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Abstract The filter function of the metal–insulator–metal
(MIM) waveguide with a gear-shaped nanocavity is investi-
gated using the finite-difference time-domain method. Since
the gear breaks the symmetric distribution of the resonance,
Fano resonance occurs in the gear-shaped nanocavity. Fano
resonance strongly depends on the structural parameters of the
gear. Compared to the MIM waveguide with a disk-shaped
nanocavity, the MIM waveguide with a gear-shaped nano-
cavity allows for a much more sensitive detection of small
refractive index changes of the filled media inside the nano-
cavity, which reveals a potential sensor application of the
MIM waveguide with a gear-shaped nanocavity.
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Introduction

Surface plasmon polaritons (SPPs) are electromagnetic waves
formed by the interference between the photon and the elec-
tron at the surface of a metal film [1]. SPPs have raised
tremendous interest on emerging applications, including
waveguides [2], magneto-optic data storages [3], solar cells
[4], and sensors [5]. For the waveguide application, two basic
types of SPP waveguides, insulator–metal–insulator wave-
guide [6, 7] and metal–insulator–metal (MIM) waveguide

[8–10], are widely investigated. Since MIM waveguide has a
small mode size, MIM waveguides are paid more attention,
and photonic devices based on the MIM waveguide, such as
filters [8, 9], splitters [10], and couplers [11], have been
realized. The resonant wavelengths of the filter based on
MIM waveguide strongly depend on the refractive index of
the filled media inside the nanocavity. Thus, the filter enables
the detection of the refractive index changes [9]. This kind of
sensor is a lab on a chip, and its potential application is
tremendous. By optimizing the topological shape of the nano-
cavity of the MIM waveguide, the sensitivity of the sensor for
the refractive index could be largely improved. One possible
scheme is to achieve Fano resonance in the nanocavity.

Fano resonance arises directly from the constructive and
the destructive interference of a narrow discrete resonance
with a broad spectral line or continuum [12, 13]. As an
interference phenomenon, Fano resonance is coherent sensi-
tive to the changes of the geometry and local dielectric envi-
ronment. A small perturbation can induce dramatic resonance
or line shape shift [13–16], which enables the fabrication of
ultra-sensitive sensors based on Fano resonance. Researchers
have designed different Fano resonance systems based on the
localized surface plasmon resonance (LSPR), such as dolmen
nanostructure [17], cluster of nanospheres [18], nanodisk with
a missing wedge-shaped slice [19], non-concentric ring/disk
cavity [14], and nanocube on a semi-infinite dielectric base
layer [13]. Fano resonance based on LSPR has achieved ultra-
sensitivity to the refractive index of the surrounding media.
However, Fano resonance based on SPPs in the plasmonic
waveguide is less studied. We hypothesize that Fano reso-
nance based on SPPs could show ultra-sensitivity to the re-
fractive index of the filled media inside the nanocavity, similar
to that based on LSPR.

In this paper, a gear-shaped nanocavity is proposed to pro-
duce Fano resonance, and the transmission properties of the
MIMwaveguide with a gear-shaped nanocavity are investigated
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using the finite-difference time-domain (FDTD) method and
compared with those of the MIM waveguide with a disk-
shaped nanocavity. Since the gear breaks the symmetric distri-
bution of the resonant modes of the disk-shaped nanocavity,
Fano resonance occurs in the gear-shaped nanocavity. The
structural parameter effects on the Fano resonance are investi-
gated. In addition, the sensitivities of the resonant modes to the
refractive index of the filled media inside the gear-shaped nano-
cavity are studied and compared with those of the disk-shaped
nanocavity. It is shown that the gear-shaped nanocavity allows a
much more sensitive detection of the refractive index changes
when Fano resonance occurs in the nanocavity.

Structure and Computational Methods

Figure 1 shows the MIM waveguide with a gear-shaped
nanocavity. The width w of the MIM waveguide is fixed at
50 nm to ensure that only the fundamental transverse mag-
netic (TM0) mode is supported [20, 21]. d is the distance
between the gear-shaped nanocavity and the MIM wave-
guide. The central angle of the teeth of the gear is θ. The
radius of the dedendum circle is fixed at R0300 nm. r is the
radius of the addendum circle. Therefore, the teeth of the
gear have the height h0R−r. For all calculations, the lateral
surface of the teeth close to the waveguide is perpendicular
to the waveguide (along the y direction in Fig. 1). The
thickness (in z direction) of the structure is fixed at 600 nm.

The transmission properties of the MIM waveguide with a
gear-shaped nanocavity are simulated using a commercial FDTD
software (XFDTD by Remcom Inc.). The frequency-dependent
complex relative permittivity ε(ω) of silver is characterized by the
modified Debye mode [22]. A dipole source S in the middle of
the waveguide at a distance of 550 nm away from the center of
the gear-shaped nanocavity oscillates as a Gaussian pulse along
the y direction to excite the TM0 mode in the MIM waveguide.
The transmittance is determined as T0PT/P0, where PT is the
transmitted energy flow in the MIM waveguide with a gear-
shaped nanocavity and P0 is the transmitted energy flow in the
MIM waveguide without the gear-shaped nanocavity. The trans-
mitted energy flow is determined by integrating the x component

of the Poynting vector over the cross section of the port P at a
distance of 1,000 nm from the dipole source.

Results and Discussion

Figure 2a shows the transmission spectrum of the MIM wave-
guide with the gear-shaped nanocavity of r0260 nm, h0R−
r040 nm, and θ0π/12. Six resonant modes (G0, G1, G2, G3,
G4, and G5) appear in the transmission spectrum. For compar-
ison, the transmission spectrum of the MIM waveguide with a
disk-shaped nanocavity is also calculated. The radius of the
disk-shaped nanocavity is the same as the radius of the
dedendum circle of the gear-shaped nanocavity, which is
300 nm. As shown in Fig. 2b, five resonant modes (D0, D1,
D2, D3, and D4) appear in the transmission spectrum of the
MIM waveguide with the disk-shaped nanocavity.

To determine the origins of the resonant modes of the gear-
shaped nanocavity, the normalized |Hz| field distributions of the
gear-shaped nanocavity at resonant wavelengths are calculated
and compared with those of the disk-shaped nanocavity. Sub-
panels a to d of Fig. 3 show the normalized |Hz| field distribu-
tions of the disk-shaped nanocavity at resonant wavelengths of
λD001.146 μm, λD100.712 μm, λD200.54 μm, and λD30
0.45 μm, respectively. The standing waves are formed inside
the nanocavity. The mode numbers of D0, D1, D2, and D3 are 1,
2, 3, and 4, respectively. We also calculated the normalized |Hz|
field distribution at λD400.42 μm, and the mode number is 5
(data not shown). For the MIM waveguide with the gear-
shaped nanocavity, at λG001.153 μm, as shown in Fig. 3e,
the mode number is 1, and there is a similar |Hz| field distri-
bution as Fig. 3a, which denotes the same resonant mode of

Fig. 1 (Color online) Schematics for the MIM waveguide with a gear-
shaped nanocavity and the dipole excitation

Fig. 2 (Color online) Transmission spectra of the MIM waveguide
with different nanocavities: a the gear-shaped nanocavity, b the disk-
shaped nanocavity
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the disk-shaped nanocavity at λD001.146 μm. At λG10
0.765 μm, as shown in Fig. 3f, the mode number is 2, and
there is a similar |Hz| field distribution as Fig. 3b, which
denotes the same resonant mode of the disk-shaped nano-
cavity at λD100.712 μm. At λG200.631 μm, as shown in
Fig. 3g, large |Hz| fields distribute in the spaces between
adjacent teeth, and it is hard to distinguish the mode number.
Similarly, at λG300.576 μm (Fig. 3h), λG400.552 μm, and
λG500.436 μm, it is also hard to distinguish the mode number
in the gear-shaped nanocavity. For the gear-shaped nanocav-
ity, at smaller resonant wavelengths, the teeth break the sym-
metry of the |Hz| field distribution, and more complicated
resonant modes occur in the transmission spectrum. This can
be explained by the Fano resonance from the interference
between the discrete resonance of adjacent teeth and the
symmetric distribution of the resonance in the nanocavity.

Fig. 3 (Color online) Contour profiles of the normalized |Hz| fields of the
MIM waveguide with different nanocavities at different wavelengths: a–
d the disk-shaped nanocavity, e–h the gear-shaped nanocavity

Fig. 4 (Color online) Transmission spectra of the MIM waveguide
with the gear-shaped nanocavities with different teeth height h

Fig. 5 (Color online) Transmission spectra of the MIM waveguide
with the gear-shaped nanocavities with different central angle θ
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To investigate the effect of the teeth height h on the Fano
resonance in the gear-shaped nanocavity, h is increased from
h00 nm to h056 nm at fixed θ0π/12. As shown in Fig. 4, G0

mode is weakly affected by h. However, with increased h, the
wavelengths of G1, G2, and G3 modes red-shift. At the same
time, the transmission spectra become more complex. There
are five resonant modes when h is increased from h00 nm to
h016 nm. When h is increased from h024 nm to h048 nm,
there are six resonant modes. However, when h reaches h0
56 nm, one resonant mode disappears, and the mode number
decreases to 5. For smaller h, the resonant modes are weakly
affected by the teeth. With increased h, the LSPR between
adjacent teeth break the symmetric distribution of the |Hz|
field, which results in the complicated transmission spectrum.
However, for larger h, the SPPs propagate at the top of the
teeth, and the LSPR between adjacent teeth are relatively
weak. Thus, the interactions between them are also relatively
weak, which results in the similar transmission spectra for
smaller h and larger h. Fano resonance only occurs in the
gear-shaped nanocavity, when h has appropriate value.

In order to investigate how θ influences the Fano resonance, θ
is decreased from θ0π/6 to θ0π/30 at fixed h040 nm. As shown
in Fig. 5, when θ0π/6, there are five resonant modes at 1.13,
0.754, 0.66, 0.466, and 0.439μm, respectively.When θ decreases
to θ0π/8, one resonant mode appears at λG300.59 μm, and the
resonant mode at the blue side of the dip of 0.466 μmdisappears.
For θ0π/10, there are similar resonant modes as those of θ0π/8.
When θ decreases to θ0π/12, a new resonant mode appears at
λG400.552 μm. With further decrease of θ, there is no new
resonant mode. Since the distribution of the teeth depends on θ,
the distribution of LSPR between adjacent teeth also depends on
θ. The θ-dependent interaction between LSPR and the symmetric
distribution of the resonance in the nanocavity results in the
strongly θ-dependent resonant modes in Fig. 5.

To show that the teeth contribute to the sensitivity of the
resonant modes, we compare the sensitivities to the refractive
index of the filled media inside the nanocavity between the
resonant modes of the MIM waveguide with the disk-shaped
nanocavity and those of the gear-shaped nanocavity. The two
types of nanocavity have the same structural parameters as

Fig. 6 (Color online) a, b
Transmission spectra of the
MIM waveguide with the disk-
shaped nanocavity (a) and the
MIM waveguide with the gear-
shaped nanocavity (b) filled by
different refractive index n. c, d
Resonant wavelengths of the
MIM waveguide with the disk-
shaped nanocavity (c) and the
MIM waveguide with the gear-
shaped nanocavity (d) as a
function of the refractive
index n
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those in Fig. 2. Subpanels a and b of Fig. 6 show the transmis-
sion spectra of the disk-shaped nanocavity and the gear-shaped
nanocavity with different filled refractive index n, respectively.
For two types of nanocavity, with increased n, the wavelengths
of the resonant modes red-shift, and new resonant modes
appear at the blue side of the transmission spectra. Figure 6c
shows the wavelength of the resonant modes D0, D1, and D2 as
a function of n. The solid curves are the linear fittings. The
slopes of them are kD000.694, kD100.513, and kD200.407,
respectively. Figure 6d shows the wavelengths of G0, G1, and
G2 as a function of n. The solid curves are also the linear
fittings. The slopes of them are kG000.744, kG100.597, and
kG200.520, respectively. For the similar resonant modes D0/G0

and D1/G1, the differences of the slopes between them are 0.05
and 0.084, respectively. However, when Fano resonance occurs
in the gear-shaped nanocavity (G2 mode), the difference of the
slope between D2 and G2 is 0.113, which is much larger than
those of D0/G0 and D1/G1. Therefore, when Fano resonance
occurs in the gear-shaped nanocavity, the resonant wavelength
is more sensitive to the refractive index, which enables a
sensitive way to detect the changes of the refractive index.

Conclusion

In this paper, the transmission properties of the MIM wave-
guide with a gear-shaped nanocavity are investigated nu-
merically and compared with those of the MIM waveguide
with a disk-shaped nanocavity. Since the LSPR between
adjacent teeth breaks the symmetric distribution of the res-
onance of the disk-shaped nanocavity, Fano resonance
occurs in the gear-shaped nanocavity. Fano resonance
strongly depends on the height and the central angle of the
teeth. In addition, Fano resonance is more sensitive to the
refractive index changes of the filled media inside the nano-
cavity, which provides a novel way of building plasmonic
sensors based on SPP waveguides for the detection of re-
fractive index changes.
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