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ABSTRACT

We  numerically  investigate  magnon-mediated  spin  transport  through
nonmagnetic  metal/ferromagnetic  insulator  (NM/FI)  heterostructures  in
the presence of Anderson disorder, and discover universal behaviors of the
spin  conductance  in  both  one-dimensional  (1D)  and  2D  systems.  In  the
localized  regime,  the  variance  of  logarithmic  spin  conductance σ2(lnGT)
shows  a  universal  linear  scaling  with  its  average  ⟨lnGT⟩,  independent  of
Fermi energy, temperature, and system size in both 1D and 2D cases. In 2D,
the competition between disorder-enhanced density of states at the NM/FI
interface and disorder-suppressed spin transport leads to a non-monotonic
dependence  of  average  spin  conductance  on  the  disorder  strength.  As  a
result,  in  the  metallic  regime,  average  spin  conductance  is  enhanced  by
disorder,  and  a  new  linear  scaling  between  spin  conductance  fluctuation
rms(GT) and average spin conductance GT is revealed which is universal at
large  system  width.  These  universal  scaling  behaviors  suggest  that  spin
transport  mediated  by  magnon  in  disordered  2D  NM/FI  systems  belongs
to a new universality class, different from that of charge conductance in 2D
normal metal systems.

Keywords  universal  statistical  behaviors, magnon-mediated  spin  trans-
port, disorder-enhanced spin conductance

 1   Introduction

At low temperature, quantum interference in mesoscopic
transport  leads  to  universal  fluctuation  of  charge
conductance  [1–7],  whose  magnitude  depends  only  on
the dimensionality and symmetry of the system. On the
other hand, disorder-induced destructive interference can
transform a metal into an insulator, known as Anderson
localization  [8].  The  single-parameter  scaling  (SPS)
theory [9–17] was proposed to interpret Anderson local-

L ξ

⟨ln G⟩ L 1/ξ = − limL→∞ ⟨lnG⟩/2L
⟨ln G⟩

ization  in  disordered  systems.  The  scaling  behavior  of
charge  conductance  needs  to  be  considered  in  terms  of
its distribution function [14]. The SPS theory states that
the conductance distribution has a universal form, which
is determined by a single parameter, the ratio of system
size  to  the  localization  length .  The  localization
length is obtained from the average logarithmic conduc-
tance  while  increasing : 
[18, 19].  Therefore,  is  widely  used  for  verifying
SPS in the localized regime [20–22].

Statistical  properties  of  charge  transport  in  one-
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lnG
P (ln G)

lnG ⟨ln G⟩
σ2(ln G) = ⟨ln2G⟩ − ⟨ln G⟩2

dimensional (1D) normal systems have been thoroughly
studied [24–29]. It was found that the distribution of ,

 is  Gaussian in localization limit,  which is  deter-
mined by the average and variance of , i.e.,  and

.  A  universal  relation  is  estab-
lished between them [14, 28]

σ2(lnG) = A⟨−lnG⟩n +B, (1)

n = 1

P (lnG)

n = 2/3

lnG
n = 1

where  the  exponent .  Eq.  (1)  reduces  the  two
parameters  in  to  one  and  justifies  SPS  in  1D
systems. The situation in 2D is more complicated. Most
numerical  investigations  are  in  agreement  with  SPS
[18–20, 22, 30–32],  although  some  deviations  were
reported [21, 33, 34]. The universal relation Eq. (1) was
numerically confirmed [20] in a large region from diffusive
to  localized  regimes  with  [35].  The  distribution
of  was found to approach Tracy–Widom distribution
in the localized limit [20, 31].  was found in disordered
graphene  nanoribbons  (quasi-1D  systems)  [21],  but  Eq.
(1) is not universal in the entire energy spectrum.

Besides charge transport, magnon-based spin transport
of  insulator  spintronics  has  attracted  great  interest
recently [36]. In magnetic insulators, band structure does
not  allow electron transport,  but  pure  spin  current  can
be  carried  by  a  collective  mode  called  spin  wave  or
magnon. Experimentally, magnon spin current is generated
via  spin  pumping [37–40]  driven by ferromagnetic  reso-
nance or spin Seebeck effect (SSE) [41–47] and detected
in  another  nonmagnetic  metal  (NM)  via  inverse  spin
Hall  effect.  The  most  popular  structure  for  SSE  is  the
bilayer  structure  Pt/YIG.  Pt  is  a  heavy  metal  with
strong  spin-orbit  coupling,  and  YIG  is  a  ferromagnetic
insulator  (FI)  with  long  propagating  distance  of  spin
wave. Anderson localization of magnon spin transport in
1D  magnetic  insulators  has  been  reported  recently  [48,
49], where disorder always suppresses spin transport.

For nonmagnetic metal/ferromagnetic insulator (NM/
FI)  heterostructures,  a  theoretical  formalism  based  on
the  non-equilibrium Green’s  function  (NEGF) has  been
developed to study the magnon-mediated spin transport
properties [50]. NEGF is suitable for describing mesoscopic
transport  phenomena,  including  thermal  or  phonon
transport [51–54]. Up to now, investigation on the statis-
tical properties of spin transport mediated by magnon in
NM/FI systems is still absent. In this work, we numerically
investigate magnon-mediated spin transport in disordered
1D  and  2D  NM/FI  systems  in  different  transport
regimes. In 2D system, new universal statistical behaviors
of  spin  conductance  are  discovered  in  the  diffusive  and
localized regimes, which are different from that of charge
conductance in normal systems. The distribution of spin
conductance  as  well  as  its  higher  order  cumulants  are
also studied.

The rest of this paper is organized as follows. Section
2  introduces  the  model  Hamiltonian  and  the  NEGF
method  for  spin  transport  in  NM/FI  heterostructures.

Numerical  results  and relevant  discussion are  presented
in Section 3. Finally, a conclusion is shown in Section 4.

 2   Model and theoretical formalism

In this section, we introduce the Keldysh theory for spin
transport.  The  system  under  investigation  is  shown  in
Fig. 1, whose Hamiltonian is

H = H0 +H ′. (2)

H0 H ′

H0

 is  the  unperturbed  Hamiltonian,  and  is  the
perturbative coupling.  consists of three parts: the left
NM lead, the central NM region, and the right ferromag-
netic insulator lead,

H0 = HL +Hd +HR. (3)

The left lead is described by noninteracting electrons,

HL =
∑
kσ

(εkσ − µLσ)c
†
kσckσ, (4)

µLσ σ = {↑, ↓}

HR = −J
∑

⟨ij⟩(
1
2S

+
i S−

j + 1
2S

−
i S+

j + Sz
i S

z
j ) S±

i

i

Sz
i z i J

ℏ = 1

where  is  the  chemical  potential  for  spin .
The right FI lead is described by the Heisenberg model

,  where  is  the
raising (lowering) operator for the localized spin at site ,

 is the spin operator in  direction at site , and  is
the  exchange  coupling.  At  low  temperature,  it  can  be
approximated by free magnons [55] ( ):

HR ≃
∑
q

ωqa
†
qaq, (5)

a†q (aq)

q ωq

where  creates  (annihilates)  a  magnon  with
momentum  and  is the magnon dispersion dependent
on  material  details.  The  central  region  Hamiltonian  is
expressed as

Hd =
∑
nσ

ϵnσd
†
nσdnσ. (6)

H ′

In  numerical  calculations,  Anderson-type  disorder  as
random on-site potentials is added in the central region.
The perturbative coupling  has two parts,

 

L1 L2

x

Fig. 1  Schematic view of the 2D NM/FI system. The left
NM lead and the right FI lead are connected to the central
NM  scattering  region,  which  is  of  width  and  length .
Magnon-mediated transport is along the  direction. A typical
experimental setup for this model is the bilayer structure of
Pt/YIG.
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H ′ = HT +Hsd. (7)

HT is the coupling between the left lead and the central
region,

HT =
∑
kσn

(
tkσnc

†
kσdnσ + t∗kσnd

†
nσckσ

)
. (8)

sd

Following  Ref.  [56],  the  electron–magnon  coupling
between  the  central  region  and  the  right  FI  lead  is
described by the -type exchange interaction,

Hsd = −
∑
qnn′

Jqnn′

(
d†n↑dn′↓a

†
q + d†n′↓dn↑aq

)
, (9)

n n′

q Jqnn′

√
2S0

a†q aq Hsd

S0

which  describes  a  magnon-mediated  spin-flipping  scat-
tering between  and  states, by absorbing or emitting
a  magnon  with  momentum .  is  the  scattering
strength, assumed to be weak and treated perturbatively
in  the  NEGF  method.  There  is  an  extra  factor 
associated  with  and  in  which  we  dropped  for
the moment,  where  is  the  length of  lattice  spin.  We
have  neglected  inelastic  processes  such  as  the  electron-
phonon  interaction  and  other  relaxation  mechanisms
and therefore focus on spin current at low temperature.

∆TWhen a temperature gradient  is applied across the
NM/FI interface, a pure spin current is generated by the
spin  Seebeck  effect.  Due  to  current  conservation,  the
spin current flowing through this NM/FI heterostructure
equals  that  flowing  in  the  right  FI  lead  [57],  which  is
given by

Is = i
∑
qnn′

Jqnn′ [⟨d†n↑dn′↓a
†
q⟩ − ⟨aqd†n′↓dn↑⟩]. (10)

In DC case, the spin current in this system is obtained
in the Keldysh theory as [50]

Is =− i
∫

dE
2π

Tr[DL↑(E)(Σ̄<
R↑(E)

− 2fL↑(E)ImΣ̄a
R↑(E))], (11)

DLσ = Gr
σΓLσG

a
σwhere  is  the  local  density  of  states

(LDOS)  matrix  of  electrons  coming  from  the  left  lead
[58]. The electron Green’s function is expressed as

Gr
σ = 1/(g−1

dσ − Σr
Lσ − Σ̄r

Rσ) = 1/(G−1
Lσ − Σ̄r

Rσ).

(12)

Σr
Lσ

ΓLσ = 2ImΣa
Lσ

Σ̄<
R↑(t, t

′) = iG<
L↓(t, t

′)Σ>
R(t

′, t)

Here  is the electron self-energy of the left lead, and
 is the corresponding linewidth function. In

the  Born  approximation  (BA),  the  effective  self-energy
of the right lead is . Then the
DC spin current in BA is shown as [50]

Is =−
∫

dω
2π

[fB
R (ω)− fB

L (ω)]

∫
dE
2π

[fL↑(E)

− fL↓(E + ω)]Tr[AR(E,ω)], (13)

with

AR(E,ω) = DL↑(E)D0
L↓(Ē)ΓR(ω), (14)

Ē = E + ω fB
R

fL↑,↓

fB
L

fB
L (ω) = 1/[eβL(ω+∆µs) − 1] βL = 1/kBTL

∆µs = µL↑ − µL↓

D0
L↓ = Gr

L↓ΓL↓G
a
L↓

DL↑ D0
L↑

DL↑ Gσ

D0
L↑

GLσ

in which .  is the Bose-Einstein distribution
for the right lead, and  is the Fermi-Dirac distribution
for the left lead.  is the effective Bose-Einstein distri-
bution  for  the  left  lead,  which  is  defined  as

.  is  the  inverse
temperature of the left lead, and  is  the
spin bias applied.  is the partial LDOS
matrix  when  the  central  region  is  connected  only  with
the  left  lead.  Note  that  and  are  defined  in
terms of different Green’s functions.  is related to ,
which  is  the  Green’s  function  of  the  central  region
connected  to  both  left  and  right  leads;  while  is
determined by , which is the Green’s function when
the central region is only connected to the left lead.

sd

Jqnn′ = Jqnδnn′

ΓR(ω) = παtωe−ω/ωc α

ωc t

For  simplicity,  we  assume  that  the  interaction
occurs  only  at  the  same  site  of  the  NM/FI  interface,
which leads to the simplification . Without
loss of generality, the hybridization function between the
central region and the magnonic reservoir is assumed to
be Ohmic and the linewidth function of the right lead is
expressed as  [57]. Here  is the effective
coupling strength,  is the cutoff frequency, and  is the
hopping  constant.  Then  the  effective  self-energy  is
formulated as

Σ̄r
R↑(E) =

∫
dω
2π

[fR(ω)G
r
L↓(Ē)

+ ifL↓(Ē)ImGr
L↓(Ē)]ΓR(ω), (15)

which is an energy convolution of local partial density of
states (DOS) with the spectral function of the FI lead.

 3   Numerical results and discussion

GT

Is

∆T GT = Is/∆T

In this section, we investigate spin transport in disordered
mesoscopic  systems  where  quantum  interference  mani-
fests.  In  normal  metallic  systems  without  disorder,  the
conductance, proportional to the total transmission coef-
ficient  of  conducting  channels,  measures  the  ability  of
transporting electrons. For magnon-mediated spin trans-
port  in  our  system,  the  right  lead  is  an  insulator,  and
there is no concept of transmission. The spin conductance

 is  used to  measure  spin  transport  instead.  In  linear
response  regime,  spin  current  is  driven  by  a  small
temperature gradient , then .

a = 5

t = 21.768

[−W/2,W/2]

W

t

The  Hamiltonian  Eq.  (2)  is  defined  in  momentum
space. We can transform it to real space using the finite
difference  procedure  [59].  A  square  lattice  with  lattice
spacing  nm  is  used  in  tight-binding  calculation,
corresponding  to  a  hopping  constant  meV.
When  Anderson  disorder  is  present,  on-site  random
potentials  with  uniform  distribution  are
added to the Hamiltonian of the central region, where 
is  the  disorder  strength  in  unit  of .  More  than  10000
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GT

disorder samples are collected in numerical calculations.
All calculations are carried out in the Born approximation
using Eq.(13). Spin conductance  is in unit of μeV/K.
We present numerical results on the spin transport and
scaling  properties  of  disordered  1D  and  2D  NM/FI
systems.

 3.1   Spin transport and scaling in 1D NM/FI system

1× 30

ωc = 15

α = 0.1

⟨GT ⟩ rms(GT )

W µL = 40

T = 50

For the 1D hybrid system, we choose a central region of
 sites  and  connect  it  with  two  semi-infinite  1D

leads. The cutoff frequency is fixed at  meV, and
. In Fig. 2(a), the disorder-averaged spin conduc-

tance  and its fluctuation  are depicted as a
function  of  for  the  Fermi  energy  meV  and
temperature  K.  Spin  conductance  fluctuation  is
defined as

rms(GT ) =
√
⟨G2

T ⟩ − ⟨GT ⟩2, (16)

⟨· · · ⟩
W

⟨GT ⟩ rms(GT )

⟨GT ⟩ rms(GT ) W

W W ∼ 1.5

W ≥ 4

in which  denotes the average over different disorder
configurations for the same disorder strength . Figure
2(a) shows that  and  are in the same order
of  magnitude,  similar  to  charge  transport  in  normal
metal systems. The curves of  and  versus 
are  also  similar  to  charge  conductance  fluctuation  in
normal metal systems, which allows to identify different
transport regimes: (i) metallic regime for small disorder

;  (ii)  diffusive  regime  centered  around ;
(iii) localized regime for . The diffusive and localized
regimes are separated by gray dashed lines in Figs. 2(a)

and (b).

n = 1

ln G

σ2(ln GT ) ⟨ln GT ⟩

The  SPS  for  1D  normal  metal  systems  predicts  a
universal  exponent  and  Gaussian  distribution  of

 in  the  localized  regime.  We  show  in Fig.  2(b)  the
variance  versus  for different Fermi ener-
gies,  disorder  strengths,  and  temperatures.  Clearly,  all
data points collapse into one single line in the localized
regime. This line is fitted as

σ2(ln GT ) = −1.16⟨ln GT ⟩ − 0.38, (17)

n = 1

GT lnGT

W = 0.092 P (GT )

W = 2.76

W = 5

n = 1

lnGT

where a universal exponent  is identified. Distributions
of  spin  conductance  and  are  shown  in
Figs.  2(c)–(e)  for  different  disorder  strengths.  We  see
that  in  the  metallic  regime  with ,  is
Gaussian like. As disorder increases, the Gaussian distri-
bution  evolves  into  an  asymmetric  non-Gaussian  form.
In this case, the distribution of logarithmic conductance
is usually analyzed instead [60, 61]. Figure 2(d) shows a
one-sided log-normal distribution in the diffusive regime
at ,  and  a  log-normal  distribution  is  found  at
larger  disorder  in Fig.  2(e).  Recall  that  in  1D
normal  metal  systems,  Gaussian,  one-sided  log-normal
[23–26, 29], and log-normal distributions [25, 26, 62, 63]
were  found  in  the  metallic,  diffusive,  and  localized
regimes, respectively. Here, the universal exponent 
together  with  the  log-normal  distribution  of 
suggests  that  SPS  also  works.  Therefore,  statistical
properties of the magnon-mediated spin transport in 1D
disordered  NM/FI  systems  is  consistent  with  that  of
charge transport in 1D normal metal systems.

 3.2   Disorder-enhanced spin transport in 2D NM/FI
system

20× 20

α α = 103

ωc = 0.24 0.2

In 2D calculations, we consider a central region with size
 [64]. One left NM lead and one right FI lead with

the  same width  are  attached  to  it,  as  shown in Fig.  1.
To reduce computational cost, we focus on the first and
second electronic subbands of the left lead. The effective
coupling  strength  is  chosen  to  be ,  which  is
often used in the interface of Pt/YIG materials [56]. The
cutoff  frequency  for  the  first  and  second  subbands  are

 meV and  meV, so that the magnonic spectra
decays nearly to zero at the subband edges.

⟨GT ⟩
rms(GT )

⟨GT ⟩
rms(GT )

W GT = 0.6

W = 0 ⟨GT ⟩
5

W = 1.84 ⟨GT ⟩ = 2.33

rms(GT )

Figure 3(a) depicts average spin conductance  and
its fluctuation  for the first and second subbands
of  the  2D  NM/FI  system.  It  shows  that  and

 are also in the same order of magnitude. In 2D
normal  metal  systems,  disorder  is  known  to  suppress
electronic transport monotonically. In Fig. 3(a), average
spin conductance varies non-monotonically with increasing

. In the first subband,  is found for the clean
system with . When weak disorder is present, 
is enhanced. The largest enhancement, about  times, is
reached around  with ,  accompanied
by the largest fluctuation . Further increasing of

 
⟨GT ⟩

rms(GT ) W

ln GT ⟨ln GT ⟩

P (GT ) P (ln GT ) W

µL = 40 T = 50

Fig. 2  (a) Average spin conductance  and its fluctuation
 as  a  function  of  the  disorder  strength . (b) The

variance  of  dependence  on  for  different  Fermi
energies and temperatures. (c–e) Spin conductance distribution

 and  for  different .  40000  disorder  samples
are  collected.  Parameters:  meV  and  K.  The
gray dashed line separates the diffusive (ii) and localized (iii)
regimes.
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W = 12

disorder  continuously  suppresses  the  average  spin
conductance  till  spin  transport  is  completely  blocked
beyond . Similar behaviors are also found for the
second  subband,  except  a  smaller  enhancement,  which
indicates  that  the  spin  conductance  enhancement  is  a
general property.

AR

DL↑(E) D0
L↓(Ē) DL↑(E)

GT = 0.5

U = [−W/2,W/2]

W = 1.84

GT = {4.107, 4.70, 0.0786}

These  unusual  disorder-enhancement  behaviors  in
contrast  to  Anderson  localization  suggest  that  there  is
another  mechanism  dominating  spin  transport  in  the
weak disorder regime. From Eq. (14), it is clear that the
quantity  and hence the spin conductance are determined
by  local  DOS  matrices  and . 
contains LDOS information of  the whole system, which
is  chosen  for  demonstration.  For  a  clean  system,  its
LDOS landscape in Fig. 3(b) is smooth and . In
the presence of disorder, local potential 
can  be  negative,  which  will  energetically  increase  the
electron  dwell  time  or  LDOS.  Hence  there  are  many
peaks in the LDOS landscape, as shown in Figs. 3(c)–(e)
for .  The  corresponding  spin  conductances  are

,  respectively.  There  are  both

enhancement  and  suppression  at  the  same  disorder.
When  the  LDOS  peaks  are  near  the  NM/FI  interface,
the  interfacial  DOS  (iDOS)  increases  [labeled  in Figs.
3(b)–(e)]. Comparing with the clean system in Fig. 3(b),
the iDOS is increased by a factor of 11 or 8 in Figs. 3(c)
and  (d),  respectively,  which  is  responsible  for  the
enhancement  of  spin  conductance.  For  the  disorder
configuration  in Fig.  3(e),  there  are  few  LDOS  peaks
which  are  far  away  from  the  interface,  resulting  in  a
small  iDOS.  The  spin  conductance  is  thus  suppressed.
Therefore,  the  disorder-enhanced  iDOS  causes  the
enhancement  of  spin  conductance.  For  strong  disorder,
electron wave function is  more localized and the LDOS
peaks are much sharper. Besides, it is more difficult for
electrons  to  reach the  NM/FI interface  in  strong disor-
ders.  As  a  result,  the  iDOS  decreases  drastically  and
enhancement vanishes.

W > 2

Notice that the enhancement of spin transport occurs
only  in  2D  systems.  In  1D  systems,  there  is  only  one
interface site where the random potential is either positive
or negative with equal probability. Since positive (nega-
tive) potential decreases (increases) the LDOS, on average
there  is  no  effect  on  the  spin  transport  in  1D systems.
For 2D systems, however, in any configuration, there are
always some sites with negative potentials at the NM/FI
interface  so  that  electrons  can  dwell  around  these  sites
leading  to  the  enhancement  of  iDOS  and  hence  the
enhancement  of  spin  conductance  in  weak  disorders.
While  further  increasing  disorder  strength  ( ),  the
localized  state  induced  by  strong  disorders  dominates,
which  suppresses  average  spin  conductance.  These  two
competing contributions lead to the non-monotonic line
shape  in  average  spin  conductance.  Our  results  are
consistent  with  the  previous  study  on  this  NM/FI
system, which achieved an enhancement of nearly three
orders  of  magnitude  on  the  spin  conductance  via  engi-
neering the interfacial potentials [50].

 3.3   Statistical behaviors in 2D NM/FI system

W = 0.092 P (GT )

W = {1.84, 6.43, 8.73} P (GT )

W ≃ 12 P (ln GT )

W = 1.84

W = 2.3

W = 0.092

W < 2

We first investigate the spin conductance distribution in
2D NM/FI systems. Fig. 4 shows distributions for different
disorder  strengths  in  the  first  and  second  subbands.  In
the first  subband,  for  weak disorder ( ), 
is  Gaussian  like.  For  intermediate  disorders

,  the  distribution  follows  the
one-sided log-normal shape. While in the strong disorder
region ( ),  is nearly Gaussian. The distri-
bution in the second subband is quite similar to that of
the  first  subband.  The  peak  positions  of  lines 
and  in Fig. 4 (a) and (b) lie to the right of line

. This corresponds to the weak disorder regime
where  average  spin  conductance  is  enhanced  (  in
Fig. 3). Expect this difference, these findings are similar
to the results of 2D normal systems [63], but the scaling
behaviors are quite different.

 
⟨GT ⟩ rms(GT )

W

µL = {0.9, 3} ωc = {0.24, 0.2} T = 5

W = 1.84

GT = {4.107, 4.7, 0.0786}

Fig. 3  (a) Average  and  its  fluctuation  as  a
function  of  in  the  first  and  second  subbands  of  the  2D
NM/FI system. Parameters for the first and second subbands:

 meV,  meV,  and  K.
(b) Local  DOS  in  the  scattering  region  without  disorder.
(c–e) LDOS  for  three  typical  configurations  at  disorder
strength .  The spin conductances  for  these  configu-
rations are , respectively. Here iDOS is
the total interfacial DOS at the NM/FI interface and we set
parameters in the first subband.
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⟨ln GT ⟩

We next study the scaling properties of spin transport
in  2D  NM/FI  systems.  We  focus  on  the  first  subband.
The average spin conductance for different Fermi energies
and  temperatures  are  plotted  in Fig.  5(a).  Disorder-
enhancement  of  spin  conductance  is  observed  in  weak
disorder  for  all  parameters.  At  lower  temperature,  the
system has larger average spin conductance and stronger
fluctuation.  Raising temperature suppresses the average
spin conductance and its fluctuation. Figure 5(b) shows
the average logarithm spin conductance as a function of
the  disorder  strength.  It  is  interesting  that  falls
into  a  single  curve  for  different  Fermi  energies  and
temperatures,  indicating the  existence  of  universal  scal-
ing.

σ2(lnG)

σ2(lnG) ∝ ⟨ln G⟩2/3

⟨ln GT ⟩ < −4 W > 8

Previous  study  on  charge  transport  in  2D  normal
metal  systems  has  shown  that,  in  the  localized  regime,
the  variance  of  charge  conductance  scales  as

 [31].  For  the  2D  NM/FI  system,  the
scaling relation is shown in Fig. 5(c). We see that data
points  for ,  or  equivalently ,  collapse
into a universal line (red line) well-fitted by

σ2(ln GT ) = −1.98⟨ln GT ⟩+B. (18)

B

⟨ln GT ⟩ T = 5

n = 1

The intercept  depends weakly on Fermi energies and
temperatures. The inset depicts the variance dependence
on  at  K, which shows better linear behav-
ior.  We  conclude  that  for  2D  NM/FI  systems  in  the
localized  regime,  universal  scaling  relation  Eq.  (1)  is
justified  with  and  the  scaling  weakly  depends  on
temperature.

ln GT

⟨ln GT ⟩

For the region out of the localized regime, it is difficult
to  study  the  scaling  properties  using  since  data
points  are  scattered  for  large .  However,  using

⟨GT ⟩ rms(GT )

rms(GT )

⟨GT ⟩ W < 2

 and  its  fluctuation ,  we  find  an  additional
scaling behavior at weak disorders. The  dependence
on  for  is plotted in Fig. 5(d), which are well
fitted to a straight line

rms(GT ) = 1.84⟨GT ⟩ − 0.96. (19)

Note that at weak disorder, the charge (spin) conductance
fluctuation  always  increases  with  increasing  of  disorder
since there is  no fluctuation when disorder is  zero.  The
positive slope indicates that the average spin conductance
increases  with  disorder  strength,  i.e.,  enhancement  of
spin conductance at weak disorders.

W < 2

rms(GT ) ⟨GT ⟩
2 < W < 8

W > 8

σ2(lnGT )

⟨lnGT ⟩

As  discussed  above,  our  calculation  enables  us  to
verify  three  regimes  in  this  2D NM/FI  system.  (i)  The
metallic  regime  for ,  where  the  average  spin
conductance  is  enhanced  due  to  the  large  DOS  at  the
NM/FI interface when increasing disorder. The fluctuation

 scales  linearly  with .  (ii)  The  diffusive
regime for , where localization caused by disor-
ders  in  the  entire  scattering  region  strongly  competes
with  interfacial  resonance,  leading  to  a  non-monotonic
average spin conductance.  (iii)  The localized regime for

,  in  which  Anderson  localization  dominates.  The
variance  for different disorder strengths, Fermi
energies  can  be  linearly  scaled  by .  The  three
regimes  are  labeled  in Fig.  5 and  separated  by  gray

 
P (ln GT )

W

Fig. 4  Spin  conductance  distribution  of  the  2D
system  for  different  in  the  first  subband (a) and  the
second subband (b). Parameters are the same as Fig. 3.

 

µL = {0.9, 1.0, 1.1, 1.2, 1.3} T = {2, 3, 5}

W

⟨ln GT ⟩
σ2(ln GT ) ln GT

T = 5

Fig. 5  Statistics  of  spin  conductance  for  Fermi  energies
 meV  and  temperatures 

K. All Fermi energies are in the first subband. Figure legends
are  shown  in  (d).  The  gray  dashed  lines  separate  (ii)  the
diffusive  regime  and  (iii)  the  localized  regime. (a) Average
spin  conductance  as  a  function  of  the  disorder  strength .
(b)  versus  the  disorder  strength. (c) Scaling  of  the
variance  on  average  in  the  localized  regime.
Inset: data for different Fermi energies at  K. (d) Scaling
of spin conductance fluctuation on average spin conductance
in the metallic regime.
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dashed  lines.  Calculations  in  the  second  subband  show
similar results.

P (lnGT )

ln GT

κ3, κ4 γ1
γ2

κ3 = µ3, κ4 = µ4

Since  in the localized regime is nearly Gaussian
in Fig. 4, we examine its deviation from Gaussian distri-
bution  by  calculating  the  skewness,  kurtosis  and  the
lowest  nontrivial  cumulants  of .  The  definitions  of
the  third  and  fourth  cumulants ,  skewness  and
kurtosis  used  here  are  the  same  as  those  defined  in
Refs. [63] and [66] with , and

γ1 =
µ3

µ
3/2
2

, (20)

γ2 =
µ4

µ2
2

− 3, (21)

µm = ⟨(x− ⟨x⟩)m⟩ thwhere  is the m-  order central moment.
Skewness is usually used to quantify the asymmetry of a
distribution.  It  is  positive  when  the  distribution  has  a
long flat tail in larger values, while a zero skewness indicates
that the distribution is symmetric about its mean value.
Kurtosis is a measure of sharpness or flatness of a distri-
bution.  It  is  zero  for  a  Gaussian  distribution,  greater
than  zero  if  the  distribution  has  a  sharper  peak
compared to a normal distribution, and less than zero if
the distribution peak is flatter.

ln GT

0.2 −0.32

ln GT

⟨ln GT ⟩

κ3 = 5.11⟨ln GT ⟩ − 1.26 κ3

⟨−ln GT ⟩3/2
κ4

⟨ln GT ⟩2

The skewness, kurtosis, third and fourth cumulants of
 are  depicted  in Figs.  6(a)–(d)  for  different  Fermi

energies  and  temperatures  in  the  first  subband.  They
show good  universal  behaviors.  In  the  localized  regime,
the  skewness  and  kurtosis  approach  to  nonzero  values

 and ,  respectively  [the  horizontal  lines  in Figs.
6(a) and (b)]. Thus the  distribution in this regime
is not precisely Gaussian. The third cumulant in Fig. 6(c)
shows a good linear dependence on  in the diffusive
regime,  which  is  denoted  by  the  red  line  fitted  as

.  But in the localized regime,  is
approximately  scaled  as  [see  inset  of Fig.
6(c)]. In addition, the fourth cumulant  scales linearly
with  in all three regimes and shows weak depen-
dence on temperature [Fig. 6(d)],

κ4 = 6.81⟨lnGT ⟩2 − 65.46. (22)

κ3 ∼ ⟨− lnG⟩ κ4 ∼ ⟨− lnG⟩4/3

In Fig. 6(d), we use meV·K–1 as the unit of spin conduc-
tance.  In  contrast,  universal  behaviors  of  higher  order
moments  or  cumulants  (third  and  fourth)  for  charge
transport  in  localized  2D  normal  metal  systems  have
been reported as:  and  [67].

⟨lnGT ⟩

⟨ln GT ⟩

P (lnGT , ⟨ln GT ⟩)

From the universal behaviors of moments of  in
the  localized  regime,  we  anticipate  the  distribution  of
spin  conductance  may  also  be  universal  in  the  same
regime.  Indeed,  as  shown  in Fig.  6(e),  different  data
with  the  same  approximately  collapse  into  a
single  curve,  suggesting  that  the  distribution

 is  a  universal  function.  The  curve  is
fitted  by  a  Gaussian  function,  where  the  deviation  is
accounted for nonzero higher order cumulants.

 3.4   Finite size effects in 1D and 2D NM/FI systems

It is important to inspect the statistical behavior of spin
conductance  while  increasing  the  system size.  It  is  well
known that in normal metal systems, the charge conduc-
tance  decays  exponentially  as  the  system  size  increases
in  the  localized  regime,  which  is  a  strong  evidence  for
Anderson localization.

⟨GT ⟩ L = {20, 22, 25, 27, 30, 32,
35, 37, 40, 45}

⟨GT ⟩

⟨GT ⟩ L

⟨ln GT ⟩
L ⟨ln GT ⟩

W

ξ

For 1D NM/FI systems, we show in Fig.  7 the finite
size  scaling  calculation.  The  average  spin  conductance

 of  1D  chains  with  lengths 
 is  calculated  for  a  large  range  of  disorder

strength.  At  weak  disorders Fig.  7(a),  decays
linearly with the system length. At strong disorders Fig.
7(b),  decays  in  a  nearly  exponential  form  as 
increases. In Fig. 7(c), we plot  versus the system
length .  shows  good  linear  dependence  on  the
system length for large , which corresponds to Anderson
localization.  This  allows  us  to  extract  the  localization
length  from the linear fit

 
γ1 γ2

κ3, κ4 lnGT

κ3 ⟨− lnGT ⟩3/2 P (lnGT )

⟨ln GT ⟩ = −12.80

W = 13.78

Fig. 6  (a–d) Skewness ,  kurtosis ,  third  and  fourth
cumulants  of  for  the  2D  NM/FI  system  in  the
first  subband.  Parameters  are  the  same  as  in Fig.  5 [65].
Legends are shown in (d). The gray dashed lines separate the
localized regime and diffusive regime. The inset of (c) shows

 versus . (e)  at  a  fixed  value
 for different Fermi energies and temperatures

in the localized regime with . The red curve is the
fitted Gaussian distribution
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⟨lnGT ⟩ = −2

ξ
L+ C. (23)

ξ ≪ L

ξ

W > 4 ξ ≈ 10

L = 30

σ2(ln GT ) ⟨ln GT ⟩

⟨GT ⟩ L/ξ

The localized regime is reached when . In the NM/
FI  hybrid  system,  spin  conductance  in  the  localized
regime  is  suppressed  to  nearly  zero  since  the  electron
transport is localized in the disordered central region. In
Fig. 7(d), we plot the extracted . This result is consistent
with the partition in Fig.  2,  where the localized regime
locates in the range . The localization length 
is  much  smaller  than  the  system length  used  in
Fig. 2. In the localized regime, Fig. 7(e) shows that the
scaling  of  on  remains  universal  for
different system lengths. The red line denotes the same
one in Fig 2(c). Figure 7(f) shows that the average spin
conductance  depends only on one parameter , in
good  agreement  with  the  single-parameter  scaling
theory.

GT L1 L2

⟨ln GT ⟩

⟨ln GT ⟩
W

For 2D NM/FI systems, we calculate the spin conduc-
tance  for different system widths  and lengths .
As a comparison to Fig. 5, Figs. 8(a)–(d) show the same
quantities. Figure  8(a)  demonstrates  that  disorder-
enhancement  of  spin  conductance  is  a  general  feature
due  to  the  competition  between  bulk  and  interface
physics. In Fig. 5(b),  for different Fermi energies
and temperatures collapse with each other in the whole
range  of  disorder.  While  varying  system  width  and
length as shown in Fig. 8(b), the scaling of  with
respect  to  still  exists.  It  is  independent  of  system

ln GT

20× 20

µL = 0.9 T = 5

σ2(ln GT ) ⟨ln GT ⟩
σ2(ln GT )

(GT ) ∝ ⟨GT ⟩

L1 = 20

GT ⟨GT ⟩
(GT ) =

2.04⟨GT ⟩+ 0.03

width but depends on system length. Scaling of  for
different system widths and lengths is shown in Fig. 8(c).
For the system size , we use the same data as in
Fig.  5(c)  with  meV  and  K.  Clearly,  the
scaling  of  variance  on  is  still  universal
in  the  localized  regime.  The  variance  follows
the same equation [Eq. (18)] in a large range, from diffusive
to localized regimes, which is denoted by the red line in
Fig.  8(c).  In  the  metallic  regime Fig.  8(d),  the  linear
relation rms  remains. But the proportionality
constant  depends  on  the  system  size  and  fluctuates
heavily for small width . While for larger widths
30 and 40, the dependence of rms( ) on  tends to
be  universal,  which  is  well  fitted  by  rms

 and denoted by the green line.

⟨GT ⟩

ξ

W L1 = 20

⟨ln GT ⟩ L2

⟨ln GT ⟩ = −2L2/ξ + C

L2 = {20, 25, 30, 35, 40}
ξ W

ξ(W ) = 1.6 + 184.8e−0.4W

The size dependence of  spin conductance in 2D NM/
FI systems is similar to the 1D case.  decays linearly
at weak disorders and exponentially at strong disorders.
In Fig. 8(e), we plot the localization length  as a function
of  disorder  strength  for  a  fixed width .  Then

 depends  linearly  on  the  system  length :
.  The  localization  length  is

extracted when varying the length .
The dependence of  on  is well fitted by an exponential
decay  function: ,  which  is
denoted by the red curve. The dashed vertical line indicates
the  critical  disorder  strength  above  which  the  localized

 
⟨GT ⟩ ⟨ln GT ⟩

L W ξ

σ2(ln GT )

⟨ln GT ⟩

⟨GT ⟩ L/ξ

ξ ≈ 10

Fig. 7    (a,  b) and  (c) versus  the  1D  system
length  for different . (d) Localization length  extracted
from the  slopes  in  (c). (e) Universal  scaling  of  on

 in  the  localized  regime  (iii)  for  different  system
lengths. The red line is the same as in Fig. 2(c). (f) The scaling
of  as  a  function  of  the  ratio  for  different  disorder
strengths. 30000 disorder samples are collected to smooth the
curve.  The  gray  dashed  line  corresponds  to  the  localization
length , which is much smaller than the system size.

 
GT ln GT

L1 = {20, 30, 40} L2 = {20, 30, 40}
rms(GT ) ⟨GT ⟩

L1 L2

ξ L1 = 20 W

µL = {0.9, 0.5, 0.3} T = {5, 2, 1.1}
ωc = {0.24, 0.05, 0.03} L1 = {20, 30, 40}

Fig. 8  The average of  (a),  (b) and the scaling in
the  localized  regime (c) for  different  2D  system  widths

 and lengths .  The legends for
(a)–(c) is shown in (c). (d) The scaling of  on  in
the metallic regime for different  and . (e) The localization
length  of  system  width  as  a  function  of .  The
black  points  are  numerically  extracted  and the  red  curve  is
the fitted exponential function. Parameters are chosen in the
first  subband,  meV,  K,  and

 meV  for  width ,  respec-
tively.
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W = 8

20× 20

regime  is  reached.  We  can  see  that  the  localization
length  at  is  less  than  10,  which  is  much smaller
than the system size  used in Fig. 5.

 4   Conclusion

GT

GT

In summary, we have numerically investigated magnon-
mediated spin transport in disordered 1D and 2D NM/
FI heterostructures based on the NEGF method. In 1D,
disorder suppresses the spin conductance . The distri-
bution  of  is  in  good  agreement  with  that  of  charge
transport  in  1D  normal  metal  systems.  In  2D  NM/FI
systems,  average spin conductance is  enhanced at weak
disorder  and  suppressed  at  strong  disorder,  which  is
attributed  to  the  competition  between  resonance-
induced  increasing  of  interfacial  DOS  at  the  NM/FI
interface and electron localization in the central region.

σ2(ln GT ) ⟨ln GT ⟩

⟨ln GT ⟩ 2/3

lnGT

κ3 ∼ ⟨− lnGT ⟩3/2 κ4 ∼ ⟨− lnGT ⟩2

ln GT

⟨lnGT ⟩

rms(GT ) ⟨GT ⟩

Universal  behaviors  of  spin  conductance  are  discov-
ered. For both 1D and 2D NM/FI systems, the variance

 varies linearly with average  in the localized
regime, which is universal and independent of parameters
such as Fermi energy, temperature, and system size. The
linear  scaling  of  in  2D  is  different  from the 
power-law  of  charge  transport  in  2D  normal  metal
systems  [20].  In  the  localized  regime,  the  third  and
fourth order cumulants of  exhibit universal behav-
iors,  which  are  and ,
respectively;  the  distribution  of  is  approximately
Gaussian and depends only on . Moreover, in the
metallic regime of 2D systems, spin conductance fluctuation

 scales linearly with its average , independent
of  system  parameters  for  large  system  width.  These
results  reveal  that  magnon-mediated  spin  transport  in
disordered  2D  systems  belongs  to  a  new  universality
class  different  from  that  of  charge  transport  in  normal
metal systems.
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