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ABSTRACT

N → ∞

In  the  framework  of  the  factorization  approach  we  calculate  the  branching  fractions  of 100 two-body  nonleptonic  decay
channels  in  total,  including 44 channels  of  the  charm  meson  decays  and 56 channels  of  the  bottom  meson  decays.  For
charm meson decays, we test and confirm the previous observation that taking the limit for the number of colors 
significantly improves theoretical  predictions.  For bottom meson decays,  the penguin contributions are included in addi-
tion.  As  an  essential  input,  we  employ  the  weak  decay  form  factors  obtained  in  the  framework  of  the  relativistic  quark
model based on the quasi-potential approach. These form factors have well  been tested by calculating observables in the
semileptonic D and B meson decays and confronting obtained results  with experimental  data.  In general,  the predictions
for  the  nonleptonic  decay  branching  fractions  are  acceptable.  However,  for  a  quantitative  calculation  it  is  necessary  to
account for a more subtle effects of the final-state interaction.

Keywords  form factor, quark model, nonleptonic decay, factorization method

 1   Introduction

Nonleptonic  decays  of  the  heavy  mesons  offer  an  envi-
ronment to understand the nature of  quantum chromo-
dynamics  (QCD).  Experimentally  many  such  decays
have  been  measured.  Theoretically  nonleptonic  decays
involve more complex mechanism than the leptonic and
semileptonic ones due to the local four-quark operators.
A  usual  treatment  is  the  factorization  approach,  where
the decay amplitude is factorized into the product of the
meson decay constant and weak transition form factors.
An  intuitive  justification  for  the  factorization  approxi-
mation  comes  from  the  so-called  colour  transparency
proposed by Bjorken [1], where for the energetic B decay,
the final light meson flies very fast in the opposite direction
to the other meson, thus almost escaping the color field
of  the  parent  particle.  As  a  result,  the  factorization
holds.  However,  the  strong  and  complicated  final  state
interaction  does  challenge  the  factorization  approxima-

tion. And this part is very hard to be quantified, there-
fore,  in  this  paper  we  test  how  factorization  works  for
the nonleptonic decays.

The  form  factors  embodying  the  dynamics  of  the
meson  weak  transitions  are  an  essential  input.  As  a
motivation and also a new point of this paper, we adopt
the form factors  which are  derived from the relativistic
quark model based on the quasi-potential approach. The
numerical values of form factor parameters can be found
in Refs. [2, 3], containing the results for the weak D and
B decays  to  the  pseudoscalar  and/or  vector  mesons  in
the  final  states.  In  this  relativistic  quark  model,  the
meson wave functions are explicitly obtained as numerical
solutions of  the relativistic  Schrödinger-like bound-state
equation and not  assumed to  be  an empirical  Gaussian
function.  Moreover,  no  free  parameters  are  involved
since  they  have  been  fixed  by  the  previous  studies  of
hadron spectroscopy. All relativistic effects including the
transformation  of  meson  wave  functions  from  the  rest
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reference frame to the moving one, and the contribution
of intermediate negative energy states are included. It is
important to note that the form factors are predicted in
the  whole  kinematically  allowed  region.  The  values  of
these  form  factors  have  been  well  tested  confronting
with experiment by a series of the calculated semileptonic
decay observables, e.g., the branching fractions, forward-
backward  asymmetries  and  polarizations.  Similar  work
concerning  the  application  of  those  form  factors  to  the
nonleptonic  decays  can  be  found  in  Refs.  [4–6].  A  very
recent study of the charmless two-body B meson decays
is  performed  in  the  perturbative  QCD  factorization
approach  [7]  as  a  more  advanced  tool.  See  also  Refs.
[8–10] for some earlier works.

N = 3 N → ∞

In  this  paper  we  calculate  the  branching  fractions  of
the charm and bottom meson nonleptonic decays in the
framework  of  the  factorization  approach  based  on  the
effective  weak  Hamiltonian.  Experimental  results  from
PDG and other theoretical predictions are also compiled
for  a  direct  comparison.  For  charm  meson  decays,  the
penguin  contributions  are  highly  suppressed,  thus  we
neglect them. We have considered the cases of the color
numbers  as in reality and  1). In the latter
case, the discrepancy between the theory and experimental
results  are  expected  to  be  significantly  reduced  due  to
the experience in 1980s [14–18]. For the decay process of
the B mesons,  we  consider  both  tree-level  and  penguin
loop-level  contributions.  The  latter  can  be  as  large  as
the former, or even dominant.

This  paper  is  organized  as  follows.  In  Section  2  and
Section  3  we  briefly  describe  the  effective  Hamiltonian
governing  the D and B weak  decays.  In  Section  4  we
collect  the  input  values.  In  Section  5  we  show  our
numerical  results  and  discuss  them.  Some  care  should
also  be  taken  for  the  conventions  for  the  definitions  of
the  decay  constants  and  form  factors.  Conclusions  are
given in Section 6.

 2   Factorization in the charm meson
two-body decays

In the standard model, the effective Hamiltonian of the
weak charm meson decay process reads

Heff =
GF√
2
V ∗
cq1Vuq2 [c1(µ)(q̄1αcα)V−A(ūβq2β)V−A

+ c2(µ)(q̄1αcβ)V−A(ūβq2α)V−A], (1)

q1,2 s d

(q̄1q2)V−A = q̄1γµ(1− γ5)q2 GF = 1.166× 10−5 GeV−2

α β

c1(µ) c2(µ)

c1 = 1.26, c2 = −0.51 µ = mc

where  both  can  be  either  or  quarks,
 and  is

the Fermi coupling constant;  and  are color indexes;
 and  are Wilson coefficients for which we use

the  values  [19]  at  the  scale .
The  penguin  contributions  are  tiny  and  thus  can  be

ignored.
i, j, k, lUsing the Fierz identity (  are color indices)

δljδik =
1

N
δijδlk + 2T a

lkT
a
ij , (2)

T a = λa

2
λa a = 1, 2, · · · , 8with ,  and  ( )  being  the  Gell-

Mann matrices,  and N being the number of  colors,  one
has

(ss)V−A(uc)V−A =
1

N
(sc)V−A(us)V−A

+ 2(sαTβρsρ)V−A(uβTασcσ)V−A.

(3)

In  the  factorization  approximation  the  second  term  of
Eq. (3), which contributes to the nonfactorizable part, is
neglected.  Then we can write  the effective  Hamiltonian
corresponding to the color-favored decay process

Hcf =
GF√
2
V ∗
cq1Vuq2a1(q̄1c)V−A(ūq2)V−A, (4)

and for the color-suppressed case

Hcs =
GF√
2
V ∗
cq1Vuq2a2(q̄1q2)V−A(ūc)V−A, (5)

a1 = c1 +
c2
N , a2 = c2 +

c1
N

N → ∞

N → ∞

with .  Empirically,  taking  the
choice  of  will  generally  improve  theoretical
predictions  for  the  charm  meson  decays,  as  it  was
already mentioned in Introduction. In this sense, part of
the  nonfactorizable  effects  have  been  compensated  by
the choice of .

In  the  factorization  approach,  the  hadronic  matrix
element  can  be  expressed  by  the  product  of  decay
constant  and  the  invariant  form  factors.  The  decay
constant  is  defined  as  the  matrix  element  of  the  weak
current between the vacuum and a pseudoscalar (P) or a
vector (V) meson:

⟨P (pµ)|(q1q2)V−A|0⟩ = −ifP pµ,
⟨V |(q1q2)V−A|0⟩ = ifVmV ϵ

∗
µ, (6)

fP fV
mV ϵµ

where  and  are the decay constants of the pseudoscalar
and vector meson, respectively;  and  are the mass
and polarization vector of the vector meson.

D → P pD, pP
mD, mP

For  the  transition  (with  the  momenta 
and  masses  of  the  initial  and  final  mesons,
respectively), the matrix element of the weak current is
parameterized as

⟨P |(qγµc)|D⟩ = f+(q
2)

(
pµD + pµP − m2

D −m2
P

q2
qµ

)
+ f0(q

2)
m2

D −m2
P

q2
qµ,

⟨P |(qγµγ5c)|D⟩ = 0. (7)Nc
1) The application of large  approach to the hadron physics can be

seen in e.g. Refs. [11–13].
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D → VFor the  transition,

⟨V |(qγµc)|D⟩ = 2iV (q2)

mD +mV
εµνρσϵ∗νpDρpV σ,

⟨V |(qγµγ5c)|D⟩ = 2mVA0(q
2)
ϵ∗ · q
q2

qµ

+ (mD +mV )A1(q
2)

(
ϵ∗µ − ϵ∗ · q

q2
qµ

)
−A2(q

2)
ϵ∗ · q

mD +mV

×
(
pµD + pµV − m2

D −m2
V

q2
qµ

)
.

(8)

q = pD − pP,V

D P V

q

In  these  equations,  is  the  four-momentum
transfer between the initial  and final  or  mesons.
For the case of the nonleptonic two-body decay considered
below,  is  just  the  on-shell  momentum  of  the  meson
created from vacuum.

XD→M1,M2 = ⟨M1|(qc)V−A|D⟩⟨M2|
(uq)V−A|0⟩

The  matrix  element 
 is then simplified as

M2 = P : XD→M1,P = −ifPmP ϵ
†µ
λ ⟨M1|(qc)V−A|D⟩,

M2 = V : XD→M1,V = ifVmV ϵ
†µ
λ ⟨M1|(qc)V−A|D⟩,

(9)

M2 P V X

where  we  adopt  the  convention  where  the  final  meson
 (  or )  after  the  comma in  the  subscript  of  is

generated from vacuum.
DIn the rest frame of the initial  meson, one has the

explicit representations of the momentum and polarization
vectors:

pµD = (mD, 0, 0, 0), pµM1
= (E1, 0, 0, |p|),

qµ = (E2, 0, 0,−|p|), ϵ†µt =
1√
q2

(E2, 0, 0,−|p|),

ϵ†µ± =
1√
2
(0,±1, i, 0), ϵ†µ0 =

1√
q2

(|p|, 0, 0,−E2), (10)

E1 M1 E1 + E2 = mD

|p| = λ1/2(m2
D,m

2
1,m

2
2)/(2mD)

λ(x, y, z) = x2 + y2 + z2 − 2(xy+

yz + xz)

where  is  the  energy  of  and ,
 is  the  momentum  of  the

daughter  meson  with 
. For convenience, we define the helicity amplitudes

Hλ ≡ ϵ†µλ ⟨M1|(qc)V−A|D⟩, (11)

λ = t M2 = P λ = ±, 0 M2 = Vwith  for  and  for .
D → P1, P2For the process , one has

XD→P1,P2 =− ifP2mP2ϵ
†µ
t ⟨P1|(qc)V−A|D⟩

=− ifP2
(m2

D −m2
P1
)f0(m

2
P2
)

=− ifP2mP2Ht; (12)

D → P, Vfor ,

XD→P,V =ifVmV ϵ
†µ
λ ⟨P |(qc)V−A|D⟩

=i2fV f+(m2
V )mD|p|

=ifVmVH0. (13)

H0 Ht

D → P

The  expressions  for  and  coincide  with  the  ones
given in Ref. [20] for the  transition.

D → V, PFor , one has

XD→V,P =− ifPmP ϵ
†µ
t ⟨V |(qc)V−A|D⟩

=2ifPA0(m
2
P )mD|p|

=− ifPmPHt; (14)

D → V1, V2for ,

|XD→V1,V2
|2 = f2V2

m2
V2
(|H+|2 + |H−|2 + |H0|2),

H± = −(mD +mV1
)A1(m

2
V2
)± 2mD|p|

mD +mV1

V (m2
V2
),

H0 = −(mD +mV1
)A1(m

2
V2
)
m2

D −m2
V1

−m2
V2

2mV1
mV2

+
2m2

D|p|2

(mD +mV1
)mV1

mV2

A2(m
2
V2
),

(15)

Ht,H±,H0

D → V

where the definitions of  coincide with the ones
given in Ref. [20] for the  transition.

 3   Factorization of the bottom meson
two-body decay amplitudes

∆B = ±1,∆C = ±1 b̄→ c̄ud̄

b̄→ c̄us̄ b̄→ ūcd̄ b̄→ ūcs̄

We classify  the  bottom meson decay channels  into  two
classes  according  to  the  effective  Hamiltonian.  For

 transitions, e.g., the processes ,
, ,  and ,  the effective Hamiltonian

reads

Heff =
GF√
2
[V ∗

qbVq1q2(c1(µ)O1 + c2(µ)O2)]. (16)

Then such category is similar to charm decays described
above.

∆B = ±1,∆C = 0 b̄→ c̄cd̄ b̄→ c̄cs̄

b̄→ ūud̄ b̄→ ūus̄

For  transitions, e.g., , ,
 and , the effective Hamiltonian reads

Heff =
GF√
2

{
V ∗
q′bVq′q[c1(µ)O1 + c2(µ)O2]

− V ∗
tbVtq

10∑
i=3

ci(µ)Oi

}
. (17)

q(q′) = s, d, cwhere ;
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O1 = (bq′)V−A(q
′q)V−A, O2 = (bαq

′
β)V−A(q

′
βqα)V−A,

O3 = (bq)V−A

∑
q′

(q′q′)V−A, O4 = (bαqβ)V−A

∑
q′

(q′βq
′
α)V−A,

O5 = (bq)V−A

∑
q′

(q′q′)V+A, O6 = (bαqβ)V−A

∑
q′

(q′βq
′
α)V+A,

O7 =
3

2
(bq)V−A

∑
q′

eq′(q
′q′)V+A, O8 =

3

2
(bαqβ)V−A

∑
q′

eq′(q
′
βq

′
α)V+A,

O9 =
3

2
(bq)V−A

∑
q′

eq′(q
′q′)V−A, O10 =

3

2
(bαqβ)V−A

∑
q′

eq′(q
′
βq

′
α)V−A, (18)

eq′ q′and  is the charge of the  quark.
O2−10The even operators  can be rearranged to a color

singlet form by the Fierz transformation

(ψ1O
iψ2)(ψ3Oiψ4) =

∑
j

Cij(ψ1O
jψ4)(ψ3Ojψ2), (19)

Cijwhere  are the Fierz coefficients that are presented in
Table 1. In this way, we have

O2 =(bq)V−A(q
′q′)V−A,

O4 =
∑
q′

(bq′)V−A(q
′q)V−A,

O6 =− 2
∑
q′

(bq′)S+P (q
′q)S−P ,

O8 =− 2
∑
q′

3

2
(bq′)S+P (q

′q)S−P ,

O10 =
∑
q′

3

2
(bq′)V−Aeq′(q

′q)V−A. (20)

(q̄1q2)V+A ≡ q̄1γµ(1 + γ5)q2

(q̄1q2)S±P ≡ q̄1(1± γ5)q2

In  the  above  equations,  and
.

B → P1(qsq
′)P2(q

′q) qs

P2

O4

a4 O10

3
2eq′a10 ai

Here  we  take  (  is  the  spectator
quark), as an example, to demonstrate the calculation of
the penguin contribution, with  representing a charged
pseudoscalar  meson.  The  contribution  of  therein  is
proportional to  and the contribution of  is propor-
tional  to .  The  coefficient  is  related  to  the
Wilson one:

for aodd, ai = ci +
ci+1

N
,

for aeven, ai = ci +
ci−1

N
.

(21)

O6The operator  can be further written as

O6 =− 2
∑
q′

(bq′)S+P (q
′q)S−P

=− 2[(bq′)(q′q) + (bγ5q′)(q′q)

− (bq′)(q′γ5q)− (bγ5q′)(q′γ5q)]. (22)

Parity conservation leads to

⟨P |(q1γµq2)|0⟩ = 0, ⟨P |(qγµγ5b)|B⟩ = 0, (23)

m1,2

q1,2

while  equations  of  motion  read  (with  being  the
masses of quarks )

(q1γ
5q2) =

−i
m1 +m2

∂µ(q1γ
µγ5q2),

(q1q2) =
−i

m1 −m2
∂µ(q1γ

µq2), (24)

and thus only the third term of Eq. (22) survives. Then
according to Eq. (24),

⟨P1|(bq′)|B⟩ = −i
mb −mq′

(−iqµ)⟨P1|(bγµq′)|B⟩,

⟨P2|(q′γ5q)|0⟩ =
−i

mq +mq′
(iqµ)⟨P2|(bγµγ5q′)|0⟩, (25)

and the product is given by

⟨P1|(bq′)|B⟩⟨P2|(q′γ5q)|0⟩

= −
m2

P2

(mq +mq′)(mb −mq′)

× ⟨P1|(bγµq′)|B⟩⟨P2|(bγµγ5q′)|0⟩

=
m2

P2

(mq +mq′)(mb −mq′)
XB→P1,P2

. (26)

O6

2m2
P2

(mq+mq′ )(mb−mq′ )
a6 O8

3
2eq′

2m2
P2

(mq+mq′ )(mb−mq′ )

M2

Therefore,  the  contribution  of  is  proportional  to
. And similarly, the contribution of 

is  proportional  to .  In Table  2 we
summarize  the  total  penguin  contributions  in  various
processes.  In  our  convention,  the  second  meson  ( )
corresponds  to  the  one  generated  from vacuum;  and  in

Table  1  The Fierz coefficients appearing in Eq. (19).

i\j S V T A P

V −1
1
2 0 − 1

2 1

A −1 − 1
2 0 1

2 1
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M2

µ = mb

c1 = 1.105 c2 = −0.228 c3 = 0.013

c4 = −0.029 c5 = 0.009 c6 = −0.033 c7/α = 0.005

c8/α = 0.060 c9/α = −1.283 c10/α = 0.266 α

the  lower  half  of  this  table,  is  flavor  neutral.  The
values of Wilson coefficients at the scale  used in
our  calculation  are , , ,

, , , ,
, ,  [21],  where  is

the fine structure constant.

B+ → π+η

η π

η

From Table  2 one  can easily  read  out  the  amplitude
for a given decay process. However, some decay amplitudes
contain  more  than  one  class.  We  take  as  an
example.  In  this  decay  either  or  can  be  produced
from  vacuum.  For  the  case  when  is  produced  from
vacuum, the decay amplitude can be written as follows:

q′ = u, q = d, eq′ =
2

3
: A1 =

GF√
2

{
V ∗
ubVuda2 − V ∗

tbVtd
[
a3 − a5 + a9 − a7

]}
XB+→π+,ηu

,

q′ = d, q = d, eq′ = −1

3
: A2 =

GF√
2

{
− V ∗

tbVtd

[
a3 − a5 −

1

2
a9 +

1

2
a7 + a4 −

1

2
a10

+
m2

η

ms(mb −md)

(
a6 −

1

2
a8
)( fsη
fuη

− 1
)
rη

]}
XB+→π+,ηu

,

q′ = s, q = d, eq′ = −1

3
: A3 =

GF√
2

{
− V ∗

tbVtd
[
a3 − a5 −

1

2
(a9 − a7)

]}
XB+→π+,ηs

,

XB+→π+,ηu
= ⟨π+|(bd)V−A|B+⟩⟨η|(uu)V−A|0⟩ = ⟨π+|(bd)V−A|B+⟩fuη ,

XB+→π+,ηs
= ⟨π+|(bd)V−A|B+⟩⟨η|(ss)V−A|0⟩ = ⟨π+|(bd)V−A|B+⟩fsη . (27)

rη πThe definition of  is given later in Eq. (33). For the case when  is produced from vacuum, the decay amplitude
reads

q′ = u, q = d, eq′ =
2

3
:

A4 =
GF√
2

{
V ∗
ubVuda1 − V ∗

tbVtd
[
a4 + a10 +

2m2
π

(mu +md)(mb −mu)
(a6 + a8)

]}
XB+→η,π+ ,

XB+→η,π+ = ⟨π|(ud)V−A|0⟩⟨η|(bu)V−A|B⟩ . (28)

B M2

M2 ai

ai

Table  2  The penguin contributions to the  meson two-body decays. The meson after the comma, , denotes the one
produced from vaccum. When  is the flavor neutral meson, the odd coefficients  also contribute. They are compiled in
the lower half of the table, in addition to the even  part. For completeness, we also list the channels involving axial vector
mesons.

Decay channel eq′ = + 2
3

eq′ = − 1
3

B → P1, P2 a4 + a10 +
2m2

P2
(mq+mq′ )(mb−mq′ )

(a6 + a8) a4 − 1
2
a10 +

2m2
P2

(mq+mq′ )(mb−mq′ )
(a6 − 1

2
a8)

B → P, V a4 + a10 a4 − 1
2
a10

B → V, P a4 + a10 − 2m2
P

(mq+mq′ )(mb+mq′ )
(a6 + a8) a4 − 1

2
a10 − 2m2

P
(mq+mq′ )(mb+mq′ )

(a6 − 1
2
a8)

B → V, V a4 + a10 a4 − 1
2
a10

B → A,P a4 + a10 +
2m2

P
(mq+mq′ )(mb−mq′ )

(a6 + a8) a4 − 1
2
a10 +

2m2
P

(mq+mq′ )(mb−mq′ )
(a6 − 1

2
a8)

B → P,A a4 + a10 a4 − 1
2
a10

B → V,A a4 + a10 a4 − 1
2
a10

B → A, V a4 + a10 a4 − 1
2
a10

B → P1, P
0
2 a3 − a5 + a9 − a7 a3 − a5 − 1

2
(a9 − a7)

B → P, V 0 a3 + a5 + a9 + a7 a3 + a5 − 1
2
(a9 + a7)

B → V, P 0 a3 − a5 + a9 − a7 a3 − a5 − 1
2
(a9 − a7)

B → V, V 0 a3 + a5 + a9 + a7 a3 + a5 − 1
2
(a9 + a7)

B → A,P 0 a3 − a5 + a9 − a7 a3 − a5 − 1
2
(a9 − a7)

B → P,A0 a3 − a5 + a9 − a7 a3 − a5 − 1
2
(a9 − a7)

B → V,A0 a3 − a5 + a9 − a7 a3 − a5 − 1
2
(a9 − a7)

B → A, V 0 a3 + a5 + a9 + a7 a3 + a5 − 1
2
(a9 + a7)
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B+ → π+ηThe total  amplitude for  is  then given by the
sum of these amplitudes

A(B → π+η) = A1 +A2 +A3 +A4 . (29)

 4   The input

In our consideration we use the following quark composi-
tions of the light mesons

K+ = us, K0 = ds, K− = su,

π+(ρ+) = ud, π0(ρ0) =
uu− dd√

2
, π−(ρ−) = du,

η0 =
dd+ uu+ ss√

3
, η8 =

dd+ uu− 2ss√
6

,

η = η8 cos θ − η0 sin θ, η′ = η8 sin θ + η0 cos θ,
(30)

θ = −15.4◦

ϕ = 39.3◦ ϕ

ϕ

42◦ ± 2.8◦

40.1◦ ± 2.1◦ ± 0.7◦

η−η′

fu
η(′)

fs
η(′) fq

fs qq̄ = 1√
2
(uū+ dd̄) ss̄

with ,  which  corresponds  to  the  mixing  angle
 [22].  Note that such value of  was previously

used  in  Refs.  [23, 24].  This  value  of  agrees  with  the
CLEO  measurement  [25]  and  also  with  the
recent BESIII measurement  [26]. Refer-
ence [22] presents a nice analysis of the  mixing both
from  the  theoretical  and  phenomenological  standpoint,
where  in  the  former  only  the  masses  of  pseudoscalar
mesons  are  involved  as  inputs  and  in  the  latter  the
experimental  measurements  of  branching  fractions  are
used. The relation between the decay constants  and

 in  the  singlet-octet  mixing  scheme and the  ones 
and  in the quark flavor basis  and 
is given by

fuη =
1√
2
fq cosϕ, fsη = −fs sinϕ,

fuη′ =
1√
2
fq sinϕ, fsη′ = fs cosϕ, (31)

fq/fπ = 1.07, fs/fπ = 1.34with .  The  values  of  the  decay
constants used in our calculations [27–33] are as follows
(in MeV)

fπ = 130.2, fK = 155.6, fK∗ = 217,

fuη = 78, fsη = −112, fuη′ = 63, fsη′ = 137,

fD+ = 212.7, fD0 = 211.6, fDs = 249.9,

fρ = 205, fω = 187, fϕ = 215. (32)

η(
′)

Calculating  the  matrix  elements  of  the  scalar  and
pseudoscalar currents, one needs to use the equations of
motion,  Eq.  (24).  When  is  generated  from vacuum,
the hadron matrix element is  treated differently due to
the SU(3) breaking [34, 35]:

⟨η(
′)|s̄γ5s|0⟩ = −i

mη(′)

2ms
(fs

η(′) − fu
η(′)),

⟨η(
′)|ūγ5u|0⟩ = ⟨η(

′)|d̄γ5d|0⟩ = rη(′)⟨η(
′)|s̄γ5s|0⟩,

rη′ =

√
2f20 − f28√
2f28 − f20

cos θ +
1√
2
sin θ

cos θ −
√
2 sin θ

 ,

rη = −1

2

√
2f20 − f28√
2f28 − f20

 cos θ −
√
2 sin θ

cos θ +
1√
2
sin θ

 , (33)

f0/fπ = 1.17 f8/fπ = 1.26with  and .  The  axial-vector
anomaly effect has been incorporated into this equation
in order to ensure the correct behavior in the chiral limit.
By  using  Eq.  (2.12)  and  Eq.  (2.18)  from  Ref.  [22],  we
have

⟨0|ūγ5u|η⟩ = − i√
2

m2
π

2mu
fq cosϕ,

⟨0|s̄γ5s|η⟩ = −i2m
2
K −m2

π

2ms
fs sinϕ. (34)

Considering the fact that in the chiral limit

m2
π

2mu
=

2m2
K −m2

π

2ms
, (35)

f0 = f8

we  arrive  at  Eq.  (33).  Note  also  that  in  the  limit  of
, Eq. (33) reproduces Eq. (19) of Ref. [36].

µ = mbThe  running  quark  masses  at  the  scale  have
the following values [37]

mu=1.86, md = 4.22, mc = 901, ms = 80, mb = 4200,

(36)

in  units  of  MeV.  For  the  CKM  matrix  we  use  the
Wolfenstein parameterization

1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (37)

λ = 0.2265 A = 0.790 ρ = 0.141

η = 0.357

with  central  values , ,  and
 taken from PDG [38].

We  employ  the  form  factor  values  from  Refs.  [2, 3]
calculated in RQM, which have been well  tested in the
semileptonic decays. These form factors are in agreement
with lattice determination, and the resulting observables
(not  only the branching fractions  but also  the forward-
backward  asymmetries,  polarizations  of  the  leptons  or
the vector mesons), agree with lattice and experimental
results.  As the function of momentum transfer squared,
the relevant form factors are expressed by

f+(q
2), V (q2), A0(q

2)• :
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F (q2) =
F (0)(

1− q2

M2

)[
1− σ1

q2

M2
1

+ σ2

(
q2

M2
1

)2
] , (38)

f0(q
2), A1(q

2), A2(q
2)• :

F (q2) =
F (0)

1− σ1
q2

M2
1

+ σ2

(
q2

M2
1

)2 . (39)

c→ s M =MD∗
s
= 2.112

f+(q
2), V (q2) M =MDs = 1.968

A0(q
2) c→ d

M =MD∗ = 2.010 f+(q
2), V (q2)

M =MD = 1.870 A0(q
2)

b→ c M =MB∗
c
= 6.332

f+(q
2), V (q2) M =MBc = 6.227

A0(q
2) b→ u

M =MB∗ = 5.325 f+(q
2), V (q2)

M =MB = 5.280 A0(q
2)

M1

M1 =MD∗
s

c→ s M1 =MD∗

c→ d M1 =MB∗
c

b→ c

M1 =MB∗ b→ u

F (0), σ1, σ2

For  the  transition,  GeV  for  the
form factors , and  GeV for
the  form  factor .  For  the  transition,

 GeV for the form factors ,
and  GeV for the form factor . For
the  transition,  GeV for the form
factors ,  and  GeV  for  the
form  factor .  For  the  transition,

 GeV for  the form factors ,
and  GeV for the form factor . The
mass  is  always  taken  as  the  pole  mass  between  the
active  quarks:  for  transition, 
for  transition,  for  transition,

 for  transition.  For  convenience,  we
compile  these  mass  parameters  for  the  charm  meson
decays in Table 3 while for the bottom meson case one
refers  to Table  I in  Ref.  [3].  The  values  of 
are easily found in Refs. [2, 3].

 5   Results and discussion

 5.1   Branching fractions

The decay branching fractions can be calculated by the
equation

B = τ
|p|

8πm2
|A|2, (40)

τ m

|p|

A

X

PP, PV, V P V V

V V H+, H−

where for the two-body nonleptonic decays,  and  are
the lifetime and mass of the parent particle, respectively,

 is the magnitude of the three-momentum of the final
mesons in  the rest  frame of  the decaying heavy meson,
and  expressions  for  the  amplitudes  are  given  in
Appendices A and B. The involved expressions for  are
given in Eqs. (12)–(15) for , and  modes,
respectively.  For  modes,  the  helicities  and

H0 are involved. The results for the branching fractions
are  shown  in Tables  4 and 5 for  charm  and  bottom
meson decays, respectively.

N = 3

N → ∞
N → ∞

D+ → π0π+ D0 → K+K− D0 → K−ρ+

N → ∞
N = 3

D+ → π+ϕ

D0 → ηη Ds → K+K̄0 Ds → K+π0

N = 3

D → KK D → ππ

D+ → π0π+

D0 → π−π+, π0π0

For charm meson decays,  both  (the number of
colors in reality) and the limit  are considered in
Table  4.  As  mentioned  above,  the  case  of 
compensates  the  nonfactorizable  effects  to  some  extent
and  is  expected  to  improve  the  theoretical  predictions
empirically. We confirm this point, e.g., for the channels

, ,  the  results  for
 are  altered  by  a  factor  of  about  2  compared  to

the  ones  for ,  improving  the  agreement  with  the
experimental  values.  For  the  channels ,

,  and , the effect is even
more pronounced, the results are changed by one or two
orders  of  magnitude  compared  to  the  ones  for 
bringing them closer to the measured values. In Ref. [39],
a more elaborate phenomenological analysis is performed,
where  the  annihilation  and  exchange  contributions  as
well  as  the  resonant  final-state  interaction  (FSI)  are
considered.  As  a  result,  the  branching  fractions  for

 and  as  a  long-standing  puzzle  get
correctly treated in Ref. [39] compared to the experimental
values.  We  find  in  our  simple  treatment  that  only  the
value for the  channel agrees with the experi-
mental  value  within  2  standard  deviation  while  for  the

 ones the branching fractions differ from
experiments by a factor of 2–3. This is in line with the
observation  of  Ref.  [39]  showing  the  importance  of  the
nonfactorizable effects.

N → ∞

D

N → ∞
N = 3 1/N

N → ∞ B

1/N

Here we discuss the rule of  in more detail. The
phenomenon that this  rule  greatly improves predictions
for  branching  fractions  of  the  nonleptonic  two-body 
decays  was  realized  by  the  community  in  1980s,  as
shown in Refs. [14–16]. In Ref. [16], Buras et al. made a
more complete analysis of charm decays, where the effec-
tiveness  of  is  clearly  demonstrated compared to
the case of , and also the result of the  expansion
is phrased much better in terms of simple diagrammatical
rules. But we stress that this rule is purely empirical. As
mentioned in Ref. [14], it is not clear whether this rule is
just  a  coincidence  or  has  a  deeper  meaning.  Note  that
the  generalization  of  the  to  the  decays  will
lead  to  predictions  in  contradiction  with  experiment.
Also,  the  suppression  varies  in  different  channels
and is rather of a dynamical origin.

N → ∞In cases where the rule of  works well, we can

D DsTable  3  Masses in parameterizations of the weak decay form factors of  and , cf. Eqs. (38) and (39).

Quark transition Decay M1 (GeV) M  (GeV)
f+(q

2), V (q2) A0(q
2)

c → s D → K 2.112 2.112 1.968

Ds → η(′), ϕ

c → d D → ω, π, ρ, η(′) 2.010 2.010 1.870

Ds → K,ϕ

RESEARCH ARTICLE FRONTIERS OF PHYSICS

Shuo-Ying Yu, et al., Front. Phys. 18(6), 64301 (2023)   64301-7

 



N

understand  what  happens  for  the  factorizable  and
nonfactorizable contributions in the spirit of the large 

1/NQCD [16]. In the usual procedure, the  term in Eq.
(21),  being  part  of  the  factorizable  term,  is  kept  while

N = 3

N = ∞ N

Table  4  Branching fractions of charm meson decays compared to experimental values in PDG [38]. The results for 
and  are shown with  being the number of colors. We also list the results corresponding to “With FSI” in Ref. [39].

Decay channel N = 3 N → ∞ Ref. [39] PDG [38]

D+ → π0π+ 2.30× 10−3 1.30× 10−3 (8.89± 4.51)× 10−4 (1.247± 0.033)× 10−3

D+ → π0K+ 1.89× 10−4 2.52× 10−4 (3.07± 1.02)× 10−4 (2.08± 0.21)× 10−4

D+ → ηK+ 2.25× 10−4 3.01× 10−4 (0.98± 0.26)× 10−4 (1.25± 0.16)× 10−4

D+ → η′K+ 9.03× 10−5 1.21× 10−4 (1.40± 0.39)× 10−4 (1.85± 0.2)× 10−4

D+ → ηπ+ 2.26× 10−3 3.10× 10−4 (4.72± 0.21)× 10−3 (3.77± 0.09)× 10−3

D+ → η′π+ 1.77× 10−3 3.66× 10−3 (6.76± 2.19)× 10−3 (4.97± 0.19)× 10−3

D+ → π+ρ0 1.43× 10−3 2.43× 10−4 − (8.3± 1.5)× 10−4

D+ → π+ϕ 6.93× 10−5 2.23× 10−3 − (5.7± 0.14)× 10−3

D+ → π+ω 1.16× 10−3 1.91× 10−4 − (2.8± 0.6)× 10−4

D+ → K+ρ0 1.23× 10−4 1.65× 10−4 − (1.9± 0.5)× 10−4

D+ → ϕρ+ 8.52× 10−5 2.74× 10−3 − < 1.5× 10−2

D0 → K−π+ 4.07× 10−2 5.44× 10−2 (3.70± 1.33)× 10−2 (3.950± 0.031)× 10−2

D0 → π−π+ 2.14× 10−3 2.86× 10−3 (1.44± 0.027)× 10−3 (1.455± 0.024)× 10−3

D0 → π0π0 7.3× 10−6 2.35× 10−4 (1.14± 0.56)× 10−3 (8.26± 0.25)× 10−4

D0 → K−K+ 2.97× 10−3 3.96× 10−3 (4.06± 0.77)× 10−3 (4.08± 0.06)× 10−3

D0 → ηη 6.46× 10−5 2.07× 10−3 (1.27± 0.27)× 10−3 (2.11± 0.19)× 10−3

D0 → π−K+ 1.47× 10−4 1.97× 10−4 (1.77± 0.88)× 10−4 (1.50± 0.07)× 10−4

D0 → ηπ0 2.65× 10−6 8.50× 10−5 (1.47± 0.90)× 10−3 (6.30± 0.6)× 10−4

D0 → η′π0 6.75× 10−6 2.17× 10−4 (2.17± 0.65)× 10−3 (9.2± 0.19)× 10−4

D0 → ηη′ 1.55× 10−6 4.98× 10−5 (9.53± 1.83)× 10−4 (1.01± 0.19)× 10−3

D0 → π0ω 1.12× 10−6 3.60× 10−5 − (1.17± 0.35)× 10−4

D0 → ηω 2.79× 10−5 8.95× 10−4 − (1.98± 0.18)× 10−3

D0 → π0ρ0 1.91× 10−5 6.12× 10−4 − (3.86± 0.23)× 10−3

D0 → π−ρ+ 4.45× 10−3 5.95× 10−3 − (1.01± 0.04)× 10−2

D0 → π0ϕ 1.35× 10−5 4.34× 10−4 − (1.17± 0.04)× 10−3

D0 → ρ−π+ 1.51× 10−3 2.02× 10−3 − (5.15± 0.25)× 10−3

D0 → ηϕ 1.20× 10−5 3.87× 10−4 − (1.8± 0.5)× 10−4

D0 → K−ρ+ 7.94× 10−2 1.06× 10−1 − (1.13± 0.07)× 10−1

D0 → ηK̄∗0 3.07× 10−4 9.86× 10−3 − −
D0 → η′K̄∗0 2.41× 10−6 7.72× 10−5 − < 1.0× 10−3

D0 → ρ0ρ0 2.16× 10−5 6.90× 10−4 − (1.85± 0.13)× 10−3

D0 → ϕω 1.46× 10−5 4.68× 10−4 − < 2.1× 10−3

Ds → K+K̄0 4.89× 10−4 1.57× 10−2 − (2.95± 0.14)× 10−2

Ds → ηπ+ 2.19× 10−2 2.92× 10−2 (2.26± 0.82)× 10−2 (1.68± 0.10)× 10−2

Ds → K+π0 9.83× 10−6 3.16× 10−4 (8.17± 4.64)× 10−4 (6.21± 2.1)× 10−4

Ds → η′π+ 1.96× 10−2 2.62× 10−2 (2.64± 0.78)× 10−2 (3.94± 0.25)× 10−2

Ds → ηK+ 1.76× 10−3 3.97× 10−3 (1.50± 0.75)× 10−3 (1.72± 0.34)× 10−3

Ds → η′K+ 9.76× 10−4 2.99× 10−4 (7.07± 0.49)× 10−4 (1.7± 0.5)× 10−3

Ds → ηρ+ 4.64× 10−2 6.20× 10−2 − (8.9± 0.8)× 10−2

Ds → η′ρ+ 2.09× 10−2 2.79× 10−2 − (5.8± 1.5)× 10−2

Ds → K+ω 2.36× 10−5 7.59× 10−4 − (8.7± 2.5)× 10−4

Ds → K+ρ0 2.83× 10−5 9.09× 10−4 − (2.5± 0.4)× 10−3

Ds → ϕπ+ 2.79× 10−2 3.73× 10−2 − (4.5± 0.4)× 10−2

Ds → ϕρ+ 9.92× 10−2 1.33× 10−1 − (8.4+1.9
−2.3)× 10−2
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N = 2, 3 N = ∞ N

N = 3

Table  5  Branching fractions of bottom meson decays. The results for  and  (with  being the number of
colors) are shown compared to experimental values in PDG [38]. We also show the results of Refs. [40, 47] for part of channels
for which our theoretical values for  deviate experimental ones by larger or around factor of 4.

Decay channel N = 2 N = 3 N = ∞ Others PDG [38]
B+ → π+η 5.80× 10−6 5.06× 10−6 3.79× 10−6 − (4.02± 0.27)× 10−6

B+ → π+η′ 4.71× 10−6 4.19× 10−6 3.32× 10−6 − (2.7± 0.9)× 10−6

B+ → ωπ+ 5.84× 10−6 4.28× 10−6 1.92× 10−6 − (6.9± 0.5)× 10−6

B+ → ρ+η 1.20× 10−5 1.11× 10−5 9.31× 10−6 − (7.0± 2.9)× 10−6

B+ → ρ+η′ 1.02× 10−5 9.58× 10−6 8.43× 10−6 − (9.7± 2.2)× 10−6

B+ → π+K0 3.36× 10−6 3.94× 10−6 5.23× 10−6 1.89× 10−5 [40] (2.37± 0.08)× 10−5

B+ → ρ+K0 3.35× 10−7 3.03× 10−7 2.45× 10−7 2.4× 10−7 [40] (7.3+1.0
−1.2)× 10−6

B+ → π0π+ 4.24× 10−6 3.35× 10−6 1.89× 10−6 − (5.5± 0.4)× 10−6

B+ → π+ρ0 5.78× 10−6 4.06× 10−6 1.55× 10−6 − (8.3± 1.2)× 10−6

B+ → π0ρ+ 8.77× 10−6 7.61× 10−6 5.53× 10−6 − (1.09± 0.14)× 10−5

B+ → π+ϕ 2.52× 10−11 2.44× 10−9 5.52× 10−8 − (3.2± 1.5)× 10−8

B+ → ρ+ρ0 1.28× 10−5 1.01× 10−5 6.67× 10−6 − (2.4± 0.19)× 10−5

B+ → ρ+ω 1.10× 10−5 9.64× 10−6 7.10× 10−6 − (1.59± 0.21)× 10−5

B0 → D−π+ 3.86× 10−3 4.17× 10−3 4.80× 10−3 − (2.52± 0.13)× 10−3

B0 → D−K+ 2.97× 10−4 3.20× 10−4 3.69× 10−4 − (1.86± 0.2)× 10−4

B0 → π−K+ 3.10× 10−6 3.37× 10−6 3.93× 10−6 1.56× 10−5 [40] (1.96± 0.05)× 10−5

B0 → π−π+ 4.54× 10−6 4.90× 10−6 5.65× 10−6 − (5.12± 0.19)× 10−6

B0 → π0π0 2.62× 10−7 7.00× 10−8 1.48× 10−7 9× 10−7 [40] (1.59± 0.26)× 10−6

B0 → π0η 1.02× 10−7 9.60× 10−8 1.33× 10−7 − (4.1± 1.7)× 10−7

B0 → π0η′ 7.57× 10−8 4.48× 10−8 7.41× 10−8 7× 10−8 [40] (1.2± 0.6)× 10−6

B0 → ηη 6.80× 10−7 2.69× 10−7 5.13× 10−7 − < 1.0× 10−6

B0 → η′η′ 3.58× 10−7 8.50× 10−8 2.14× 10−7 − < 1.7× 10−6

B0 → D∗−π+ 4.93× 10−3 5.32× 10−3 6.13× 10−3 − (2.74± 0.13)× 10−3

B0 → D−ρ+ 9.31× 10−3 1.00× 10−2 1.16× 10−2 − (7.6± 1.2)× 10−3

B0 → π0ρ0 8.09× 10−7 1.51× 10−7 4.00× 10−7 3× 10−8 [40] (2.0± 0.5)× 10−6

B0 → π0ω 1.72× 10−8 3.96× 10−9 1.39× 10−8 − < 5× 10−7

B0 → ρ−K+ 7.56× 10−7 8.56× 10−7 1.08× 10−6 1.16× 10−6 [40] (7.0± 0.9)× 10−6

B0 → π−K∗+ 1.10× 10−6 1.17× 10−6 1.30× 10−6 6.84× 10−6 [40] (7.5± 0.4)× 10−6

B0 → ρ−π+ 4.77× 10−6 5.15× 10−6 5.94× 10−6 8.06× 10−6 [40] (2.30± 0.223)× 10−5

B0 → D−K∗+ 5.58× 10−4 6.01× 10−4 6.93× 10−4 − (4.5± 0.7)× 10−4

B0 → D∗−K+ 3.73× 10−4 4.02× 10−4 4.64× 10−4 − (2.12± 0.15)× 10−4

B0 → ηη′ 4.91× 10−7 1.54× 10−7 3.32× 10−7 − < 1.2× 10−6

B0 → ηρ0 1.38× 10−7 2.65× 10−8 6.99× 10−8 − < 1.5× 10−6

B0 → η′ρ0 1.49× 10−7 2.87× 10−8 7.35× 10−8 − < 1.3× 10−6

B0 → ηω 8.79× 10−7 1.68× 10−7 4.32× 10−7 − (9.4+4.0
−3.1)× 10−7

B0 → η′ω 7.01× 10−7 1.30× 10−7 3.55× 10−7 − (1.0+0.5
−0.4)× 10−6

B0 → ρ+π− 1.10× 10−5 1.19× 10−5 1.37× 10−5 − (2.30± 0.223)× 10−5

B0 → ρ+ρ− 1.34× 10−5 1.45× 10−5 1.67× 10−5 − (2.77± 0.19)× 10−5

B0 → ρ0ρ0 7.25× 10−7 1.81× 10−7 3.63× 10−8 5× 10−8 [40] (9.6± 1.5)× 10−7

B0 → ωω 3.27× 10−7 6.85× 10−8 1.56× 10−8 7× 10−8 [40] (1.2± 0.4)× 10−6

B0 → ωρ0 7.11× 10−8 2.62× 10−8 2.71× 10−8 − < 1.6× 10−6

B0 → D∗−ρ+ 1.34× 10−2 1.45× 10−2 1.67× 10−2 − (6.8± 0.9)× 10−3

B0 → D∗−K∗+ 8.34× 10−4 8.99× 10−4 1.04× 10−3 − (3.3± 0.6)× 10−4

Bs → D−
s π+ 3.56× 10−3 3.84× 10−3 4.43× 10−3 − (3.00± 0.23)× 10−3

Bs → D−
s K+ 2.75× 10−4 2.96× 10−4 3.41× 10−4 − (2.27± 0.19)× 10−4

Bs → K−π+ 7.96× 10−6 8.59× 10−6 9.91× 10−6 − (5.8± 0.7)× 10−6

Bs → K−K+ 5.47× 10−6 5.94× 10−6 6.95× 10−6 1.09× 10−5 [47] (2.66± 0.22)× 10−5
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1/N

1/N

1/N

1/N 1/N

1/N

1/N

the nonfactorizable term is not considered since there is
no  reliable  way  to  calculate  it.  In  such  a  situation  the
leading  and  nonleading  contributions  mix  up.  The
nonfactorizable one, e.g., the final state interaction effect,
is  nonleading  in  the  expansion.  By  dropping  the

 term in Eq. (21), one will work in a self-consistent
expansion of .  Or we can say that the  term in
factorizable  part  is  almost  compensated  by  the
(unknown)  nonfactorizable  one.  There  is  an  explicit
calculation  to  demonstrate  this  point  [17],  where  the
author shows that the soft gluon exchange mechanism (a
type of nonfactorizable contribution) tends to cancel the

 term in the factorized amplitude by using the light
cone  sum  rule.  In  a  more  physical  picture,  we  can  say
that  the  quarks  belonging  to  different  color  singlet
currents  do  not  easily  form a  meson  and  thus  the 
term is highly suppressed.

B

D

B

B+ → ρ+η(
′) Bs → D∗−

s ρ+ N = 3

1.5σ

N

N

B+ → π+ϕ N = 2

N = 3

N = 3

The  results  for  the  decays  are  shown  in Table  5.
The  theoretical  predictions  should  be  better  consistent
with  the  experimental  data  than  in  the  meson  case.
Indeed,  the  factorization  assumption  works  better  for
the heavier  meson since the final mesons carry larger
momenta.  And  for  some  decay  channels,  such  as

 and ,  the  results  for 
perfectly  match  the  experimental  values  within 
uncertainty. We have calculated branching fractions for
the three sets of color number . Those results constitute
a range of  branching fractions varying with the choices
of ,  which may be understood as an error estimate in
some  sense.  However,  there  is  an  exception,  for  the
penguin  governed  decay  the  result  for 
deviates from the one for  by two orders of magni-
tude.  We should compare  our  results  to  the  ones  given
in  Ref.  [40]  since  we  work  in  the  same  framework,
considering  the  tree-level  as  well  as  penguin  contribu-
tions.  However,  in  Ref.  [40]  a  different  set  of  Wilson
coefficients  (known  as  the  generalized  factorization)  is
used.  Besides,  we  employ  the  form  factor  values
predicted  by  our  relativistic  quark  model,  as  a  more
advanced  tool  from  today's  perspective  compared  to
their  BSW  ones.  Our  results  for  are  of  similar
magnitude  with  Ref.  [40]  under  the  same  condition

N eff
c (LL) = N eff

c (LR) = 3

N = 2, 3,∞
2σ

a2 B0 → π0π0 B0 → π0ρ0

B0 → ωω B0 → ρ0ρ0

a2

ππ −KK̄

B → ππ

KK̄ ηη

B → PP

B → ππ

B → PV, V V B → PP

. For most of channels, our ranges
of branching fractions formed by  are close to
the corresponding experimental values within  uncer-
tainty. But there are a few channels where results differ
from experimental ones by larger or around factor of 5.
Then we also compare with the predictions of Refs. [40,
47],  and  find  such  deviations  also  happens  in  their
results. In general, for the color-suppressed decay channels
(involving  terms),  such  as , ,

 and , the predicted branching fractions
are  lower  than  the  experiment  values.  One  of  the
reasons  is  due  to  the  smallness  of ,  but  more  impor-
tantly,  the  strong  FSI  effects  should  play  an  essential
role, as has been explicitly demonstrated in Ref. [40] in
detail.  In  fact,  as  we  know,  the  interaction  between
pseudoscalar  octet,  e.g.,  the  system,  is  very
strong,  for  which  some of  our  recent  investigations  can
be found in Refs. [48–52]. That is, the  decay will
receive  large  contributions  from the  intermediate  states

 and  etc. On another hand, it has been found in
Ref.  [53]  that  the  spacelike  penguin  contributions  may
be sizable in  decays, where the authors showed
that  such  corrections  to  the  branching  fraction  for

 may be more than 100%. However,  in Ref.  [54]
the  authors  assume  that  such  contributions  in

 decays  are  not  as  severe  as  in .
Reference [40]  provides a careful examination but those
effects of FSI and spacelike penguins can not be reliably
determined yet. So conservatively speaking, the branching
fraction can be trusted by its order of magnitude.

B → ωω 7× 10−8 − 2× 10−6

B → ρ0ρ0 5× 10−8 − 2.57× 10−6

N eff
c (LL) = 2 N eff

c (LR) = 5

In this paragraph we give a few comments on comparison
of our results with the ones in Ref. [40] by Cheng et al.
In this reference many sets of numbers for the branching
fraction values are calculated, and these numbers constitute
an interval. Such an interval may contain the experimental
value,  which  is  very  encouraging.  But  in  some  cases
their ranges span two orders of magnitude. For example,
for the  decay it reads , and for
the  .  Their  preferred
values  correspond  to  and .  For
the  same  value  for  the  color  number,  the  differences
between results of Ref. [40] and ours mainly come from

Table  5  (continued)
 

Decay channel N = 2 N = 3 N = ∞ Others PDG [38]
Bs → D−

s ρ+ 8.60× 10−3 9.27× 10−3 1.07× 10−2 − (6.9± 1.4)× 10−3

Bs → D∗−
s π+ 2.94× 10−3 3.17× 10−3 3.66× 10−3 − (2.0± 0.5)× 10−3

Bs → D∗−
s K+ 2.22× 10−4 2.39× 10−4 2.76× 10−4 − (1.33± 0.35)× 10−4

Bs → D−
s K∗+ 5.16× 10−4 5.56× 10−4 6.41× 10−4 − −

Bs → K∗−π+ 7.67× 10−6 8.27× 10−6 9.54× 10−6 − (2.9± 1.1)× 10−6

Bs → K∗−K+ 1.20× 10−6 1.35× 10−6 1.70× 10−6 7.5× 10−7 [47] (1.9± 0.5)× 10−5

Bs → K−K∗+ 1.86× 10−6 1.97× 10−6 2.20× 10−6 3.77× 10−6 [47] (1.9± 0.5)× 10−5

Bs → D∗−
s K∗+ 5.48× 10−4 5.90× 10−4 6.81× 10−4 − (1.33± 0.35)× 10−4

Bs → D∗−
s ρ+ 8.64× 10−3 9.31× 10−3 1.07× 10−2 − (9.6± 2.1)× 10−3
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the  different  inputs.  Especially,  in  Ref.  [40]  complex-
valued numbers for the set of the Wilson coefficients are
used while we use the real-valued ones from Buchalla et
al.  in  Ref.  [21].  Our  main  goal  is  not  to  reproduce  the
experimental values exactly or to match them well. We
want  to  test  the  factorization  hypothesis  by  using  our
most  recent  form  factor  values  calculated  from  an
advanced relativistic quark model. To get a more quan-
titative  calculation,  the  nonfactorizable  contribution
should be included anyway.

χ2

D → PP

W W

π+π−

K+K−

D → PP

D → PV

D → PP

D

W

b→ c

B → D∗M M

B B → PP, PV

As  is  known  and  also  mentioned  earlier,  the  nonfac-
torizable  effects  may  dominate  in  a  specific  decay,  and
there  is  currently  no  method  to  calculate  them  before-
hand.  However,  in  literature  there  are  important  works
dedicated to the analysis of such nonfactorizable effects
by  confronting  with  experimental  data.  One  typical
example  is  the  factorization-assisted  topological  (FAT)
approach [41–44] which combines the naive factorization
hypothesis and the topological diagram approach [45, 46].
In these papers the authors identify the possible sources
of  nonfactorizable  contributions  and  then  parameterize
them, in  order  to  fit  to  the existing experimental  data.
It  is  found  that  with  the  inclusion  of  the  factorization,
FAT  generally  works  better  than  the  topological
diagram  approach,  with  less  parameters  and  better 
per  degree  of  freedom.  Specifically,  in  Ref.  [41]  for  the
analysis of  decays, the authors assign a nonfac-
torizable  term  (magnitude  and  phase)  to  each  of  the
color-suppressed, -exchange and -annihilation ampli-
tudes,  and the  Glauber  phase  is  additionally  associated
to  a  pion  (which  is  important  to  resolve  the  and

 branching fraction puzzles).  Then 12 parameters
are used to fit 28  branching fractions and good
results  are  achieved.  For  the  decays  [42],  two
more parameters are involved compared to the 
ones, with 33 experimental numbers of branching fractions
in  total.  Once  the  parameters  are  determined,  the
authors  predict  the  CP asymmetries  for  decays.  The
results in Ref. [43] are very impressive. The 4 universal
parameters are associated to the color-suppressed ampli-
tude and the -exchange amplitude, i.e., parameterizing
their sizes and phases, which are used to describe the 31
decay branching fractions induced by the  transition
in  the  decays  with  denoting  a  light  pseu-
doscalar  or  a  vector  meson.  If  available  in  experiment,
the  predicted  values  are  consistent  with  them.  Then
other  120  decay  branching  fractions  are  predicted.  The
similar  analysis  of  the  charmless  two-body non-leptonic

 decays  is  done in Ref.  [44].  In brief,  the
nonfactorizable  contributions  require  a  fine  analysis
which  is  essential  for  a  quantitative  prediction  of  the
branching  fractions,  and  it  is  worth  working  in  this
direction in the future.

Here we stress again that we use the most recent form
factor  values.  This  is  one  of  our  important  motivations
and  improvements.  It  is  known  that  the  form  factors,

B → D B → D∗

which encode the underlying dynamics, play a significant
role  in  calculations  of  the  nonleptonic  decays,  as  also
noted in Ref.  [55].  In the earlier works [40, 47, 55],  the
authors  use  the  form  factor  values  from  the  sum  rule
calculations,  which  are  more  appropriate  for  the  small
values of  the momentum-transfer to leptons,  or use the
older predictions from the BSW model [40]. In our case,
the RQM includes all  sources of  relativistic  effects,  and
the form factors are obtained in the whole kinematically
allowed  region  without  any  extrapolations.  Transitions
like  and  are  also  considered  without
using the heavy quark limit.

B → PP PV

B → V V

B(s) D(s)

PP PV V V

Moreover,  we  have  calculated  as  many  channels  as
possible.  Previous  papers  studied  only  some  of  them
(although the more advanced tools in a formal perspective
were  used).  For  example,  in  Ref.  [56]  only  two  decay
modes are discussed. In Ref. [55] the ,  channels
are  calculated,  but  not  the  case.  We  have
performed a complete calculation of the ,  decay
to ,  and . In this way, we could show how the
form factors influence the results from a holistic point of
view  based  on  such  framework.  So  our  calculations
should be, at least, a useful complement and an important
update for the previous ones.

 5.2   A note on the conventions for the definitions of form
factors and decay constants

In some references [57, 58], the following quark composi-
tions for the octet mesons are used

K+ = us, K0 = ds, K− = −su,

π+(ρ+) = ud, π0(ρ0) =
dd− uu√

2
, π−(ρ−) = −du ,

(41)

K−, π0, ρ0, π−,

ρ−
which  are  different  from Eq.  (30)  for  the 

 cases. Then the definitions of the decay constants as
well  as  the  corresponding  transition  form  factors  will
change  by  an  overall  sign.  Any  physical  result  is  not
affected.

(−1)

⟨M1|Jµ|B⟩⟨M2|Jµ|0⟩

B → πρ ⟨π|Jµ|B⟩⟨ρ|Jµ|0⟩
⟨ρ|Jµ|B⟩⟨π|Jµ|0⟩

ϵ0123 ≡ −1 ϵ0123 ≡ +1

(−i), i −1

We have also checked different conventions on definitions
of the form factors and decay constants, which differ by
factors of  and/or i. Note that this detail may influence
the  calculation  if  using  an  inappropriate/incosistent
convention.  In  the  factorization scheme we are  treating
the product of , and surely an overall
sign  does  not  matter.  However,  for  e.g.,  the  channel

 has  the  subprocess  and
 and thus their  interference occurs.  Note

also  the  convention  difference  and ,
where the former is used in Refs. [56, 59] and the latter
is used in Refs. [4, 60].  We have checked that the final
results in Refs. [35, 40, 54–56] agree with each other just
up  to  an  overall  factor  of  or ,  which  have  no
influence for branching fraction of a two-body decay. As
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⟨V (ϵ, q)|Vµ|0⟩ = −ifVmV ϵ
∗
µ

B̄0 → π0ρ0

a result, the vector decay constant should be defined by
 in Ref. [4]2). Then the amplitude

for  follows:

A(B̄0 → π0ρ0) =
GF√
2

[
− ifρmρϵ

∗ · pπF1(m
2
ρ)

− ifπmρϵ
∗ · pπA0(m

2
π)
]
. (42)

It is also important to mention that all authors use real
and positive form-factor and decay-constant values.

 6   Conclusions

Based  on  the  form  factors  computed  in  the  relativistic
quark model, we calculate the branching fraction of 100
nonleptonic decay channels of charm and bottom mesons.
We provide the detailed derivation for the decay amplitudes
and  branching  fractions.  The  numerical  results  are
shown in the Section 5.

D

N = 3 N → ∞
N

N → ∞
N

D+ → π0π+ D0 → K−K+ D0 → ηη D0 → K−ρ+

Ds → K+ω

For  the  nonleptonic  decay  process  of  the  mesons,
we consider only the tree-level contributions and use the
number  of  colors  and  for  demonstration.
Taking  the  value  of  different  from  3  is  a  way  to
parametrize  the  nonfactorizable  effects.  And  indeed  we
find that the limit  works much better than other
numbers  of  generally.  Some  typical  examples  are

, , , ,  and
.

B+ → π+K0, ρ+K0 B0 → π0η′, π0π0, ρ−K+

For  the  nonleptonic  decay  process  of  the  bottom
mesons,  we  consider  both  the  tree-level  and  penguin
contributions. The results for branching fractions are in
agreement with the experimental data for most of decay
channels.  However,  for  some  decays,  e.g.,

 and  our  results
are  too  small,  and as  it  has  been  demonstrated  in  Ref.
[40], the final-state interaction effects play an indispensable
role to get the quantitatively correct values.
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 Appendix A: Decay amplitudes of the
charm mesons

X

Here we list the amplitudes for the charm meson decays.
The definition of  is given in Section 2.

A(D+ → π0π+) =
GF√
2
V ∗
cdVud

[
a1XD+→π0,π+

+ a2XD+→π+,π0

]
, (A1)

A(D+ → π0K+) =
GF√
2
V ∗
cdVusa1XD+→π0,K+ , (A2)

A(D+ → η(
′)K+) =

GF√
2
V ∗
cdVusa1XD+→η(′),K+ , (A3)

A(D+ → η(
′)π+) =

GF√
2

[
V ∗
cdVuda1XD+→η(′),π+

+ V ∗
cdVuda2XD+→π+,η

(′)
u

+ V ∗
csVusa2XD+→π+,η

(′)
s

]
, (A4)

A(D+ → π+ρ0) =
GF√
2
V ∗
cdVud

(
a1XD+→ρ0,π+

+ a2XD+→π+,ρ0

)
, (A5)

A(D+ → π+ϕ) =
GF√
2
V ∗
csVusa2XD+→π+,ϕ, (A6)

A(D+ → π+ω) =
GF√
2
V ∗
cdVud

(
a1XD+→ω,π+

+ a2XD+→π+,ω

)
, (A7)

A(D+ → ρ0K+) =
GF√
2
V ∗
cdVusa1XD+→ρ0,K+ , (A8)

A(D+ → ρ+ϕ) =
GF√
2
V ∗
csVusa2XD+→ρ+,ϕ, (A9)

A(D0 → K−π+) =
GF√
2
V ∗
csVuda1XD0→K−,π+ , (A10)

A(D0 → π−π+) =
GF√
2
V ∗
cdVuda1XD0→π−,π+ , (A11)

A(D0 → π0π0) = 2
GF√
2
V ∗
cdVuda2XD0→π0,π0 , (A12)

A(D0 → K−K+) =
GF√
2
V ∗
csVusa1XD0→K−,K+ , (A13)⟨P (q)|q̄γµγ5q′|0⟩ =

−ifP qµ ⟨0|q̄′γµγ5q|P (q)⟩ = −ifP qµ ⟨0|Vµ|
V (ϵ, q)⟩ = −ifV mV ϵµ ⟨V (ϵ, q)|Vµ|0⟩ =ifV mV ϵ∗µ

2) By  taking  the  Hermitian  conjugate,  one  finds 
 is  equivalent  to  and 

 is equivalent to .
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A(D0 → ηη) =2
GF√
2

(
V ∗
csVusa2XD0→η,ηs

+ V ∗
cdVuda2XD0→η,ηu

)
, (A14)

A(D0 → π−K+) =
GF√
2
V ∗
cdVusa1XD0→π−,K+ , (A15)

A(D0 → η(
′)π0) =

GF√
2

(
V ∗
cdVuda2XD0→η(′),π0

+ V ∗
cdVuda2XD0→π0,η

(′)
u

+ V ∗
csVusa2XD0→π0,η

(′)
s

)
, (A16)

A(D0 → ηη′) =
GF√
2

(
V ∗
cdVuda2XD0→η,η′

u

+ V ∗
csVusa2XD0→η,η′

s

+ V ∗
cdVuda2XD0→η′,ηu

+ V ∗
csVusa2XD0→η′,ηs

)
, (A17)

A(D0 → π0ω) =
GF√
2

(
V ∗
cdVuda2XD0→π0,ω

+ V ∗
cdVuda2XD0→ω,π0

)
, (A18)

A(D0 → ηω) =
GF√
2

(
V ∗
cdVuda2XD0→η,ω

+ V ∗
cdVuda2XD0→ω,ηu

+ V ∗
csVusa2XD0→ω,ηs

)
, (A19)

A(D0 → ρ0π0) =
GF√
2

(
V ∗
cdVuda2XD0→π0,ρ0

+ V ∗
cdVuda2XD0→ρ0,π0

)
, (A20)

A(D0 → π−ρ+) =
GF√
2
V ∗
cdVuda1XD0→π−,ρ+ , (A21)

A(D0 → π0ϕ) =
GF√
2
V ∗
csVusa2XD0→π0,ϕ, (A22)

A(D0 → ρ−π+) =
GF√
2
V ∗
cdVuda1XD0→ρ−,π+ , (A23)

A(D0 → ηϕ) =
GF√
2
V ∗
csVusa2XD0→η,ϕ, (A24)

A(D0 → K−ρ+) =
GF√
2
V ∗
csVuda1XD0→K−,ρ+ , (A25)

A(D0 → η(
′)K̄∗0) =

GF√
2
V ∗
csVuda2XD0→η(′),K̄∗0 , (A26)

A(D0 → ρ0ρ0) = 2
GF√
2
V ∗
cdVuda2XD0→ρ0,ρ0 , (A27)

A(D0 → ωϕ) =
GF√
2
V ∗
csVusa2XD0→ω,ϕ, (A28)

A(Ds → K+K̄0) =
GF√
2
V ∗
csVuda2XDs→K+,K̄0 , (A29)

A(Ds → η(
′)π+) =

GF√
2
V ∗
csVuda1XDs→η(′),π+ , (A30)

A(Ds → K+π0) =
GF√
2
V ∗
cdVuda2XDs→K+,π0 , (A31)

A(Ds → η(
′)K+) =

GF√
2

(
V ∗
cdVuda2XDs→K+,η

(′)
u

+ V ∗
csVusa2XDs→K+,η

(′)
s

+ V ∗
csVusa1XDs→η(′),K+

)
, (A32)

A(Ds → η(
′)ρ+) =

GF√
2
V ∗
csVuda1XDs→η(′),ρ+ , (A33)

A(Ds → K+ω) =
GF√
2
V ∗
cdVuda2XDs→K+,ω, (A34)

A(Ds → K+ρ0) =
GF√
2
V ∗
cdVuda2XDs→K+,ρ0 , (A35)

A(Ds → ϕπ+) =
GF√
2
V ∗
csVuda1XDs→ϕ,π+ , (A36)

A(Ds → ϕρ+) =
GF√
2
V ∗
csVuda1XDs→ϕ,ρ+ . (A37)

 Appendix B: Decay amplitudes of the

bottom mesons

As  in  Appendix  A,  here  the  amplitude  for  the  bottom
meson decays are provided.
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A(B+ → π+η(
′)) =

GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4

−1

2
a10 +

m2
η(′)

ms(mb −md)

(
a6 −

1

2
a8
)(fsη(′)

fu
η(′)

− 1
)
rη(′)

)]
X

B+→π+,η
(′)
u

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
X

B+→π+,η
(′)
s

+ [V ∗
ubVuda1

−V ∗
tbVtd

(
a4 + a10 +

2m2
π+

(mu +md)(mb −mu)
(a6 + a8)

)]
XB+→η(′),π+

}
, (B1)

A(B+ → π+ω) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB+→π+,ω

+
[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

−
2m2

π+

(mu +md)(mb +mu)
(a6 + a8)

)]
XB+→ω,π+

}
, (B2)

A(B+ → ρ+η(
′)) =

GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4

−1

2
a10 −

m2
η(′)

ms(mb +md)

(
a6 −

1

2
a8
)(fsη(′)

fu
η(′)

− 1
)
rη(′)

)]
X

B+→ρ+,η
(′)
u

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
X

B+→ρ+,η
(′)
s

+
[
V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)
]
XB+→η(′),ρ+

}
, (B3)

A(B+ → π+K0) = −GF√
2
V ∗
tbVts

(
a4 −

1

2
a10 +

2m2
K0

(ms +md)(mb −md)
(a6 −

1

2
a8)

)
XB+→π+,K0 , (B4)

A(B+ → ρ+K0) = −GF√
2
V ∗
tbVts

(
a4 −

1

2
a10 −

2m2
K0

(ms +md)(mb +md)
(a6 −

1

2
a8)

)
XB+→ρ+,K0 , (B5)

A(B+ → π+π0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7

−a4 +
1

2
a10 −

m2
π0

md(mb −md)

(
a6 −

1

2
a8
))]

XB+→π+,π0

+
[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

+
2m2

π+

(mu +md)(mb −mu)
(a6 + a8)

)]
XB+→π0,π+

}
, (B6)

A(B+ → π+ρ0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
−a4 +

1

2
a10 +

3

2
a9 +

3

2
a7

)]
XB+→π+,ρ0

+
[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

−
2m2

π+

(mu +md)(mb +mu)
(a6 + a8)

)]
XB+→ρ0,π+

}
, (B7)

A(B+ → ρ+π0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7 − a4 +

1

2
a10

+
m2

π0

md(mb +md)

(
a6 −

1

2
a8
))]

XB+→ρ+,π0

+ [V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)]XB+→π0,ρ+

}
, (B8)
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A(B+ → π+ϕ) = −GF√
2
V ∗
tbVtd

(
a3 + a5 −

1

2
a7 −

1

2
a9

)
XB+→π+,ϕ, (B9)

A(B+ → ρ+ρ0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 +

3

2
a7 − a4 +

1

2
a10

)]
XB+→ρ+,ρ0

+
[
V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)
]
XB+→ρ0,ρ+

}
, (B10)

A(B+ → ρ+ω) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB+→ρ+,ω

+
[
V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)
]
XB+→ω,ρ+

}
, (B11)

A(B0 → D−π+) =
GF√
2
V ∗
cbVuda1XB0→D−,π+ , (B12)

A(B0 → D−K+) =
GF√
2
V ∗
cbVusa1XB0→D−,K+ , (B13)

A(B0 → π−K+) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts

(
a4 + a10

+
2m2

K+

(mu +ms)(mb −mu)
(a6 + a8)

)]
XB0→π−,K+ , (B14)

A(B0 → π−π+) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

+
2m2

π+

(mu +md)(mb −mu)
(a6 + a8)

)]
XB0→π−,π+ , (B15)

A(B0 → π0π0) =2
GF√
2

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7 − a4 +

1

2
a10

−
m2

π0

md(mb −md)

(
a6 −

1

2
a8
))]

XB0→π0,π0 , (B16)

A(B0 → π0η(
′)) =

GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

+
m2

η(′)

ms(mb −md)

(
a6 −

1

2
a8
)(fsη(′)

fu
η(′)

− 1
)
rη(′)

)]
X

B0→π0,η
(′)
u

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
X

B0→π0,η
(′)
s

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7 − a4 +

1

2
a10

−
m2

π0

md(mb −md)

(
a6 −

1

2
a8
))]

XB0→η(′),π0

}
, (B17)

A(B0 → ηη) =2
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

+
2m2

η

(ms +ms)(mb −md)

(
a6 −

1

2
a8
)( fsη
fuη

− 1
)
rη

)]
XB0→η,ηu

−V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
XB0→η,ηs

}
, (B18)
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A(B0 → η′η′) =2
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

+
m2

η′

ms(mb −md)

(
a6 −

1

2
a8
)(fsη′

fuη′
− 1

)
rη′

)]
XB0→η′,η′

u

−V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
XB0→η′,η′

s

}
, (B19)

A(B0 → D∗−π+) =
GF√
2
V ∗
cbVuda1XB0→D∗−,π+ , (B20)

A(B0 → D−ρ+) =
GF√
2
V ∗
cbVuda1XB0→D−,ρ+ , (B21)

A(B0 → ρ0π0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a7 +

3

2
a9 − a4 +

1

2
a10

)]
XB0→π0,ρ0

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7 − a4 +

1

2
a10

+
m2

π0

md(mb +md)

(
a6 −

1

2
a8
))]

XB0→ρ0,π0

}
, (B22)

A(B0 → ωπ0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB0→π0,ω

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 −

3

2
a7 − a4 +

1

2
a10

+
m2

π0

md(mb +md)

(
a6 −

1

2
a8
))]

XB0→ω,π0

}
, (B23)

A(B0 → ρ−K+) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts

(
a4 + a10

−
2m2

K+

(ms +mu)(mb +mu)
(a6 + a8)

)]
XB0→ρ−,K+ , (B24)

A(B0 → π−K∗+) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts (a4 + a10)
]
XB0→π−,K∗+ , (B25)

A(B0 → ρ−π+) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

−
2m2

π+

(mu +md)(mb +mu)
(a6 + a8)

)]
XB0→ρ−,π+ , (B26)

A(B0 → D−K∗+) =
GF√
2
V ∗
cbVusa1XB0→D−,K∗+ , (B27)

A(B0 → D∗−K+) =
GF√
2
V ∗
cbVusa1XB0→D∗−,K+ , (B28)
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A(B0 → η′η) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

+
m2

η

ms(mb −md)

(
a6 −

1

2
a8
)( fsη
fuη

− 1
)
rη

)]
XB0→η′ ,ηu

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
XB0→η′,ηs

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

+
m2

η′

ms(mb −md)

(
a6 −

1

2
a8
)(fsη′

fu
η′

− 1
)
rη′

)]
XB0→η,η′

u

−V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
XB0→η,η′

s

}
, (B29)

A(B0 → ρ0η(
′)) =

GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

−
m2

η(′)

ms(mb +md)

(
a6 −

1

2
a8
)(fsη(′)

fu
η(′)

− 1
)
rη(′)

)]
X

B0→ρ0,η
(′)
u

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
X

B0→ρ0,η
(′)
s

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a7 +

3

2
a9 − a4 +

1

2
a10

)]
XB0→η(′),ρ0

}
, (B30)

A(B0 → ωη(
′)) =

GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 − 2a5 −

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

−
m2

η(′)

md(mb +md)

(
a6 −

1

2
a8
)(fsη(′)

fu
η(′)

− 1
)
rη(′)

)]
X

B0→ω,η
(′)
u

− V ∗
tbVtd

(
a3 − a5 +

1

2
a7 −

1

2
a9

)
X

B0→ω,η
(′)
s

+ [V ∗
ubVuda2

−V ∗
tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB0→η(′),ω

}
, (B31)

A(B0 → π−ρ+) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)
]
XB0→π−,ρ+ , (B32)

A(B0 → ρ−ρ+) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd (a4 + a10)
]
XB0→ρ−,ρ+ , (B33)

A(B0 → ρ0ρ0) = 2
GF√
2

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a9 +

3

2
a7 − a4 +

1

2
a10

)]
XB0→ρ0,ρ0 , (B34)

A(B0 → ωω) = 2
GF√
2

[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB0→ω,ω, (B35)

A(B0 → ωρ0) =
GF√
2

{[
V ∗
ubVuda2 − V ∗

tbVtd

(
2a3 + 2a5 +

1

2
a7 +

1

2
a9 + a4 −

1

2
a10

)]
XB0→ρ0,ω

+

[
V ∗
ubVuda2 − V ∗

tbVtd

(
3

2
a7 +

3

2
a9 − a4 +

1

2
a10

)]
XB0→ω,ρ0

}
, (B36)

A(B0 → D∗−ρ+) =
GF√
2
V ∗
cbVuda1XB0→D∗−,ρ+ , (B37)
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A(B0 → D∗−K∗+) =
GF√
2
V ∗
cbVusa1XB0→D∗−,K∗+ , (B38)

A(Bs → D−
s π

+) =
GF√
2
V ∗
cbVuda1XBs→D−

s ,π+ , (B39)

A(Bs → D−
s K

+) =
GF√
2
V ∗
cbVusa1XBs→D−

s ,K+ , (B40)

A(Bs → π+K−) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

+
2m2

π+

(mu +md)(mb −mu)
(a6 + a8)

)]
XBs→K−,π+ , (B41)

A(Bs → K+K−) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts

(
a4 + a10

+
2m2

K+

(mu +ms)(mb −mu)
(a6 + a8)

)]
XBs→K−,K+ , (B42)

A(Bs → D−
s ρ

+) =
GF√
2
V ∗
cbVuda1XBs→D−

s ,ρ+ , (B43)

A(Bs → D∗−
s π+) =

GF√
2
V ∗
cbVuda1XBs→D∗−

s ,π+ , (B44)

A(Bs → D∗−
s K+) =

GF√
2
V ∗
cbVusa1XBs→D∗−

s ,K+ , (B45)

A(Bs → D−
s K

∗+) =
GF√
2
V ∗
cbVusa1XBs→D−

s ,K∗+ , (B46)

A(Bs → K∗−π+) =
GF√
2

[
V ∗
ubVuda1 − V ∗

tbVtd

(
a4 + a10

−
2m2

π+

(mu +md)(mb +mu)
(a6 + a8)

)]
XBs→K∗−,π+ , (B47)

A(Bs → K∗−K+) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts

(
a4 + a10

−
2m2

K+

(mu +ms)(mb +mu)
(a6 + a8)

)]
XBs→K∗−,K+ , (B48)

A(Bs → K−K∗+) =
GF√
2

[
V ∗
ubVusa1 − V ∗

tbVts(a4 + a10)
]
XBs→K−,K∗+ , (B49)

A(Bs → D∗−
s K∗+) =

GF√
2
V ∗
cbVusa1XBs→D∗−

s ,K∗+ , (B50)

A(Bs → D∗−
s ρ+) =

GF√
2
V ∗
cbVuda1XBs→D∗−

s ,ρ+ . (B51)
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