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Abstract Biosensors based on surface plasmon resonance
(SPR), operating with the Kretschmann conventional arrange-
ment, have been employed for biomolecular detection of tu-
mor markers. However, the traditional SPR configuration pre-
sents some experimental inconveniences that are overcome by
using plasmonic substrates based on nanohole arrays
manufactured in metallic films. This SPR configuration ex-
hibits the extraordinary optical transmission (EOT) phenome-
non, which is explored in the monitoring of binding events
that occur on the metal surface. In this work, we proposed a
plasmon biosensor based on nanohole arrays built on gold
film operating in collinear transmission mode by using spec-
tral investigation for signal transduction. The SPR substrate
was coupled to a microfluidic system and showed good sen-
sitivity and linearity. A concentration of 30 ngmL−1 of human
epidermal receptor protein-2 (HER2) antigen (associated with
breast cancer) was detected using the integrated device; this
showed its great potential to be used in tumor diagnosis.
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Introduction

The extraordinary optical transmission (EOT) through sub-
wavelength nanoholes built on thin films of gold and silver
was first reported by Ebbesen and coauthors in 1998 [1]. They
observed a greater light transmission than what was predicted
by the classical theory of Bethe on light diffraction through
holes with dimensions of the order of the light wavelength [2].
The EOT is related to the surface plasmon resonance (SPR)
excitation, which involves trapped light waves on the metal
surface due to oscillation in resonance with electrons of the
metal conduction band [1, 3]. The SPR phenomenon is highly
sensitive to variations in the refractive index on the metal
surface that supports surface plasmons (SPs). Therefore, plas-
monic devices based on nanohole arrays constructed on gold
films have been used to investigate binding events that occur
on the metal surface in affinity biosensors while performing
optical measurement [4, 5]. A SPR affinity sensor is charac-
terized by a recognition element (immobilized on metal) that
can recognize and interact with a specific analyte of a sample
that is in contact with the metallic surface of transducer; this,
in turn, converts the event binding in a measurable optical
signal [3]. These sensors usually evaluate the band wave-
length shift of the transmission spectrum in response to the
molecular recognition of the analyte [4–6]. However, an in-
vestigation of changes in transmitted light intensity can also
be employed [7, 8].

Traditional SPR biosensors based on the Kretschmann con-
figuration require a prism attached to a thin metal film for
excitation of SPs [9]. This type of sensor has been employed
in various bioassays that range from the detection of analytes
related to food quality and increased safety [10–14] to envi-
ronmental monitoring [15–21]. This type of sensor has also
been used for medical diagnosis regarding the detection of
drugs [22–24], hormones [25–27], and markers for cancer
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[28–35]. Despite the wide application and high sensitivity of
the conventional SPR configuration, these devices have diffi-
culty of setup alignment, which is a great experimental incon-
venience [36]. Furthermore, these devices are not compact,
which is an inconvenient feature that limits their application
to field analysis and the degree of multiplexing. On the other
hand, nanohole array-based plasmonic sensors overcome the-
se experimental drawbacks. There is the possibility of operat-
ing in collinear optical arrangements with minimal sensory
areas, which facilitate integration with microfluidic systems,
multiplexing, and miniaturization [37, 38]. Nanohole array-
based plasmonic biosensors built on gold thin films have been
applied to biomolecular detection at various levels [4, 38–40].

The determination of tumor biomarkers is of great interest
in medical diagnostics. These analytes are used to indicate the
presence of cancer in patients, predict the behavior of a disease
in response to treatment, predict the chance of patient recov-
ery, and even help detect cancer in apparently healthy or high-
risk people before the symptoms appear [41]. For instance, the
detection of the paired box gene 8 (PAX8) protein, an impor-
tant biomarker of ovarian cancer, has been reported by using
nanohole array-based SPR biosensors on thin metallic films
[39, 40].

Considering the advantages and applications of plasmonic
biosensors based on nanostructured metallic films for tradi-
tional SPR devices, in this paper, we propose the detection of
human epidermal receptor protein-2 (HER2), a cancer anti-
gen, by using a biosensor based on a gold nanohole array
integrated into a microfluidic system operating in spectral
mode. The HER2 antigen is an important cancer marker that
is in 20–25 % of individuals with breast cancer [42–45], and
its determination is interesting since it is a marker that is used
for the diagnosis and prognosis of the disease [45–47]. It is
noteworthy that to our knowledge, the determination of this
antigen by using SPR biosensors based on nanostructured
gold film was not previously reported.

Experimental

Obtaining the Substrate Containing Nanohole Arrays

Square glass slides (2.5×2.5 cm and 1.0-mm thick) covered
with 100-nm-thick gold films were used. A thin chromium
layer (5-nm thick) was used as an adhesive layer between
the glass and gold. These substrates were employed to obtain
the nanohole arrays by a focused ion beam (FIB, FEI 235)
with a dual-beam device by using a gallium ion source. The
ion beamwas set to 30 keVwith a milling rate of 1.6 nmms−1,
and the beam current was 300 nA. The diameter of each
nanohole was 200 nm, and array periodicity was 400 nm.
The substrates were characterized by scanning electron mi-
croscopy (SEM, Shimadzu Superscan SSX-550).

Microfluidic Chip

The microfluidic system was obtained by using well-
established soft lithography techniques [48]. Square glass sub-
strates (2.5×2.5 cm and 1.0-mm thick) were cleaned with
acetone and piranha solution H2SO4 (FMaia, 95 %)/H2O2

(Anidrol, 35 %) in a 3:1 (v/v) ratio. Photomasks were created
and printed on polyterephthalate sheets by using high-
resolution printing. The photoresist (SU-8® 50, Microchem)
was spin coated (Spincoating Systems, G3P-8) on a glass slide
at 500 rpm for 5 s, dwelling for 8 s, ramping at 2000 rpm for
5 s, and spinning for 25 s. This resulted in a uniform thickness
of ca. 50 μm. The coated glass slides were prebaked at 65 °C
for 6 min and then at 95 °C for 20 min to harden the photore-
sist. The photomask was positioned on top of the photoresist
film, and it was exposed under collimated UV light (Tamarack
Scientific, 2110CP) for 17.5 s. The sample was then baked,
first at 65 °C for 1 min and then at 95 °C for 5 min to promote
cross-linking of the photoresist. The exposed glass slide was
immersed in SU-8 developer until the unexposed photoresist
was completely removed, which created the master templates.
The microchannel structures were created by curing a solution
of polydimethylsiloxane (PDMS, Sylgard 184®) and curing
agent (Sylgard 184®) at a ratio of 10:1 w/w in order to create
PDMS on the master templates. The PDMS was then
degassed for 30 min in a vacuum and then cured at 95 °C
for 2 h. The thickness of the PDMS was ca. 4.0 mm and
microchannels with a width of 70 and 350 μm in spacing
between channels.

Solution Flow and Optical Measurements

To obtain the transmission spectra, an experimental arrange-
ment was used in a collinear mode, as shown in Fig. 1. This
arrangement used a halogen lamp (300W) with a broad emis-
sion band. The light was perpendicularly (normal) focused
and collimated to the metallic nanohole arrays surface by
using a ×50 objective lens (Meiji Techno, WD 7.5 mm)
coupled to a trinocular microscope. The transmitted light
was collected by an optical fiber (Ocean Optics, P600-2-UV-
vis) positioned under the array. This optical cable was coupled
to a UV-vis spectrophotometer (Ocean Optics, USB2000),
and thus, transmission spectra were recorded and stored into
a computer. The nanostructured metallic substrate was inte-
grated with a microflow cell by using a PDMS piece that
contained microchannels aligned to the array, as shown in
the inset of Fig. 1. The flow of solutions was carried out with
the aid of a syringe pump (Harvard Apparatus 11 Plus).

Sensor Sensitivity Characterization

The optical response of the sensor to changes in refractive
index was performed by acquiring transmission spectra of
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the nanohole arrays in solutions with different refractive indi-
ces. For this purpose, aqueous solutions of D-(+)-glucose (Sig-
ma, 99.5 %) at concentrations of 2.0, 6.0, 10.0, 14.0, 18.0,
22.0, 26.0, and 30.0 g 100 mL−1 were used. Each solution had
its refractive index determined (with 0.0001 precision) by
using a portable digital refractometer (Atago, 3850 PAL-RI).

Biosensing Analysis of HER2

An appropriate strategy was used to immobilize the molecular
biorecognition element (antibody against HER2) on the me-
tallic nanostructured surface. For gold surfaces, the immobili-
zation is normally performed via streptavidin immobilized

previously on biotin [49–51]; in turn, the biotin is attached
to the surface via covalent interaction by using an alkanethiol
organized monolayer on the gold surface [52].

The surface with the biorecognizing element that would be
received was prepared initially by immersing the nanohole
arrays in an ultrasonic ethanolic bath for 5 min. Soon after, it
was extensively rinsed with water and dried with N2, and then,
it was integrated with the microfluidic system. Subsequently,
an aqueous solution of cysteamine (Aldrich 95 %)
0.06 mol L−1 was flowed on the substrate surface for 72 h.
Afterwards, a 5-mg mL−1 aqueous solution of biotin-sulfo-
NHS (Sigma-Aldrich, 90 %) was injected for 12 h. Then,
0.5 mg mL−1 of streptavidin in phosphate buffer solution
(PBS, pH=7.4) was passed for 4 h.
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Fig. 3 Transmission spectra of nanohole arrays as a function of the
refractive index (1.3344 to 1.3834). Array has a periodicity of 400 nm,
and the hole diameter is 200 nm. The bands represent the (1,0)liquid and
(1,0)glass plasmonicmodes related to gold/liquid and gold/glass interfaces,
respectively

Fig. 2 SEM images at different magnifications of a square nanohole
array on gold film with 400-nm periodicity, hole diameter of 200 nm,
and depth of 105 nm (thickness)

Fig. 1 Experimental optical arrangement integrated with microfluidic
system in collinear transmission mode to obtain spectra of transmission
across substrates that contain nanohole arrays on gold film. Inset:
photographic image that shows the alignment of the PDMS
microchannel with the array
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The previously prepared substrate was then modified by
immobilization of biotinylated antibody against HER2
(AB1, Invitrogen, 95 %) via specific interaction with the pre-
viously immobilized streptavidin. This AB1 immobilization
step was achieved by flowing a 50-μL mL−1 AB1 solution for
12 h. Soon after, a bovine serum albumin (BSA) solution
(100 ng mL−1) was flowed on the substrate for 2 h. This last
step was necessary to block nonspecific binding sites. Finally,
the HER2 antigen (Invitrogen, 70 %) was flowed on the sub-
strate surface (already containing the antibody) by using a 30-
ng mL−1 antigen solution for 1 h. To use the sandwich detec-
tion mode, a 5-μg mL−1 solution of a secondary antibody
against HER2 (AB2, Invitrogen 75 mg L−1) was flowed on
the system for 2 h. The antibodies, the BSA, and the antigens
were diluted in PBS.

After each modification step, the system was purged at a
flow rate of 2 mL h−1 with PBS to remove loosely adsorbed

molecules and the transmission spectra acquired. The flow
rate of the successive modifications was 0.05 mL h−1.

Results and Discussion

The square gold nanohole arrays constructed by FIB had a
periodicity of 400 nm and a hole diameter of 200 nm with
an active area of ca. 14×14 μm, as shown in Fig. 2.

Figure 3 shows the transmission spectra of the nanohole
arrays immersed in glucose solutions of different refractive
indices. Two bands were observed, and both undergo redshift
as the refractive index increases, which is an expected behav-
ior for plasmonic substrates [4, 53]. According to Eq. 1, the
two bands are both related to the (1,0) modes for metal/liquid
((1,0)liquid mode) and metal/glass ((1,0)glass mode) interfaces,
respectively. The λmax is the maximum wavelength of the
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plasmon, a0 is the periodicity of the array, i and j are integers
relative to the plasmonic modes, and εd and εm are the dielec-
tric constants of the dielectric materials (εglass ¼ 2:13 and
εliquid ¼ 1:78, in the oscillation frequency for visible light)
and metal (εAu depends on the wavelength and can be obtain-
ed elsewhere [54]), respectively.

λmax ¼ α0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

i2 þ j2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εdεm
εd þ εm

r

ð1Þ

The (1,0)glass band possesses a higher sensitivity since the
transmission maximum wavelength (λmax) shifts, at the same
solutions, are higher for this plasmonic mode. As can be seen
in Fig. 3, a redshift of ca. 9 nm was obtained for the (1,0)liquid
mode, while for the (1,0)glass mode, the redshift was ca. 15 nm
when the refractive index changed from 1.3344 to 1.3834.

Since the plasmonic (1,0)glass mode show a higher sensitiv-
ity, the λmax for that band was plotted as a function of the
refractive index. The resultant curve slope (Fig. 4) is defined
as the sensitivity of the plasmonic substrate, and its character-
ization is important in determining the ability of the substrate
to have its plasmonic transmission band disturbed due to
changes in refractive indexes on the metal surface [55]. The
sensitivity obtained was ca. 305 nm RIU-1 (RIU=refractive
index units) and is comparable to results reported in the liter-
ature for plasmonic devices of the same nature [5, 6]. It was
also observed that there was a good linear fit since the linear fit
coefficient (R2) value was near unity (R2=0.9976). It must be
considered that a proportional response to the variation of
refractive index is a sought parameter for SPR sensors. The
inset of Fig. 4 shows the (1,0)glass region (magnified and

normalized) obtained for each refractive index, which shows
the redshift as the refractive index increased.

Considering that the sensor proved to be able to detect
variations in refractive indexes near the metallic surface, we
used the sensor to test the detection of HER2, an antigen
associated with breast cancer. For this, the nanohole gold sur-
face was initially prepared by immobilization of a cysteamine
monolayer and thereafter with biotin and streptavidin.

For the detection of the HER2 antigen, the surface received
the AB1 molecules (biotinylated antibody) through its inter-
action with previously immobilized streptavidin molecules.
Then, the HER2 antigen was immobilized, and finally, the
surface received the AB2 antigen. The use of a secondary
antibody, which characterizes the sandwich detection mode,
improved the sensitivity of the sensor [3]; the antigens are
molecules of relatively low molecular mass (small volume),
which does not produce significant changes in refractive in-
dex. It is often difficult to detect the antigen by spectral mon-
itoring. However, antigen conjugated with bulky secondary
antibody causes a relatively larger change in the refractive
index of the metal, which is then more easily detected through
a spectral band shift. The surface modification scheme
(starting from surface prepared with the cysteamine-biotin-
streptavidin) is shown schematically in Fig. 5.

Figure 6 shows the transmission band shift for the (1,0)glass
mode during the steps of the HER2 antigen detection (starting
from AB1 immobilization).

The spectral shift observed for the (1,0)glass band (Fig. 6) is
expected. As the molecules are immobilized on the surface,
the refractive index on the metal/dielectric interface increases,
leading to a redshift. Compared to the AB1 immobilization
step, a shift of ca. 1.2 nm was observed when the HER2
antigen (concentration 30 ng mL−1) was immobilized. An
extra redshift of ca. 1.3 nm was observed when AB2 was
linked to the AB1/HER2 layer; this resulted in a 2.5-nm total
band displacement. This shift is comparable with those obtain-
ed in other studies that report the use of sensors based on
nanohole arrays applied in biomolecular detection [56, 57].
Furthermore, considering that the transmission maximum
shift obtained for the immobilization of AB2 was of 2.50±
0.03 nm (with respect to surface covered with AB1) and the
fact that our system is capable of measurements with an accu-
racy of 0.1 nm, the signal-to-noise ratio is high enough so that
the sensor can be efficiently used to detect HER2 antigen (in
the tested concentration) and the observed shift is easily mea-
sured by our system.

We observed that the shifts regarding the immobilization of
HER2 and AB2 are similar (1.2 and 1.3 nm, respectively).
However, AB2 molecules are larger than the HER2 ones,
which should imply a higher plasmonic-disturbing effect,
but this was not observed. This possibly occurs because the
SPs are confined on the metal surface, and the amplitude of
the plasmon electromagnetic field (and hence sensitivity)
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decays exponentially as it moves away from the metal/
dielectric interface [58]. Thus, the AB2 molecules cause a
smaller plasmonic perturbation than expected because they
are relatively farther away from the surface (regarding the
antigen molecules). Nevertheless, the sandwich detection
mode clearly provided a greater sensitivity to the presence of
biomolecules on the metal surface.

Conclusion

The nanohole array-based microfluidic sensor presented in
this work was sensitive to the presence of the breast cancer
biomarker at a concentration of 30 ng mL−1. It is noteworthy
that HER2-positive individuals have concentrations between
15 and 75 ng mL−1 in blood plasma [59]. Thus, the sensor
shows potential to be applied in the diagnosis or prognosis of
breast cancer. It is interesting to note that the SPR substrate
showed good sensitivity (ca. 302 nm RIU−1) and a great linear
behavior when compared to other nanohole array-based plas-
monic biosensors for spectral investigation.
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