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Abstract The influence of TiO2 coating on resonant proper-
ties of gold nanoisland films deposited on silica substrates was
studied numerically and in experiments. Themodel describing
plasmonic properties of a metal truncated nanosphere placed
on a substrate and covered by a thin dielectric layer has been
developed. The model allows calculating a particle polariz-
ability spectrum and, respectively, its surface plasmon reso-
nance (SPR) wavelength for any given cover thickness, parti-
cle radius and truncation parameter, and dielectric functions of
the particle, the substrate, the coating layer, and the surround-
ing medium. Dependence of the SPR position calculated for
truncated gold nanospheres has coincided with the measured
one for the gold nanoisland films covered with titania of dif-
ferent thicknesses. In the experiments, gold films with thick-
ness of 5 nm were deposited on a silica glass substrate,
annealed at 500 °C to form nanoislands of 20 nm in diameter,
and covered with amorphous titania layers using atomic layer
deposition technique. The resulting structures were character-
izedwith scanning electronmicroscopy and optical absorption
spectroscopy. The measured dependence of the SPR position
on titania film thickness corresponded to the one calculated

for truncated sphere-shaped nanoparticles with the truncation
angle of ~50°. We demonstrated the possibility of tuning the
SPR position within ~100 nm range by depositing to 30 nm
thick titania layer.
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Introduction

Nanoparticles and nanoisland films of noble metals have dem-
onstrated their applicability in sensing [1–3], surface-enhanced
Raman scattering (SERS) [4], second harmonic generation [5,
6], catalysis, photovoltaics, and solar cells [7–9]. Broad appli-
cation area is possible due to surface plasmon resonance (SPR)
in the visible range of wavelengths: blue for silver and green
for gold and copper nanoparticles. Gold nanoparticles are of
interest for many areas because of their chemical stability.
Since most of the applications are based on the SPR phenom-
enon, it is required to develop techniques to manipulate SPR
wavelength. Generally, characteristics of surface plasmons in
nanoparticles of particular metal depend on the shape and size
of the nanoparticles [10–12] and on their surrounding [13–15].
Layers of spherical gold nanoparticles can be prepared by pre-
cipitation from aqueous solutions on various substrates [16], in
particular, on etched glass surfaces [17]. Another technique is
based on thermal treatment of thin gold films produced by
thermal evaporation or sputtering [18]. The annealing leads
to the disaggregation of the film into particles [19–21], which
is driven by the minimization of surface energy [22].
Generally, both techniques suffer from the poor adhesion of
the nanoparticles to the substrate [23]; however, flat bottom of
the nanoparticles formed from metal films [24, 25] should
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result in slightly better adhesion of such nanoparticles to sub-
strates in comparison with spherical nanoparticles [16] pre-
pared from solutions. This is because of smaller nanoparticle-
substrate contact area and, correspondingly, lower Van der
Waals bonding energy in the latter case. According to Gupta
and co-authors [24], the nanoparticles formed from a gold film
were found to have merits over the commonly used gold col-
loid films such as easier and inexpensive fabrication and high
island density without agglomeration. It has been shown that
this approach results in the formation of nanoparticles shaped
as truncated spheres [24], between hemispherical and spheri-
cal. Because of difficulties in precise characterizing the shape
of nanometer-scale particles falling between a hemisphere and
a sphere, Tian et al. (2014) [25] indirectly identified the shape
basing on the comparison of electrodynamic modeling with
resonant wavelengths of plasmons measured using s- and p-
polarized optical excitation. This study allowed establishing
the correlation between the thickness of a gold film deposited
onto a silica substrate, the temperature of annealing, and the
sphere truncation angle. The shape of the nanoparticles trans-
formed towards spherical with the increase in annealing tem-
perature from 500 to 900 °C, and in case of s-polarized exci-
tation, this corresponded to the shift of the SPR wavelength
from 550 to 525 nm for gold evaporated effective thickness of
5 nm. We have recently presented the model describing the
controllable shift of the SPR wavelength in hemispherical met-
al nanoparticles on a substrate via depositing high-index film
[26] and verified this in the experiments on manipulating the
SPR wavelength in silver nanoparticles covered with titania
using atomic layer deposition (ALD) [13]. The tuning of the
SPR wavelength to particular light sources and, in sensing
(e.g., using SERS), to analytes [13, 25] provides enhancement
of the resonant electric field and related phenomena in a desir-
able spectral range. Here, we present the model of resonant
properties of truncated plasmonic nanospheres under thin film
cover and the results of our experiments with gold nanoparti-
cles covered with titania layers of different thicknesses. We
show that thin film covering these truncated metal nanospheres
allows controlling their SPR position in a wide range. Using
the set of coatings with different thicknesses, it was also pos-
sible to evaluate the shape of the nanoparticles that is the trun-
cation angle.

Experimental

To fabricate gold nanoisland films, we used thermal evapora-
tion and sputtering of gold material on silica substrates (sub-
strate refractive index n = 1.48 and it is weakly dispersive in
optical range) with subsequent thermal annealing of deposited
Au film. In preliminary deposition experiments, we used fast
and simple sputtering method with Emitech K675X (Emitech
Ltd, England) under 10−3 Pa vacuum. For film depositionwith

better surface uniformity, we used thermal evaporation meth-
od with Leybold Heraeus Univex 300 (Oerlikon Leybold
Vacuum, Germany) under 10−5 Pa vacuum. In both experi-
ments, target effective thickness of deposited gold films was
5 nm.

For the growth of gold nanoislands from the deposited gold
layer, we used thermal annealing similarly to the process used
for the formation of gold nanoislands on mica substrate [27].
The samples were annealed in air atmosphere for 60–300 min
at 300–500 °C.

We used scanning electron microscopy (SEM; Leo 1550
Gemini, Oberkochen, Germany) for imaging of deposited and
annealed gold films to characterize geometrical shape and the
sizes of nanoislands. Electron beam voltage was chosen be-
tween 2 and 5 kV to optimize resolution and contrast with the
charging samples. The scale bar redrawn with CorelDraw
software for better readability was added to original SEM
images.

Optical absorption spectra were measured for samples with
initial gold films, annealed gold nanoislands, and covered
with TiO2 gold nanoisland films. We performed the measure-
ments in a spectral range from 300 to 1100 nm with 1 nm
wavelength steps using spectrophotometer Specord 50
(Analytik Jena AG, Jena, Germany) for all samples.

To coat the gold nanoislands with thin layers of titanium
dioxide, we employed atomic layer deposition (ALD). TiO2

was chosen for its high refractive index (n = 2–2.5 in 550–
650 nm region depending on chosen deposition technique [28,
29]) strongly influencing to the SPRwavelength. Titania films
were deposited at 120 °C in Beneq TFS-200 reactor (Beneq
Oy, Espoo, Finland) using titanium tetrachloride (TiCl4) and
water (H2O) precursors, with a nitrogen purge after each de-
position cycle. We deposited six layers of different thick-
nesses, which was initially estimated by the number of depo-
sition cycles.

The thickness and refractive index of the deposited titania
films were verified using a variable angle spectroscopic
ellipsometer VASE® with a High-Speed Monochromator
System HS-190TM (J.A. Woollam Co., Lincoln, NE, USA);
the beam spot size of 1 mm was used.

Modeling

In accordance with Ref. 24, gold nanoislands formed on a
fused silica surface via annealing of the deposited gold film
have a truncated sphere shape, the truncation angle being de-
pendent on the annealing conditions. Except the type of metal,
optical polarizability of such nanoparticles depends on the
truncation angle, on the dielectric permittivity of substrate
and cover materials, and on the thickness of the covering layer.
To calculate the polarizability dispersion of the truncated
sphere placed on a dielectric substrate and covered by a
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dielectric layer of a finite thickness, we based on the approach
originally proposed by Wind et al. (1987) [30]. In that paper,
the authors presented a semi-analytical study of the polariz-
ability of a truncated spherical nanoparticle on a dielectric
substrate. Here, we broaden this approach to the case of a layer
of finite thickness placed between the particle and a surround-
ing medium and analyze how the layer influences the particle
resonant properties.

We consider a truncated sphere of radius R with a disper-
sive dielectric function ε5(ω) placed on a substrate with dielec-
tric constant ε2(Fig. 1). The distance from the sphere center to
the substrate surface isH. The particle is covered by a layer of
thickness h and dielectric constant ε3. Shape of the coating
layer is assumed to replicate shape of the particle, which is a
truncated sphere; this coating conformality is known to be
typical for ALD [13, 31]. The dielectric constant of outer
surrounding medium is ε1. In addition, as was mentioned by
Tian et al. (2014) [25], it is convenient to consider regions 4
and 6 in the substrate (Fig. 1) having different dielectric con-
stants ε4 and ε6, respectively. This allows studying only the
case when the center of the truncated sphere lies above
the substrate surface. The opposite case can be solved by
simple switching ε1 andε2, ε3 and ε4, ε5 and ε6, respec-
tively. Note that spectral dependencies of ε1 − 4 and ε6 can
be taken into consideration, if needed, but in frames of the
present study it is not crucial.

Typical particles have size of several tens of nanometers
(see Fig. 2b below in the BResults and Discussion^ section)
that is much less than the wavelength of the incident light, and
this allows using so-called quasistatic (dipole) approximation
[32]. In the dipole approximation, any phase retardation of the
external electric field can be neglected, and one can solve the
Laplace equation instead of finding full-field solution of the
Helmholz equation. Thus, in this approximation, we can con-
sider the particle being under a homogeneous external electric
field, Eext. Wind et al. (1987) [30] consider a general case
when the external field has both components: normal and
along the substrate surface. To avoid overloading the follow-
ing equations, we consider the case when the external field is

parallel to the substrate surface. This corresponds to a typical
case of normal light incidence and is of interest for the com-
parison with the spectroscopic results.

We can write expressions for reduced (normalized by
−EextR) potential in each region through the expansion by
the eigenfunctions of the Laplace operator in the spherical
coordinate system:
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P1
j cosθð Þ is the first associated Legendre polynomial of the

jth order; r0 ¼ H
R is a truncation parameter; r, θ, and φ are

spherical coordinates depicted in Fig. 1 (r is also normalized
by R). The potential subscripts denote which region it relates
to. Essentially, Eqs. 1a–f correspond to multipole expansion.

Fig. 1 Scheme of the dielectric covered truncated nanosphere (color
online)
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Factors Bj
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j
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j
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j
3;4, A

̂ j
3;4, and C ̂ j

3;4 are un-

known expansion coefficients which are to be found. The
terms outside the sum in Eqs. 1a,b relate to the external
potential. The terms, which contain functions W1

j r; cosθð Þ
and V1

j r; cosθð Þ, describe the substrate influence and cor-

respond to the multipole mirror image in the substrate.
Note that in the expansions 1a–f, we tacitly used only those
spherical functions, which contain cosφ as an azimuth de-
pendence. The axial symmetry of the problem forbids any
other azimuth dependencies but the ones appear in the ex-
ternal potential, e.g., cosφ as in the considered case. Also,
we used the condition of the potential finiteness at r→ 0
and r→∞. That is why the potentials outside the sphere
and the coating, ψ1 and ψ2, contain only the negative pow-
ers of r, and inside potentials, ψ5 and ψ6, contain only the
positive powers of r. Nonetheless, both terms with rj and
r−j − 1 appear in the expansion of the potentials in the cov-
ering layer, ψ3 and ψ4.

Standard boundary conditions, which are the continu-
ity of both the potential and the normal component of
the electric displacement, at the surface of the substrate
(boundaries 1–2, 3–4, and 5–6) lead to the relations
between coefficients:
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Next we use boundary conditions on the surface of the
spheres (boundaries 1–3, 3–5, 2–4, and 4–6). We keep in
the expansions 1a–f finite number of terms N, substitute
the series in the boundary conditions, multiply each equa-

tion by P1
k cosθð Þ cosφsinθ, and integrate over θ from –π

to π and over φ from 0 to 2π. The resulted equations in
general form are as follows:
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Here, r ̂0 ¼ r0
1þh and thickness h is normalized by radius R,

r ̂0 ¼ cosθout and r0 = cos θin where θin and θout are truncation
angles of the sphere and the shell, respectively. Substituting
the expressions for ψ1 − 6 in Eqs. 4a–d leads to the system of
4N equations which solution defines the unknown expansion

coefficients. Note, all the integrals over φ just equal ∫
2π

0
dφcos2

φ ¼ π and will not be mentioned again. Additional details of
the modeling, e.g., the system of equations in explicit form,
are presented in Online Resource 1.

To analyze the polarizability dispersion, one needs to solve
the resulting system of equations repeatedly for each required
wavelength. The polarizability is determined by those expan-
sion coefficients, which correspond to the terms with 1

r2 (the
dipole terms). According to that, from Eq.1a, we obtain the
following expression for polarizability α:

α ¼ B1
1 1þ ε1−ε2

ε1 þ ε2

	 

ð5Þ

Results and Discussion

Scanning Electron Microscopy

The transformation from a percolated gold film (Fig. 2a) to the
island structure [27] goes essentially below filmmelting temper-
ature in accordance with surface diffusion driven dewetting
mechanism [33]. Under annealing, initially metastable or unsta-
ble [33] film forms a discontinuous network. Generally, the
dewetting starts at the film non-uniformities, like holes, which
grow and, further, overlap [33]. The non-uniformities of the
initial gold film are seen in Fig. 2a; the SEM image of the
nanoislands formed from this film after annealing at 500 °C
for 2 h is presented in Fig. 2b. Being a transport process, forma-
tion of nanoislands strongly depends on temperature, and an-
nealing at elevated temperature should result in bigger
nanoislands [27]. Studies of the nanoisland growth at later
stages, when Ostwald ripening [34] takes place, allow finding
surface diffusion coefficient using the model developed by
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Sigsbee [35] for 2D process and, if several annealing tempera-
tures are used, the diffusion activation energy [27]. At the stage
of Ostwald ripening, smaller nanoislands loose atoms in favor of
bigger ones and, finally, rather big—up to several microns in
diameter—particles can grow [27]. Unfortunately, our attempts
to characterize the shape of the nanoparticles using other than
90° SEM geometry failed because of small size of the nanopar-
ticles and charging samples. This coincides with the observa-
tions of Gupta and co-authors [24], who also could not get shape
information from SEM measurements using inclined geometry.

Figure 2c presents the SEM image of the sample shown in
Fig. 2b after covering with 50 nm of titania. Covering the
nanoisland film with titania by ALD provides very uniform
distribution of the TiO2 layer. This means that the cover has
the same thickness on the top of the nanoparticles, on their
tilted surface, and on the substrate, and that the surface profile
formed by the nanoislands becomes smoother very slowly
with the increase in the thickness of the ALD layer. The relief
of the ALD-covered metal island film (MIF) is very close to
the relief of the initial MIF for thinner films, and it stays
unsmooth and critically related to the relief of the MIF even
up to 200-nm ALD film thicknesses [13].

Analysis of the SEM image of the sample used in further
experiments (5-nm gold film on silica substrate annealed at
500 °C for 120 min) allowed deducing mean diameter of the
nanoislands and its standard deviation as 17.6 and 4.6 nm, re-
spectively. This evaluation is based on 254 measurements. The
histogram of the diameter distribution is presented in Fig. 3.

Absorption Spectra and Ellipsometry

Figure 4a illustrates the absorption spectra of several sam-
ples with 5-nm gold film deposited onto silica substrate
under the same regime. The absorption peaks lie near
650-nm wavelength. The reproducibility error in the ab-
sorption at the resonance wavelength is ~10%. Figure 4b
shows the spectra for the same samples annealed at
500 °C for 120 min. The SPR peaks shifted to 530 nm
with essentially improved coincidence.

Processing of the ellipsometry data using Tauc-Lorentz
formulation [36, 37] allowed us to obtain exact thicknesses
of deposited titania layers with 90% confidence limits within
±0.06 nm for the set of six prepared samples. The values of
thickness estimated according to number of the deposition
cycles and ellipsometry data are presented in Table 1. Index
of refraction obtained from the ellipsometry data was
n = 2.3868 at 600 nm, imaginary part of the index being
negligible.

Figure 5a plots the absorption spectra measured for the
samples with 5-nm gold film deposited onto silica substrate,
annealed at 500 °C for 120 min and coated with different
thicknesses of TiO2. The SPR peak is redshifted from 530 to
620 nmwith increase of the coating thicknesses. In Fig. 5b, we
plotted the dependence of the SPR peak wavelength on the
coating thickness together with such dependencies simulated
using Eq. 5; the simulated dependence of the SPR position on
the truncation angle of uncoated gold nanosphere is presented
in the Fig. 5b inset. The latter curve was calculated in the
dipole approximation using Johnson and Christy [38] disper-
sion data for gold. According to this graph, the SPR position
in bare truncated nanosphere corresponds to the truncation
angle θin=50° (see Fig. 1). This value of the truncation angle
provides the distance from the particle center to the substrate
surface equal to ~65% of the sphere radius. The theoretical
curves for titania-covered nanospheres were calculated for
gold nanosphere (θin=0°) and truncated gold nanosphere with
truncation angle θin=60°, both being 8.8 nm in radius and
laying on the glass substrate. The experimental points fall
between these two curves. In the case of hemispherical parti-
cles (θin=90°), the theoretical curve goes essentially higher
than one for θin=60°, and its saturation level corresponds to

Fig. 2 SEM images of thermally
evaporated 5-nm gold film on
silica substrate (a), of the same
sample, annealed at 500 °C for
120 min (b), of the sample,
annealed at 500 °C for 120 min
and covered with 50-nm titania
layer (c). The effective thickness
of all gold films is 5 nm

Fig. 3 Size distribution of the nanoislands formed on silica substrate after
annealing of 5-nm gold film at 500 °C for 120 min
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the wavelength of 680 nm. Note that in the dipole approxima-
tion, a particle actual size does not directly affect its plasmonic
properties, but the relation of coating thickness and the particle
radius defines the spectral shift of the SPR. In performed
modeling, the substrate and the coating (when applicable) in-
dices were taken independent on wavelength, respectively, n-
sub = 1.48 and ncoat = 2.4, which corresponds to our
ellipsometry results at the wavelength of 600 nm. The com-
parison of experimental data and simulated dependencies al-
lows evaluating of the truncation angle of our nanoparticles as
θin~50°. Thus, measurements of the SPR wavelength of trun-
cated metal nanospheres, both bare and covered with dielec-
tric layers of different thicknesses, allow estimating of the
truncation angle.

Figure 5b also illustrates the saturation of the dependence
of the resonant wavelength on the coating thickness. This

means that at a certain thickness (according to Fig. 5b it is
about 20–30 nm for a particle of 8.8 nm in radius), the induced
electric field is almost fully localized in the covering layer and
the particle barely Bfeels^ any further increase in the coating
thickness.

Conclusions

The model of plasmonic nanoparticles shaped as a truncated
sphere with a coating layer has been developed for the first
time. Measured dependence of the surface plasmon resonance
wavelength of the gold nanoisland film on the thickness of
titania coating has coincided with the dependence calculated
for nanoparticles shaped as truncated spheres with the trunca-
tion angle of ~50°. We demonstrated that the SPR can be

Table 1 Thicknesses of
deposited TiO2 films Sample 1 2 3 4 5 6

Estimated thickness, nm 3 5 7.5 10 20 30

Ellipsometry data, nm 3.24 3.82 6.76 9.69 18.83 28.25

90% confidence interval, nm ±0.02 ±0.02 ±0.02 ±0.03 ±0.04 ±0.04

Fig. 4 Absorption spectra of
thermally evaporated 5-nm initial
gold film on silica substrates (a).
Absorption spectra of gold films
with effective thickness of 5 nm
annealed at 500 °C for 120 min
(b) (color online)

Fig. 5 Absorption spectra of gold nanoisland films coated with TiO2
films of different thicknesses (thickness in nanometer marked near the
curves). Before coating, all the samples were annealed at 500 °C for
120 min (a). Experimental (squares) and theoretical thickness
dependencies of the surface plasmon resonance wavelength. Theoretical

results are presented for truncated gold nanospheres with different
truncation angles θin. Inset: spectral position of the SPR wavelength as
a function of bare nanosphere truncation angle, the square marker
denotes the measured wavelength of the SPR (b) (color online)
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precisely shifted up to 100 nm towards longer wavelengths by
depositing titania layer on the island film. As soon as the SPR
position also depends on the truncation angle of the nano-
spheres, which, in its turn, can be governed by annealing
temperature [24], this broadens the range of the SPR tuning.
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