of molecules. Moreover, SERS signals show
the averaged information of randomly adsorbed molecules.
Instead of measuring the certain molecule, SERS experiments
can only be performed statistically. So, it is hard to achieve
single molecule resolution in experiment [14–16].

To overcome the shortcomings of spatial resolution and
limitation of substrates in SERS, the idea of TERS came up
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as the combination of SERS and SPM technologies in 1985 by
Wessel [5]. Then, Zenobi, Kawata, Anderson, and Pettinger
first reported TERS results in 2000 [4, 6–8], independently.
Since then, the feasibility of TERS is demonstrated widely
around the world [17–19]. There are several groups [20–23]
who can achieve single-molecule detection and mapping at
the resolution level of a single molecule. But, in the first be-
ginning, the technique is insufficient to distinguish the specific
parts of a molecule with a molecular resolved level. In this
way, many researchers were focused on revealing the mecha-
nism of TERS, and then, TERS was developed into a nano-
imaging method and can make a big progress in studying
surface science. There are several excellent review papers
about that [20–27].

Mechanisms

TERS plays an important role in surface science, even at sub-
molecular level [28, 29]. The spatial resolution is enormous
enhanced by using a sharp metal tip. And by using the SPM
controller, the gap distance between the substrate and the tip
can be controlled effectively.

As mentioned above, surface plasmon resonance (SPR)
can be used to obtain the localized electromagnetic enhance-
ment and hence to create Bhot site.^ And, because of the ex-
istence of hot site, the Raman scattering for TERS can be
enormously enhanced. The energy of light is concentrated in
a very tiny area, where the interaction between the light and
matter can be significantly enhanced. And, the spatial resolu-
tion of TERS signals is about 1~10 nm.

In the first beginning, the highest resolution is approxi-
mately 200 nm in the range of visible light because of the
optical diffraction according to the Abbe formula:

Δx ¼ 0:61λ
.
NA

which is too low for nanoscience. Besides, the conventional
Raman microscopy is not capable to obtain the chemical in-
formation of the nanocomposition and distribution of the
specimen. Therefore, thousands of researchers have attempted
to improve the spatial resolution. With the development of
microscopy, the resolution, which is depending on the wave-
length of incident light and numerical aperture (NA) of the
object, has been developed rapidly. In 2000, the TERS were
reported by four groups with a reduced spatial resolution (ap-
proximately 50 nm) [4, 6–8].

Besides, another important concept is the enhancement fac-
tor of TERS. In considering the enhancement that is mostly
originated from the electric field enhancement in TERS, the
factor can be written as

g ¼ ETip

.
E0

where ETip and E0 are the intensities of the enhanced electric
field under the metal or metal-coated tip and the incident elec-
tric field.

Types of TERS

Among the varied SPM technologies, scanning tunnel micro-
scope (STM), atomic force microscopy (AFM), shear force
microscopy (SFM), and scanning near-field optical microsco-
py (SNOM) systems are usually used in the TERS setup.

As shown in Fig. 1a, by controlling the distance between
the tip (metal or metal-coated) and substrate (approximately a
few nanometers) by SPM, the enormous electric field cou-
pling between the tip and substrate is induced. Because of
the created hot spot, the enhancement area is strongly limited
underneath the tip apex.

The STM system can image surface at atomic resolution
(0.1 nm). When distance between the conducting tip and sur-
face of the target is close enough, electrons can tunnel through
the barrier between the tip and the surface with the help of a
bias voltage, as shown in Fig. 1b. In this way, the tunneling
current is very sensitive to the distance of the tip and surface.
The high control precision of STM provides a powerful meth-
od to study single molecules. However, a conductive substrate
or a conductive substrate covered with ultra-thin sample is
required in STM. Besides, STM needs to be performed in an
ultra-high-vacuum (UHV) and low-vibration-noise environ-
ment. And, a low-temperature (LT) environment is required
to reduce thermal drifts [23]. The advantages of STM-TERS
are that it has high control precision and high spatial resolu-
tion, but it is difficult to build and is not suitable for many
samples, such as bio-specimen.

Moreover, AFM and SFM system are basically based on
the tip interaction with the topography of the sample and sub-
sequent change in deflection (contact mode) and amplitude/
phase (tapping mode) [27]. The way AFM works is utilizing
the atom force between the tip and the substrate as shown in
Fig. 1c. Besides, in AFM testing, it does not require specific
samples or treatments that make it a universal and effective
method. Any surface can be applied, even the rough one with
a few microns thick. Specially, AFM can be used in a liquid
environment. In this way, AFM-TERS got a great advantage
in biological [31–35] and organic researches. Moreover, it
also presents many shortcomings, such as the Au/Ag-coated
tips which are needed to create the hot spot and easily break
during AFM scanning.

Therefore, the SFM is usually used in the TERS setup.
As shown in Fig. 1d, a metal tip can be used to detect
surface shear force because of the lateral interaction be-
tween the sample and the tip [36]. The amplitude and
phase of the tuning fork which is connecting with the
metal tip can be surveyed by using high-speed electronics.
Contrasting with AFM-TERS, SFM-SERS can also be
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used in liquid environment and for any samples [37].
Besides, the metal tips used in SFM-TERS are more sta-
ble than the Au/Ag-coated tips in AFM-SERS [38, 39]. In
the other side, SFM has a poor lateral resolution because
of the oscillation amplitudes of the tuning fork [39, 40].

Moreover, by exploiting the evanescent waves on the
surface of samples, as shown in Fig. 1e, SNOM can
achieve high resolution and artifact images with the
help of two types of feedback, including shear force
(same as SFM) and constant force (same as AFM).
Specially, the resolution of SNOM is approximately
20 nm which is restricted by the size of the detector
aperture instead of the excitation laser. Apparently, a
sharp tip is needed to obtain a higher resolution.

Setup

The enhancement of TERS includes the chemical enhance-
ment and electric field enhancement. Noble metals [27], such
as Au/Ag/Cu, are used as the tips and substrates usually, due

to their good optical response and large electric field enhance-
ment in the visible light region.

Tip and Substrates

In TERS, a metal or metal-coated sharp tip apex (approx-
imately 10~50 nm) can contribute to a highly localized
surface charge density. It plays an important role in
influencing the enhancement factor of TERS. Besides,
the spatial resolution of TERS is increased, as well as
the imaging quality of the SPM [41–45].

In some specific systems, such as AFM-TERS, a metal-
coated Si or Si3N4 tip is used frequently. Normally, the
silver or gold would be evaporated onto the probe surface
in a high-vacuum (HV) system. The diameter of the metal-
coated tip apex is approximately 20–50 nm, while the
thickness of the coated metal film is several tens of nano-
meters, as shown in Fig. 2a [45, 46]. The oxidation of the
silver tips leads to a decrease in the enhancement factor
[50].

In STM- and SFM-TERS systems, an electrochemical-
ly etched Au/Ag tips are used frequently. Among various
methods for providing tips, the electrochemical etching
method is considered as a suitable way to produce nice
tips for TERS. The silver wire and gold wire are usually
etched as tips, considering the resonance effect with dif-
ferent excitation wavelengths, as shown in Fig. 2b, c [47,
48, 51].

Besides, the substrate of TERS can be prepared in
various ways, and the nanostructures are varied. For
example, a novel starch-mediated photochemical reduc-
tion method can be applied to synthesis micrometer-
sized gold nanoplates that have the combined properties
of the size as micrometer scale and thickness as nano-
scale. This method not only can provide various shapes
of gold nanoplates but also can control the size range
from a few micrometers to 100 μm. Through the prep-
aration, only starch and sunlight are required instead of
complicated chemical reactions. And, the detection of
less than 100 target molecules can be investigated.
What is more, the deposition of target molecules on
the surface of Au substrate can be easier because of
the self-assembly from Au-S bonding which can lead
to a stronger enhanced hot spot between the Au surface
and the metal tip. And, the flat surface makes it more
usable for TERS (Fig. 3).

As to improve the stronger signals, the resonance frequen-
cy between the tip and the incident light needs to be consid-
ered, as well as the coupling efficiency. The former one can be
modified by changing the shape and size of tip apex [40, 41,
53], as the latter one can be modified by grating coupled
excitation on the tip shaft, as shown in Fig. 2d [49, 54].

Fig. 1 a Schematic illustration of TERS. b–e Schematic illustration of STM,
AFM, SFM, andSNOM. fThree differentmodes of excitation and collection:
side excitation and side collection (i), bottom excitation and bottom collection
(ii), and top excitation and top collection (iii). Adapted from Ref [30]
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Optical Design

There is no doubt that the optical design is a critical part in the
TERS setup. Through the setups, the excitation laser must be
focused onto the tip apex and the Raman scattering signals
collecting should be effective.

As shown in Fig. 1f, there are usually three geometry de-
signs, as using bottom, side, and top illumination in the exper-
imental setups. In a bottom illumination geometry, the light is
focused on the tip apex through the substrate tightly. And, it is
obvious that the sample and support frame should be transpar-
ent and not too thin [55]. However, the electric field enhance-
ment is limited due to the limitation of polarization which is
always being perpendicular to the tip axis [56]. Hartschuh
et al. [57, 58] demonstrated that a radially polarized annular
beam can lead to a higher field enhancement and can improve
the image contrast in TERS.

Therefore, a side illumination setups are adopted in STM
and SFM systems, and has the ability to excite a stronger
electric field compared with the bottom illumination.
Although it has a long working distance objective used to
focus the laser, the excitation and collection efficiency are
limited. While the laser power is increased to compensate
for the decreased efficiency, the target molecules are easy to
be damaged [9].

Top illumination can be used for transparent and opaque
samples, usually used in AFM-TERS and SNOM-TERS, by
combining the advantages of bottom and side illumination

setups. But, it requires a special tip or tip holder to avoid
excitation and scattering light being blocked by the tip. And,
because of its complexity of operation, a parabolic mirror
TERS setup is designed and used successfully in STM-
TERS. In this way, the excitation and collection efficiency
can be largely improved, though the light is difficult to focus
onto the tip apex.

The selection of illumination setups is depending on the
configuration/structure of the SPM systems and on the sam-
ples of interest.

Sample Preparation

In TERS testing, a flat mica, glass slide, or silicon wafer are
usually used [38, 59, 60]. When the tip and the substrate are
both metal (gap-mode), instead, the substrate is not gold or
silver film/single crystal usually, because of the cost of the
gold and silver single crystals and the difficulty to obtain
higher enhancement signals in an air atmosphere.

Normally, many researchers would use a 100–200 nm gold
or silver film deposited in high vacuum on a mica or silicon
wafer [22, 24, 61, 62]. The roughness of the prepared gold or
silver film is similar to the arrays of metal tips which can lead
to the LSPR effect. The electric field enhancement is generat-
ed by the coupling between the tip and the substrate. In this
way, the Raman signal is strongly enhanced comparing with
that on single-crystal substrates [63, 64].

Fig. 2 Scanning electron
microscopy (SEM) images of a a
silver-coated metalized cantilever
tip, b a typical etched Ag tip, c a
typical etched Au tip, and d a
conical metallic tip with a grating
coupler on the shaft, prepared by
focused ion beam sputtering.
Adapted from Ref [46–49],
respectively
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After preparing the substrates, it is also needed to
discuss the way molecules adsorbed on the substrates.
One is that to obtain a monolayer of self-assembled
molecules via chemisorption, the substrates can be di-
rectly immersed into the molecule solutions [65, 66]. In
another way, samples can be dispersed and physically
adsorbed onto the substrates [59] by using the dying
or spin coating method. However, it is difficult to ob-
tain the topography of one molecule using SPM. Hence,
by using the MBE method (molecular beam epitaxial
method), only the target molecules on a clean single-
crystal substrate can be obtained [20, 21, 23, 25]. In
this way, the spectrum testing and topography measure-
ments can be performed simultaneously.

Applications of TERS

Deep Ultraviolet TERS

In recent years, the technique of deep ultraviolet TERS (DUV-
TERS) is advanced, due to its immeasurable potential in

material sciences and bioscience [67–79]. Taguchi and co-
workers first reported DUV-TERS in which the Si tip is coated
by aluminum and the substrate is an aluminum film [76].
Aluminum (Al) has a big benefit in achieving SPR in the
DUV region [75], down to a wavelength of 200 nm, and is
widely used to investigate the design and applications of
DUV-TERS. The following data are obtained theoretically
by using finite-difference time-domain (FDTD) method, the-
oretically analyzed by Yang et al. [80].

The model used in the calculation is reduced to Fig. 4,
while the optical data are taken from ref. [81].

When the tip is pure Al, various parameters are
discussed. Figure 5a is investigated when the r = 30 nm
and d = 2 nm. It indicates that the strong electromagnetic
enhancement will appear ranges from 200 to 400 nm, as
well as shows that when θ = 25°, it will lead to the stron-
gest enhancement. Figure 5b reveals that when t increases
from 5 to 15 nm, the enhancement will increase sharply
and blue shift. And then, when the t continued to increase,
the factor of enhancement will grow gradually and tend to
stabilize. Figure 5c shows that the value of optimal hemi-
sphere (r) is better fixed in the range from 20 to 45 nm.

Fig. 3 a Synthesized
micrometer-sized gold
nanoplates. b, cOptical images of
micrometer-sized gold
nanoplates. d–g SEM images of
micrometer-sized gold
nanoplates. Adapted from Ref
[52]
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And, the distance d is better hold on 2 nm, as shown in
Fig. 5d. When 1 nm ≤ d ≤ 2 nm, the hot spot is localized at
the core of the gap. But, if d is too large, as well as too
short, the electron tunneling transfer in the gap will lead to
an unconvincing result.

When the silicon tip is coated by aluminum with dif-
ferent thickness, we can find out that t = 40 nm, d = 2 nm,
and r = 15 nm with thickness ranges from 15 to 30 nm, is
the best parameters (Fig. 6a). If the thickness of coated
aluminum is larger than 15 nm, these two peaks shown in
Fig. 6a will red shift; when the thickness is larger than
40 nm, the intensity will decrease gradually. Figure 6b
shows that when the thickness of the substrate increased,

the factor of enhancement will grow obviously. However,
when t ≥ 30 nm, the enhancement will not grow obvious-
ly. As shown in Fig. 6c, when θ ranges from 15° to 25°,
the intensity at 222 nm is improved; while θ grows con-
tinually, then the intensity will decrease indeed. So, the
25° is the suitable value of incident angle. Figure 6d
shows that the intensity negatively correlated with the
distance. It also reveals that in the core of the gap, we
can obtain the strongest electromagnetic enhancements.

Figure 7 reveals that, which is obvious and easy to
understand, the factor of enhancements would decrease
gradually when the thickness of Al2O3 increased.
Although the Al2O3 will decrease the SERS enhance-
ment, it can provide an isolated layer to prevent the
direct reaction between the aluminum tip and the target
molecules, similar to shell-isolated nanoparticle-en-
hanced Raman spectroscopy (SHINERS) [82, 83].

In conclusion, the results about parameters help us better
understand the mechanism of DUV-TERS, and to invent and
improve the new technique about DUV-TERS.

HV-TERS

Introduction

The atmospheric TERS can obtain a spectral enhancement
which is no better than traditional SERS (surface-enhanced
Raman spectroscopy), so the HV system is needed to gain
more information. In the high-vacuum environment, the

Fig. 5 a The incident angle (θ),.
b The thickness of the substrate
(t). c The hemisphere radius (r). d
The distance (d)-dependent
surface plasmon enhancements of
DUV-TERS, where |M| = |Elocal/
Ein|, and Elocal and Ein are local
and incident electric fields,
respectively

Fig. 4 The model of DUV-TERS in the calculations
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optical spectral and spatial resolutions are enormous enhanced
because of the tunneling current and field gradient effect [84],
compared with scanning near-field optical microscopy.
Hence, the experiments performed in HV-TERS lead to some
additional non-linear effect, compared with atmospheric
TERS, such as simultaneously active infrared and Raman vi-
brational modes and Fermi resonance. To study the basic sur-
face more accurately, as well as the ultrapure environment, the
high spatial and spectral resolution are required.

By the system, Sun [24] et al. designed an Au single-
crystalline film for TERS in the MBE chamber (in situ) with
a mica substrate. Instead, the sample can be prepared and
loaded by the fast loading chamber (ex situ). And, the entire
STM scanner is placed inside the HV chamber, and two mag-
netic mechanical robot hands are used to transfer the samples;

in this way, the high vacuum becomes easier to obtain by
avoiding frequent opening. Furthermore, similar HV-TERS
setups have been built by other groups. For example, in
Pettinger’s setup [85], all the Raman optics and STM are
contained in the high-vacuum chamber. In this setup, a long
time for alignment is required and it is difficult to replace the
filter because all the optical components are inside the cham-
ber when the incident laser needs to be changed. In Van
Duyne’s setup [86], all the optics are outside the chamber.
Hence, it needs a long working distance for the objective,
and the laser spot is hard to focus tightly because the small
NA (numerical aperture). And, the Raman signal with high
intensity is hard to be obtained (Fig. 8).

Adapted from [87]
Compared with above setups, Sun’s setup allows conve-

nient access of optics with a large objective, and the samples
can be prepared in situ without contamination by air, as sam-
ples are prepared ex situ by all the setups mentioned above. In
another word, the high vacuum makes sure that the experi-
ment runs in a pure condition to decrease the contamination of
the sample. Besides, the STM tip-substrate gap is kept in a
pure tunneling state.

Surface Catalytic Reactions on HV-TERS

Localized surface plasmons (LSPs) that excited on the sur-
faces of noble metal nanoparticle can decay into Bhot
electrons^, of which the energy is between the Fermi and
vacuum energy level [88]. When the Bhot^ electrons scatter

Fig. 6 a The hemisphere radius
(r). b The thickness of the
substrate (t). c The incident angle
(θ) , and. d The distance (d)-
dependent surface plasmon
enhancements of DUV-TERS,
where the tip is an Al-coated
silicon tip

Fig. 7 The thickness of the Al2O3 layer-dependent electromagnetic field
at y = 25o, where the thickness of Al coated on the silicon tip is 15 nm,
t = 40 nm, where the thickness of Al2O3 is included in the thickness of Al
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into an excited state, the Bplasmon-driven reaction^ will be
occurred by decreasing the activation energy [89–91]. By
using several kinds of SERS, the plasmon-driven reactions
can be tracked at nanoscale [92, 93], such as single molecule
SERS, graphene-mediated surface-enhanced Raman scatter-
ing (G-SERS) [94–96], and remotely excited SERS [97–99].
The high spatial resolution and controllability make TERS an

ideal tool for studying plasmon-driven reactions. In 2012,
plasmon-driven reactions are first revealed by TERS [21,
100].

With the HV-TERS system built by Sun’s group, the
plasmon-driven chemical reactions can be monitored in situ.
In the TERS setup, the distance between the substrate and the
tip can be well controlled by STM (Table 1).

Fig. 8 a Schematic diagram of the MBE chamber. b Schematic illustration of the HV-TERS system built by Sun’s group [24]

Table 1 Parameters and comparison of the three HV-TERS systems

Configuration All optical components inside the
chamber17

All optical components outside the
chamber20

Objective inside and other optics
outside the chamber (our system)

Objective Parabolic mirror (4 mm) Long work distance lens (~200 mm) Middle work distance objective
(10 mm)

NA of objective 0.65 (21°–90°) ~0.01 0.5

Planapochromat (P/F) (No/yes) No Yes

Vacuum 10−8 Pa 6.6 × 10−9 Pa 10−7 Pa

Laser 633 nm 633 nm 633 nm

Laser spot 300 nm 60 × 40 μm ~1 μm

Laser and collection path
efficiency

Low (55–60% loss) Very low (low NA, widows, and big
spot)

High (~20% loss)

Tip curvature 25 nm 100 nm 25 nm

STM spatial resolution 0.1 nm (transvers) 0.1 nm (transvers) 0.1 nm (transvers)

Raman spectral resolution 15 0.5 cm−1

Raman spatial resolution 15 nm 30 nm

Polarization control No, fixed Yes Yes

Atomic resolution Yes Yes Yes

Alignment Whole complex optical
components inside the
chamber

Two light paths (excitation and
collection) outside the chamber

One light path outside the chamber

In situ measurement No No Yes

Flexibly modification of optical
path with keeping vacuum

No Yes Yes

Preparation chamber No No Yes
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As shown in Fig. 9, the mechanism of the Bplasmon-
driven^ chemical reactions of 4-nitrobenzenethiol (4NBT)
to DMAB can be investigated by increasing the intensity
of plasmon, which strongly depends on the intensity of
incident laser. The HV-TERS Spectra of 4NBT at a low
power of incident laser were studied as shown in Fig. 9b.
When the intensity of incident laser was increased (still
lower than 3% of the full laser power), first of all, no
change of the TERS peaks was obtained (Fig. 9b (b)).
The main peaks at 1073, 1336, and 1587 cm−1 were all
attributed to 4NBT [101]. When the intensity of incident
laser is larger than 3%, three new peaks were appeared
due to the process (4NBT dimerize to DMAB) by plas-
monic catalysis. The strongly enhanced 1432 cm−1 peak is
related to the –N = N– stretching vibrational mode. As
shown in Fig. 9b (c), the characteristic peak at 1336 cm−1

of 4NBT for the –NO2 stretching mode is still obtained,
as the 4NBT and DMAN are both existed. When the laser
intensity was increased to its original intensity, the finger-
print vibrational peak of 4NBT almost disappeared, indi-
cating that the 4NBT were dimerized to DMAB mostly
(Fig. 9b (b)). As shown in Fig. 9b (e), a molecular

changed has occurred compared with Fig. 9b (a), as even
when the incident laser power was reduced to 0.5%, same
as the intensity was used in Fig. 9b (a). This experiment
reveals that the plasmon-driven reaction of 4NBT to
DMAB will appear at a strong plasmon intensity and the
reaction is irreversible. Furthermore, in the STM-based
HV-TERS, by modifying the tunneling current and bias
voltage, the intensity of plasmon in the nanogap can be
well controlled. Hence, a new way to control chemical
reactions is obtained.

As the 4NBT can be reduced to DMAB in the HV-TERS,
the PATP can be dimerized to DMAB by plasmon-driven
oxidized reaction [84, 89, 102–105]. Figure 10 shows a HV-
TERS study of PATP molecules on an Au substrate (related
positions are pointed by arrows on the TERS mapping). The
TERS spectrum of PATP is different form the SERS and nor-
mal Raman spectra of PATP. The additional peaks that emerge
in SERS spectrum are due to the plasmon-assisted chemical
reaction. But, in the HV-TERS system, there are more Raman
peaks than in SERS spectrum (Fig. 10a, b). The increased
number of peaks has been attributed to the gradient-field effect
in HV-TERS-induced molecular quadrupole transitions [106,

Fig. 9 a Schematic diagrams of
the plasmon-driven chemical
reaction measured in HV-TERS
and the laser intensity-controlled
dynamics of plasmon-driven
chemical reactions. b TERS
spectra at laser powers of 0.5%
(a), 3% (b), 10% (c), 100% (d),
and 0.5% (e) at a bias voltage of
1 V and current of 1 nA.
Assignment of the vibrational
modes of Ag12, Ag16, and Ag17 for
dimercaptoazobenzene (DMAB)
(d). Reproduced with permission
from Sun et al. [21]
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107]. Considering the simulated Raman spectrum (Fig. 10c),
all the Raman-active symmetric Ag vibrational modes in
Fig. 10a, b can be assigned. Noted that most of the remaining
Raman peaks in Fig. 10a, b can be assigned as IR-active
asymmetric Bu modes, compared with the simulated IR spec-
trum (Fig. 10d).

However, this phenomenon has not been observed in atmo-
spheric TERS experiments. The Raman-active Ag13 mode
splits into two Raman peaks due to Fermi resonance (FR)

which is frequently observed in IR or Raman spectra of the
symmetric triatomic molecules. Hence, the high vacuum can
be used for obtaining FR in the more complicated molecules
and improving the image resolution.

In conclusion, to obtain a pure environment, the influence
of air, water, or others from the atmosphere should be avoided
by a HV system. And, it guarantees sub-molecular resolution
imaging of target molecules for SPM to perform the in situ
topographical and spectral imaging simultaneously. The HV-
TERS provides an effective way to analyze the nature of
plasmon-driven reactions and the basic mechanism of mole-
cules and molecular interactions.

Plasmonic Scissors for Molecular Design on TERS

As shown above, surface plasmon can assist molecular synthe-
sis, such as synthesis of DMAB from PATP and 4NBT revealed
by SERS. But, all of these experiments are plasmon-assisted
synthesis reactions. Can dissociation of DMAB be explained
exhaustively in SERS? First problemwemust face to is that the
hot electrons generated from plasmon decay can be easily
quenched in ambient SERS. The HV system can be used for
performing the dissociation process by prohibiting the
quenching of hot electrons. Hence, HV-TERS is considered
as a useful tool for realizing surface catalytic reactions by con-
trolling selective dissociation, as a plasmonic scissor.

The hot site can be created by the metal tip in HV-TERS
due to the excited strong surface plasmon resonances (SPR).
And, when the plasmon decays, more hot electrons are created
at the apex of the tip. The HV system provides ample space to
protect the hot electrons from quenching, and the reaction
barrier for dissociation can be decreased [108, 109].

As have been introduced above, DMAB can be synthe-
sized from PATP and 4BNT. In the other way, the process
of dissociated fragments dimerized back to DMAB is very
quick through the –N = N– bond. The dissociation cannot
be obtained when the dissociation is competing with syn-
thesis [110]. But by tuning the pH value, the dimerization
of dissociated radical fragment can be prevented, which is
already confirmed in SERS (Fig. 11) [111, 112].

Fig. 10 TERS peaks of p-aminothiophenol (PATP) under experimental
conditions of 1 nA current and a −1 V and b +1 V bias voltage. c
Simulated Raman and d IR spectra of DMAB, where the wave number
is scaled by 1.014. Adapted from Ref [61]

Fig. 11 Schematic of HV-TERS,
mechanism of dissociation by
plasmonic scissors, and the
product control by means of
different pH values
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Under acidic condition, DMAB in the gap could be excited
at original intensity of laser (2 mW), and the time span of
TERS ranges from 0 to 60 min. And, with the help of acidic
condition, if the –N = N– bond of DMAB was broken, the
dissociated fragments would be located on the tip or the sub-
strate. But, after 60 min, there is no significant change of
DMAB by TERS. When the laser power is decreased to 1%
(20 μW) and focused on the tip, the measured TER spectrum
(Fig. 12c) is significantly different from Fig. 12a. The Ag17

mode of DMAB disappearance is completely due to the selec-
tively dissociated –N = N– bond.

After the DMAB molecule was dissociated selectively,
PATP can be obtained from the attachment between the
radical fragment and the hydrogen-ions. Similarly, the
4BNT can be produced by the attachment between
oxygen-ions and fragments. By measuring the normal
Raman spectral of PATP power (Fig. 12d), it reveals that
PATP cannot convert to DMAB at a weak plasmon, which
is not enough to reach the reaction threshold and confirm
the above assumption.

Analogously, DMAB under alkaline condition (Fig. 13) is
also measured by TERS. Figure 13a–c shows the spectra mea-
sured at 0, 10, and 60 min with 100% of laser. In Fig. 13b,
after 100% laser excitation for 10 min, a weak vibrational
peak appears. And at 60 min, it obviously increased and the
–N =N– stretchingmode at 1433 cm−1 is decreased obviously
in Fig. 13c. Figure 13d is measured on the substrate which is
retracted from the experiment of Figure 13c, and 1% laser
intensity is applied. The Raman spectrum is like the normal
Raman spectrum of 4NBT powder in Fig. 13d. Hence, the
assumptions above are confirmed.

Figure 14 shows the process of pH-controlled products
of the dissociation by plasmonic scissors in HV-TERS.
With the help of laser, the reaction energy can be excited
to be higher or close to the dissociation. Hence, the hot
electrons can use its high kinetic energy to selectively dis-
sociate the –N = N– bond [113].

In conclusion, to obtain the selective dissociation of
DMAB needs three process. First of all, strong plasmonic
scissors need to be produced due to SPR. Secondly, the attach-
ment between the substrate and ions is necessitated for a de-
creased reaction barrier. Lastly, the weak plasmons excited by
a low incident laser are required to obtain Raman signals and
prevent the backwards synthetic process.

Fig. 12 Experimental TER (acidic conditions) and NR spectra. TER
spectra of DMAB at a 0 and b 60 min. c TER spectrum on tip with
weak excitation after strong excitation for 60 min. d (normal Raman
spectrum) NRS of PATP powder

Fig. 13 Experimental TER (alkaline conditions) and NR spectra. TER
spectra of DMAB at a 0, b 10, and c 60 min. d TER spectrum on tip with
weak excitation after strong excitation for 60 min. e NRS of 4NBT
powder
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HV-TERS has many merits; above all, it provides a pure
environment for SPs. Moreover, the intensity of plasmon can
be tuning easily, such as tunneling current, changing bias volt-
age and intensity of plasmon.

In this way, plasmonic scissors can be successfully applied
by controlling the pH in HV-TERS.

Plasmonic Gradient Effects on TERS

As shown in the above chapter, there is a lot of experimental
evidence of the breakdown of Raman selection rules in HV-
TERS.

Because of the strong tip-enhanced near-field gradient ef-
fects, the molecular Raman-active, IR-active, and overtone
modes can be observed in situ simultaneously.

The Hamiltonian for Raman spectra of a molecule placed
in an inhomogeneous electromagnetic field can be written as
[114]

H ¼ H0 þ H1 þ H2

¼ ααβEβEα þ 1

3
Aα;βγ

∂Eβγ

∂r
Eα þ 1

3
Aγ;αβEγ þ Cαβ;γδ

∂Eγδ

∂r

� �
∂Eαβ

∂r
þ…

where ααβ, Aα , βγ, and Cαβ , γδ are the electric dipole–dipole
polarizability, the electric dipole–quadrupole polarizability
and the electric quadrupole–quadrupole polarizability, and

Eα and
∂Eα;βγ

∂r are the external electric field and external electric
field gradient, respectively [115–118].

Almost all the studies on TERS are mainly focused on the
diagonal part in the equation and the configuration of the mol-
ecule adsorbed on the substrate. Hence, the tip-enhanced reso-
nance coupling (TERC) remains to be explored in HV-TERS
experimentally and theoretically. The unexpected Badditional^
Raman peaks in linear harmonic TERS have been attributed to
molecular anharmonicity and can provide vast ultrasensitive
vibrational information for chemical analysis.

Figure 15 is the distance dependent ratio of
∂Eβγ

∂r
∂Eβγ

∂r =EβEα, while the second and the third terms are

Fig. 14 The process of pH
control of products of the
dissociation by plasmonic
scissors in HV-TERS. a Scheme
of reaction paths, in accordance
with experimental results. b
Dynamic process of chemical
reaction under acidic conditions

Fig. 15 Distance dependent ratio of ∂Eβγ

∂r
∂Eβγ

∂r =EβEα. Noted that the unit
of electric field intensity is V/m, and the unit of electric field gradient is
V/m/au, where au is atomic unit
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considered in the calculations. It reveals that the ratio is sig-
nificantly decreased, and when the distance is larger than
5 nm, the near field gradient effects can be ignored basically
[57].

Summary

With the help of SPM, the coupling between tip and substrate
of TERS can excite strong surface plasmons to induce surface
chemical reaction and enhance the spatial resolution, even the
unexpected additional peaks appeared. In more detail, hot
electrons with high kinetic energy can be created by the decay
of surface plasmons. Then, the reaction barrier was decreased
due to that. Stronger plasmon resonance that generated from
the stronger laser intensity can produce a higher density of hot
electrons with a higher kinetic energy. When the hot electrons
jump to the unoccupied resonant energy level of chemical
reactants, the equilibrium potential energy surface changed
to a temporal negative ion situation of the composite adsorbed
molecules that lead to the plasmon-driven chemical reaction.
Due to that, the design of molecules and selectively dissocia-
tion of specific bond can be produced. In this way, it indicates
that TERS has an immeasurable potential.
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