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ABSTRACT

Analytical  expressions for  scaling of  brain wave spectra derived from the
general nonlinear wave Hamiltonian form show excellent agreement with
experimental “neuronal avalanche” data. The theory of the weakly evanes-
cent  nonlinear  brain  wave  dynamics  [Phys.  Rev.  Research 2, 023061
(2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective
processes  hidden  behind  the  phenomenological  statistical  description  of
the  neuronal  avalanches  and  connects  together  the  whole  range  of  brain
activity  states,  from  oscillatory  wave-like  modes,  to  neuronal  avalanches,
to  incoherent  spiking,  showing  that  the  neuronal  avalanches  are  just  the
manifestation of  the different  nonlinear side of  wave processes  abundant
in cortical tissue. In a more broad way these results show that a system of
wave  modes  interacting  through  all  possible  combinations  of  the  third
order nonlinear terms described by a general wave Hamiltonian necessarily
produces anharmonic wave modes with temporal and spatial scaling prop-
erties that follow scale free power laws. To the best of our knowledge this
has never been reported in the physical  literature and may be applicable
to  many  physical  systems  that  involve  wave  processes  and  not  just  to
neuronal avalanches.

Keywords  nonlinear  waves, critical  exponent, Hamiltonian  system,
neuronal avalanches, critical dynamics

 1   Introduction

In this paper, we show that an important observational
phenomenon, the so-called “neuronal avalanches”, which
have  been  noted  and  studied  for  almost  two  decades,
can be naturally explained by the wave activity model.
Both temporal and spatial scaling expressions analytically
derived  from  nonlinear  amplitude/phase  evolutionary
equations show excellent agreement with the experimental
neuronal  avalanche  probability  spectra.  The  model  is
not  only  able  to  reproduce  general  average  power  law
exponent values and falloffs in the vicinity of the critical

point,  but  also  finds  some  very  subtle  but  nevertheless
clearly experimentally evident fine details, like bumps in
the transition region at the edge of the power leg of the
spatial  probability  spectra.  Overall,  the  quantitative
theoretical analysis presented in the paper clearly shows
the relevance of the wave Hamiltonian framework to the
neuronal avalanche dynamics. The analysis also suggests
that  instead  of  relying  on  clever  but ad  hoc analogies
between  live  brain  tissues  and  lifeless  loose  sand  piles
often  used  to  construct  a  phenomenological  statistical
description  of  the  scaling  exponents,  both  the  origin  of
the  critical  phenomena  and  the  physics  behind  the
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neuronal  avalanches  can  be  understood  from  the  same
nonlinear wave dynamics that is responsible for the wide
range  of  activities  in  the  brain  tissue.  Those  different
activities  are  ranging  from the  linear  coherently  propa-
gating  waves  to  the  nonlinear  incoherent  asynchronous
spiking, including in between the peculiar power law-like
coherence of the neuronal avalanches.

The  standard  view  of  brain  electromagnetic  activity
classifies this activity into two significant but essentially
independent classes. The first class includes a variety of
the oscillatory and wave-like patterns that show relatively
high  level  of  coherence  across  a  wide  range  of  spatial
and temporal scales [3]. The second class focusses on the
asynchronous,  seemingly  incoherent  spiking  activity  at
scales  of  a  single  neuron and often  uses  various ad hoc
neuron  models  [4–8]  to  describe  this  activity.  Linking
these  two  seemingly  disparate  classes  to  explain  the
emergence of oscillatory rhythms from incoherent activity
is essential to understanding brain function and is typically
posed  in  the  form  using  the  construct  of  networks  of
incoherently spiking neurons [9–11].

Coherent macroscopic behavior arising from seemingly
incoherent  microscopic  processes  naturally  suggests  the
influence of  critical  phenomena,  a potential  model  from
brain  activity  that  was  bolstered  by  the  experimental
discovery  of  the  “neuronal  avalanches” [12, 13]  where
both  spatial  and  temporal  distributions  of  spontaneous
propagating  neuronal  activity  in  2D  cortex  slices  were
shown  to  follow  scale-free  power  laws.  This  discovery
has  generated  significant  interest  in  the  role  and  the
importance of criticality in brain activity [14–20], especially
for transmitting or processing information [21].

Although the precise neuronal mechanisms leading to
the observed scale-free avalanche behavior is still uncertain
after  almost  20  years  since  their  discovery,  the
commonly  agreed  upon  paradigm is  that  this  collective
neuronal  avalanche  activity  represents  a  unique  and
specialized pattern of brain activity. This pattern exists
somewhere  between  the  oscillatory,  wave-like  coherent
activity  and  the  asynchronous  and  incoherent  spiking.
Central to this claim of neuronal avalanches as a unique
brain phenomena is that they do not show either wave-
like  propagation or  synchrony at  short  scales,  and thus
constitute a new mode of network activity [12, 13]. This
new activity can be phenomenologically described using
the  ideas  of  the  self-organized  criticality  [22, 23],  and
extended  to  the  mean-field  theory  of  the  self-organized
branching processes (SOBP) [24–26].

However,  despite  the  success  of  the  SOBP  theory  in
describing neuronal avalanche statistical properties, i.e.,
replicating the power law exponents based on the criticality
considerations, the SOBP theory provides no explanation
about  the  physical  mechanisms  of  the  critical  behavior
and its relationship to the development of the observed
collective neuronal “avalanche” behavior. Because similar
statistics can result from several mechanisms other than

critical dynamics [27–29], it is essential to have a physical
model that explains the relationship between the statistical
properties  and  the  existence,  if  any,  of  critical  neural
phenomena arising from the actual collective behavior of
neuronal  populations.  While  it  is  generally  accepted  in
that  some  form  of  critical  phenomena  is  at  work,  this
has  led  to  the  presupposition  of ad  hoc descriptive
models [30–33] that exhibit critical behavior but provide
no  insight  into  the  actual  physical  mechanisms  that
might  produce  such  critical  dynamics.  It  has  been
suggested  that  the  brain  can  be  at  the  edge  of  a
synchronization  phase  transition  [33–35].  Another
universally  accepted  view  is  that  avalanches  belong  to
the mean-field-directed percolation universality class [20].
But the percolation does not seem to be compatible with
a synchronization transition, as synchronization transitions
do not fulfill spatial correlations observed in experiments,
and  the  exponents  tend  to  differ  from  the  exponent
obtained by directed percolation [20].

In  this  paper,  we  show  that  our  recently  described
theory  of  weakly  evanescent  brain  waves  (WETCOW),
originally developed in Refs. [1, 2] and then reformulated
in  a  general  Hamiltonian  framework  [36]  provides  a
physical theory, based on the propagation of electromag-
netic  fields  through  the  highly  complex  geometry  of
inhomogeneous  and  anisotropic  domain  of  real  brain
tissues, that explains the broad range of observed seemingly
disparate  brain  wave  characteristics.  This  theory
produces  a  set  of  nonlinear  equations  for  both  the
temporal and spatial evolution of brain wave modes that
includes all possible nonlinear interactions between prop-
agating  modes  at  multiple  spatial  and  temporal  scales
and degrees of nonlinearity. This theory bridges the gap
between  the  two seemingly  unrelated  spiking  and wave
“camps” as  the  generated  wave  dynamics  includes  the
complete spectra of brain activity ranging from incoherent
asynchronous  spatial  or  temporal  spiking  events,  to
coherent wave-like propagating modes in either temporal
or  spatial  domains,  to  collectively  synchronized  spiking
of multiple temporal or spatial modes. In this paper, we
further demonstrate that the origin of these “avalanche”
properties  emerges  directly  from  the  same  theory  that
produces this wide range of activity and does not require
one  to  posit  the  existence  of  either  new  brain  activity
states,  nor  construct  analogies  between  brain  activity
and ad hoc generic “sandpile” models.

We  emphasize  that  although  the  general  WETCOW
theory  describes  complex  interactions  between  modes,
the explanation for neuronal avalanches and their atten-
dant scaling properties presented in this paper are based
on the analysis of a single wave mode with a completely
arbitrary set of mode parameters. This includes arbitrary
amplitude, phase, frequency, and criticality. No interaction
between modes, except a general form of the third order
nonlinearity  that  characterizes  anharmonicity  of  the
nonlinear wave modes due to nonresonant interaction of
the linear modes, is  needed to derive the scaling result.
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Thus  a  key  result  of  this  paper  is  the  demonstration
that  neuronal  avalanches  and  their  attendant  scaling
properties  are  obtained within  the  simplest  form of  the
WETCOW theory where mode coupling is ignored, but
significantly without the ad-hoc and physically implausible
assumptions  typically  made  that  the  parameters  of  all
network nodes  are  either  constant  and the  same for  all
nodes  [33],  sometimes  even  including  inter-mode
coupling [35], or are generated from some ad-hoc artificial
distributions [37], and require the addition of stochastic
noise properties [38], etc. This emphasizes the generality
and the importance of our derivation.

The  generalization  of  our  approach  to  multiple  wave
modes is very important for understanding the details of
the  functioning  of  the  actual  neuronal  networks.  In
particular,  WETCOW  theory  can  be  useful  to  relate
biological  learning  to  wave  dynamics,  demonstrating
how  wave  dynamics  can  not  only  augment  our  under-
standing  of  cognition  but  provide  the  basis  for  a  novel
class of engineering analogs for both software and hardware
learning  systems  that  can  operate  with  the  extreme
energy  and  data  efficiency  characteristics  of  biological
systems  that  facilitate  adaptive  resilience  in  dynamic
environments [39]. Additionally, multiple practical appli-
cations of the WETCOW model to analyses of complex
clinical problems are possible. One example is an analysis
of a complex problem of significant scientific and social
importance, autism spectrum disorder (ASD), where the
WETCOW-based  method  was  able  to  detect  spatially
resolved frequency-dependent cognitive network anomalies
with a high level of statistical evidence [40].

 2   Weakly evanescent brain waves

Beginning  from  our  nonlinear  Hamiltonian  formulation
of the WETCOW theory [36], we have for an anharmonic
wave mode

Hs(a, a†) = Γaa†+ aa†
[
βaa+ βa†a†− 2α

(
aa†
)1/2]

,

(1)

a a†

Hs(a, a†)

a

ak(t) aω(x)

ψ(x, t)

where  is a complex wave amplitude and  is its conju-
gate.  denotes the Hamiltonian form for a single
wave  mode.  The  amplitude  denotes  either  temporal

 or  spatial  wave  mode  amplitudes  that  are
related  to  the  spatiotemporal  wave  field  (electrostatic
potential ) through a Fourier integral expansions

ak(t) =
1

2π

∞∫
−∞

ψ(x, t)e−i(kx+ωkt)dx, (2)

aω(x) =
1

2π

∞∫
−∞

ψ(x, t)e−i(kωx+ωt)dt, (3)

x k

ω

k

D(ω, k) = 0 ωk kω

where  for  the  sake  of  clarity  we  use  one  dimensional
scalar  expressions  for  spatial  variables  and ,  but  it
can be easily generalized for the multi dimensional wave
propagation  as  well.  The  frequency  and  the  wave
number  of  the wave modes satisfy dispersion relation

, and  and  denote the frequency and the
wave number roots of the dispersion relation (the structure
of the dispersion relation and its connection to the brain
tissue properties has been discussed in [1]).

Γaa†

Γ = iω + γ

Γ = ik + λ ω

k

γ λ

α βa βa†

The  first  term  in  (1)  denotes  the  harmonic
(quadratic)  part  of  the  Hamiltonian  with  either  the
complex valued frequency  or the wave number

 that  both  include  a  pure  oscillatory  parts  (
or )  and  possible  weakly  excitation  or  damping  rates,
either  temporal  or  spatial .  The  second  anharmonic
term  is  cubic  in  the  lowest  order  of  nonlinearity  and
describes  the  interactions  between  various  propagating
and  nonpropagating  wave  modes,  where ,  and 
are  the  complex  valued  strengths  of  those  different
nonlinear processes.

A set of derivations that lead to this description was
presented in details in [1, 2, 36] and is based on consid-
erations that follow from the most general form of brain
electromagnetic activity expressed by Maxwell equations
in inhomogeneous and anisotropic medium

∇ ·D = ρ, ∇×H = J +
∂D

∂t
⇒ ∂ρ

∂t
+∇ · J = 0.

E = −∇ψ J = σ ·E
σ ≡ {σij}

D = εE

ε

∂x→ ε∂x′

ψ

Σ = {σij/ε}

Using the electric field , Ohm’s law 
(where  is an anisotropic conductivity tensor), a
linear  electrostatic  property  for  brain  tissue ,
assuming that the scalar permittivity  is a “good” function
(i.e.,  it  does  not go to zero or  infinity everywhere)  and
taking  the  change  of  variables ,  the  charge
continuity equation for the spatial-temporal evolution of
the potential  can be written in terms of a permittivity
scaled conductivity tensor  as

∂

∂t

(
∇2ψ

)
= −∇ ·Σ · ∇ψ +F, (4)

F

Σ

F = 0

where  we  have  included  a  possible  external  source  (or
forcing)  term .  An  anisotropic  material  has  different
properties  in  different  directions.  For  example,  porous
media  formed  with  a  set  of  aligned  conductive  sheets
and  filled  with  some  non-conductive  dielectric  between
them  will  allow  current  flows  very  easily  through  each
sheet, but won’t allow any current from one sheet to the
adjacent  one.  This  means  that  the  component  of  the
conductivity  tensor  in  the  direction  normal  to  the
sheet’s  plane  will  be  zero.  Similarly,  for  brain  fiber
tissues the conductivity tensor  might have significantly
larger values along the fiber direction than across them.
The charge  continuity  without  forcing,  i.e.,  ( )  can
be written in tensor notation as

∂t∂
2
i ψ +Σij∂i∂jψ + (∂iΣij) (∂jψ) = 0, (5)

RESEARCH ARTICLE FRONTIERS OF PHYSICS

Vitaly L. Galinsky and Lawrence R. Frank, Front. Phys. 18(4), 45301 (2023)   45301-3

 



∇ ·Σ · ∇ψ ≡ ∂i(Σij∂jψ) = Σij∂i∂jψ + (∂iΣij) (∂jψ)

ψ ∼ exp (−i(k · r − Ωt)) k r

Ω t

where  repeating  indices  denote  summation  and
.  Simple

linear  wave  analysis,  i.e.  substitution  of
,  where  is  the  wavenumber,  is

the  coordinate,  is  the  frequency  and  is  the  time,
gives the following complex dispersion relation:

D(Ω,k) = −iΩk2i − Σijkikj − i∂iΣijkj = 0, (6)

which  is  composed  of  the  real  and  imaginary  compo-
nents:

γ ≡ ℑΩ = Σij
kikj
k2

, ω ≡ ℜΩ = −∂iΣijkj
k2

. (7)

ψ D(Ω,k)

Although in this general form the electrostatic potential
,  as  well  as  the  dispersion  relation ,  describe

three dimensional wave propagation, we have shown [1,
2]  that  in  anisotropic  and  inhomogeneous  media  some
directions  of  wave  propagation  are  more  equal  than
others  with  preferred  directions  determined  by  the
complex interplay of the anisotropy tensor and the inho-
mogeneity gradient. While this is of significant practical
importance,  in  particular  because  the  anisotropy  and
inhomogeneity can be directly estimated from non-invasive
methods, for the sake of clarity we focus here on the one
dimensional scalar expressions for spatial variables x and
k that can be easily generalized for the multi dimensional
wave propagation as well.

ak(t) aω(x)

ak(t)

aω(x)

ψ(x, t)

The  multiple  temporal  or  spatial  wave
mode amplitudes can be used to define the time dependent
wave number energy spectral density  or the position
dependent  frequency  energy  spectral  density  for
the spatiotemporal wave field  as

ak(t) = |ak(t)|2, aω(x) = |aω(x)|2, (8)

or  alternatively  we  can  add  additional  length  or  time
normalizations  to  convert  those  quantities  to  power
spectral densities instead.

The network Hamiltonian form that describes discrete
spectrum of those multiple wave modes was presented in
Ref. [36] as

H(a,a†) =
∑
n

[
Hs(an, a

†
n)

+
∑
m̸=n

(
anrnma

†
m + a†nr

∗
nmam

)]
, (9)

Hs(an, a
†
n)

n an
ak aω a ≡ {an} rnm = Rnmei∆nm

Rnm

∆nm

ℜ(a)
ℑ(a)

where  denotes the Hamiltonian form (1) for a
single wave mode , the single mode amplitude  again
denotes  either  or ,  and  is
the complex network adjacency matrix with  providing
the  coupling  power  and  taking  into  account  any
possible  differences  in  phase  between  network  nodes.
This description includes both amplitude  and phase

 mode coupling and as shown in Ref. [36] allows for
significantly  unique  synchronization  behavior  different

from  both  phase  coupled  Kuramoto  oscillator  networks
and  from networks  of  amplitude  coupled  integrate-and-
fire neuronal units.

The  third  order  nature  of  the  theory  is  of  particular
interest  and  provides  the  theory  with  a  broad  range  of
applicability.  It  has  distinctly  different  characteristics
than the harmonic oscillator. Of particular importance is
the  fact  that  the  third  order  terms  become  important
when  wave  amplitudes  are  high  enough  but  only  if  or
until  higher  order  terms  are  absent  or  suppressed  by
some  physical  mechanism.  This  suppression  becomes
significant in incorporating the anisotropic inhomogeneous
and  resistive  nature  of  brain  tissues.  An  important
consequence  derived  in  Ref.  [1]  is  that  the  inverse
frequency–wave  number  proportionality  of  the  linear
wave  dispersion  guarantees  that  the  resonant  terms
higher  than  the  third  order  are  not  important  and  can
be  neglected  and,  at  the  same  time,  the  non-resonant
third  order  terms  (that  are  typically  excluded  when
compared to the resonant terms) should now be retained
resulting in the third order form of Hamiltonian (1). It is
our  contention,  and  the  subject  of  future  studies,  that
the  anharmonic  third  order  forms  (1)  and  (9)  are  not
brain  specific  and  can  be  used  to  describe  oscillations
and waves in active media abundant in various areas of
physics.

ψ

rnm

rnm = 0

Γ βa βa† α

a

a an
n

k k0 ≤ k ≤ k1
ω

ω0 ≤ ω ≤ ω1

Although the Fourier integrals (2,3) used for expansion
of  the  spatiotemporal  wave  field  into  a  set  of  wave
modes  imply  the  presence  of  a  large  (actually  infinite)
number  of  modes  in  the  network  Hamiltonian  (9)  the
derivation of neuronal avalanches is evident even without
this generality of this coupling between modes expressed
by  the  coupling  parameters  as  it  was  done  in  Ref.
[36]. Thus we will consider an ensemble of noninteracting
modes, effectively setting , for the analysis of this
paper. But importantly we will not make any assumptions
about  parameters  of  the  single  mode  Hamiltonian  form
(1), assuming that all parameters ( , , , ) are arbitrary
and do not carry any mode dependence.  This is  a non-
trivial  point  worth  emphasizing,  as  it  is  a  departure
from the extant literature wherein the ad-hoc, and phys-
ically  implausible,  assumption  of  the  equivalence  of
network nodes is made. Therefore, we will proceed with
our analysis of a single mode amplitude  suppressing all
subscripts  and  indices,  and  assuming  that  denotes 
where  may represent either an arbitrary wave number
 from a range of wave numbers  or an arbitrary

frequency  from  a  range  of  wave  frequencies
.

 3   Single anharmonic mode criticality

aAn  equation  for  the  nonlinear  oscillatory  amplitude 
then can be expressed as a derivative of the Hamiltonian
form
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da
dt

=
∂Hs

∂a†
≡ Γa+ βa†aa† + βaa

2 − αa(aa†)1/2,

(10)

βa† = 1/2β̃a† α = 1/3α̃

aω(x)

(t, ω, γ) → (x, k, λ)

after  removing  the  constants  with  a  substitution  of
 and  and  dropping  the  tilde.  We

note that although (10) is an equation for the temporal
evolution,  the spatial  evolution of  the mode amplitudes

 can be described by a similar equation substituting
temporal  variables  by  their  spatial  counterparts,  i.e.,

.

a = Aeiϕ βa = β̃ae−iδa βa† = β̃a†eiδa†

Splitting (10) into an amplitude/phase pair of equations
using ,  assuming , ,  and
scaling the variables as

A = γÃ, t =
τ

γ
, ω = ω̃γ, (11)

gives the set of equations

dÃ
dτ

= Ã+ Ã2 (βa† cosΩa† + βa cosΩa − α) , (12)

dϕ
dτ

= ω̃ + Ã (−βa† sinΩa† + βa sinΩa) , (13)

Ωa ≡ ϕ− δa Ωa† ≡ ϕ− δa†where ,  (please see [36] for more
details).

These  equations  can  further  be  cast  into  a  more
compact form by defining

β =

(
βa

βa†

)
, u =

(
eiδa

eiδa†

)
, v =

(
ieiδa

−ieiδa†

)
,

(14)

so that

za = β · u = Xa + iYa, (15)

zϕ = β · v = Xϕ + iYϕ, (16)

where

Ra = |za| =
√
X2

a + Y 2
a , (17)

Rϕ = |zϕ| =
√
X2

ϕ + Y 2
ϕ , (18)

Φa = arg (za) = arctan
Ya
Xa

, (19)

Φϕ = arg (zϕ) = arctan
Yϕ
Xϕ

, (20)

whereupon (12) and (13) can be rewritten as

dÃ
dτ

= Ã+ Ã2 [Ra cos (ϕ− Φ)− α] , (21)

dϕ
dτ

= ω̃ + ÃRϕ cosϕ, (22)

Φ = Φa − Φϕwhere .
dÃ/dτ = dϕ/dτ = 0An equilibrium (i.e., ) solution of (21)

and (22) can be found from

−Rϕ

ω̃
cosϕ+Ra cos (ϕ− Φ)− α = 0, (23)

ϕe = ϕ0 ≡ Ãe = ω̃/Rϕ cosϕ0 ≡
α > Ra ω̃

Ae

as  const  and  const.  This
shows that for  there exist critical values of  and

, such that

ω̃c =
Rϕ cosϕc

α+Ra cos (ϕc +Φ)
, Ãc = ω̃c/Rϕ, (24)

ϕc = arctan

[
Ra sinΦ√

α2 − (Ra sinΦ)2

]
, (25)

ω γ

which can also be expressed in terms of critical value of
one of the unscaled variables, either  or 

ωc = γω̃c, or γc =
ω

ω̃c
. (26)

(Ac, ϕc)The  linearized  system  of  equations  at  then  can
be obtained as

dÃ
dτ

=
(
1 + 2Ãc [Ra cos (ϕc − Φ)− α]

)
Ã

− Ã2
cRa sin (ϕc − Φ)ϕ, (27)

dϕ
dτ

= Rϕ cosϕcÃ− ÃcRϕ sinϕcϕ. (28)

Φ = πTaking for example a symmetric case  the eigenvalues
of the Jacobian matrix are

Λ1 = 0, Λ2 =
3Ra + α

Ra − α
< 0 for α > Ra. (29)

Thus, the equilibrium solution provides the locus of the
saddle  node  on  an  invariant  circle  bifurcation  point
where  the  nonlinear  spiking  oscillations  occur  (as  was
shown both in Refs. [1, 2] and in Ref. [36]).

 4   Effective spiking rate

Ts

Ts

2π/Ts Ãc

Ã Ã

ϕ

The effective period of spiking  (or its inverse – either
the  firing  rate  1/  or  the  effective  firing  frequency

) can be estimated from (22) by substituting  for
 (assuming  that  the  change  of  amplitude  is  slower

than the change of the phase ) as

Ts =

2π∫
0

dϕ
ω̃ + ω̃c cosϕ

=
2π√

ω̃2 − ω̃2
c

, (30)
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Ts
ωs

giving  the  unscaled  effective  spiking  period  and  the
effective firing frequency 

Ts =
Ts

γ =
2π

ω
√
1− γ2/γ2c

=
2π

ω
√
1− ω2

c/ω
2
, (31)

ωs =
2π

Ts
= ω

√
1− ω2

c/ω
2, (32)

Ã
Ãmax = 1/(α−Ra) Ãmin = 1/(α+Ra)

dÃ/dτ = 0 ϕ = Φ ϕ = Φ+ π

Ãc Ã

with  the  periodic  amplitude  reaching  the  maximum
 and  the  minimum 

for  when  and  respectively. For
a  harmonic  oscillator  the  amplitude  is  constant  (does
not change at all) and the phase is changing rapidly. In
our  model,  we  assume that  the  wave  modes  are  anhar-
monic, but the anharmonicity is not very large, therefore,
we can assume that the phase variable is changing faster
than the amplitude variable and substiture  for .

|γ − γc| ≪ γc

T
γ → γc T ∼ 1/

√
γc − γ

γ ∼ 0 T T0
T ∼ T0 +O(γ2) ≡ 2π/ω +O(γ2) T0

ω

0 < γ < γc

The expressions  (31)  and (32)  are  more  general  than
typically used expressions for the scaling exponent in the
close  vicinity  of  the  critical  point  [41–43].
They  allow  recovery  of  the  correct  limits  both  at

 with  the  familiar  scaling  and  at
 with  the  period  approaching  as

,  where  is  the  period  of
linear  wave  oscillations  with  the  frequency .  In  the
intermediate  range  the  expressions  (31)  and
(32)  show  reasonable  agreement  (Fig.  1)  with
peak–to–peak  period/frequency  estimates  from  direct
simulations of the system (12) and (13).

 5   Temporal probability of single spike
detection

[0, 2π]

δts
Ts

δts/Ts
π

Ts δts
ωc δts

δts ∼ π/ω

Taking  into  account  that  the  initial  phase  of  spiking
solutions of (21) and (22) is a random variable uniformly
distributed  on  interval,  the  probability  that  a
spike (either positive or the more frequently experimentally
reported negative  [12, 13])  with  duration width  and
with  the  total  period  between  the  spikes  ( )  will  be
detected  is  simply  – where  the  distance  between
spikes  is  determined as  the time interval  needed for  2
radian phase change, that is the effective spiking period

. Assuming initially that the spike width  does not
change  when  approaching  the  critical  point ,  can
be  approximated  by  some  fixed  fraction  of  the  linear
wave period, i.e., , that gives for the probability
density

P
{ω}
k (ω, ωc) ∼ ω−1

√
ω2/ω2

c − 1, (33)

k

P
{ω}
k

Πω(x)

for every wave mode with the wavenumber . It should
be noted that the probability density  has no relation
to,  and  should  not  be  confused,  with  the  frequency
energy spectral density  (or with the power spectral
density).

Transforming  the  frequency  dependence  of  the

P
{ω}
k

T = 2π/ω Tc = 2π/ωc

wavenumber  spectra  to  the  temporal  domain
( , )

∞∫
ωc

P
{ω}
k (ω, ωc)dω =

Tc∫
0

P
{ω}
k

(
2π

T
,
2π

Tc

)
2π

T 2
dT

=

Tc∫
0

P
{T}
k (T, Tc)dT, (34)

P
{T}
kgives for the temporal probability density 

P
{T}
k (T, Tc) ∼ T−2

√
1− T 2/T 2

c , (35)

P
{T}
k √

1− T/Tc

hence  the  scaling  of  the  temporal  probability  density
 follows the power law with –2 exponent with addi-

tional  falloff  in  close  vicinity  of  the  critical
point  in  agreement  with  temporal  scaling  of  neuronal
avalanches reported in Refs. [12, 13].

 6   Multi-mode avalanche probability

P
{T}
k

k

ψ(x, t)

The  above  single  wave  mode  analysis  shows  that  the
probability  density  for  any  arbitrarily  selected
wave  mode  with  an  arbitrarily  chosen  threshold
follows  a  power  law  distribution  with –2  exponent,
therefore,  a  mixture  of  multiple  independent  wave
modes  that  enters  into  the  spatiotemporal  wave  field

 with different amplitudes and different thresholds
will again show nothing more than the same power law
distribution.

P
{T}
k

To  clearly  demonstrate  that  the  probability  density
function  of  finding  a  spike  reflects  the  avalanche
duration  distribution  we  conducted  a  simple  numerical

 

ωs = 2π/Ts

γ/γc
γ

δts δls

Ts Ls

Fig. 1  (a) Comparison of the analytical expression (32) for
the  effective  spiking  frequency  (red)  and  the
frequency estimated from numerical solution of (21) and (22)
(blue) as a function of the criticality parameter . In the
numerical  solution  only  was  varied  and  the  remaining
parameters were the same as parameters reported in Ref. [36].
(b) Spiking  solutions  for  typical  parameters  producing
temporal ((21) and (22), red) and spatial ((41) and (42), blue)
spiking  profiles  where  some  signal  of  width  or  was
detected and surrounded by quiet area with the total effective
period  or .
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experiment using a procedure that replicates the original
experimental  method of  computing neuronal  avalanches
employed in the original papers by Beggs and Plenz [12,
13]. We used 106 wave modes with arbitrary parameters
and computed avalanches by cutting the temporal series
with a threshold (converting the event to a single dot or
“spike”),  then binning the  signal  using a  time equal  to
the average inter-spike interval. After that, an avalanche
duration is  given by the time between two empty bins.
Figure  2 compares  the  avalanche  distribution  for  all
wave modes with the –2 exponent.

P
{T}
k

pa(T )

P a
0≤T ′≤T+∆T

T +∆T ∆T

Similar proof of equivalence of the single mode proba-
bility density function  and a probability density of
a  multi-mode  avalanche  event  obtained  by  the  method
replicating  the  experimental  demarcation  of  the  quies-
cence, that we will denote as , can be also derived
using  simple  analytical  considerations.  The  probability

 that  an  avalanche  happens  at  any  time
between 0 and , where  is some small binning
interval used by the above experimental method, can be
expressed as

P a
0≤T ′≤T+∆T =

T+∆T∫
0

pa(T ′)dT ′ =

T∫
0

pa(T ′)dT ′

+

T+∆T∫
T

pa(T ′)dT ′≈P a
0≤T ′≤T +p

a(T )∆T.

(36)

Since the probability

P
{T}
kj

(T, Tcj )∆T = νjT
−2
√
1− T 2/T 2

cj∆T, (37)

νj

j j = 1, . . . , N

T T +∆T

(where  is  an  arbitrary  mode  specific  proportionality
constant) describes the probability of finding a signal for
a single mode  ( ) in a time interval between

 and ,  the  probability  that  the  condition  for
detection  of  a  multi  mode  avalanche  is  recorded  in  the
same interval can be expressed as

pa(T )∆T = [1− P0(T −∆T )]× P0(T ), (38)

where P0(T ) =
N∏
j=1

(
1− P

{T}
kj

(T, Tcj )∆T
)
,

P0(T )

T T +∆T (1− P0(T −∆T ))

∆T

T −∆T T

where  all  wave  modes  are  assumed  to  be  independent.
The  second factor  represents  the  probability  that
there is no signal for any of the modes detected between

 and .  The  first  factor  makes
sure that no avalanche was recorded in the previous 
bin, that is a signal for at least one mode has been found
in the interval between  and .

∆T

pa(T )

An expansion of (38) in the leading order of  gives
for the avalanche probability density 

pa(T ) ≈ T−2

N∑
j=1

νj

√
1− T 2/T 2

cj , (39)

pa(T )

T−2

that is the avalanche probability density  shows the
same  scaling  as  the  probability  density  of  finding
signal for a single mode.

Tcj
kj Tcj ≡ Tc

If  additionally  the  criticality  parameters  for  all
wave  modes  are  assumed  to  be  the  same  ( )
then  the  avalanche  probability  density  scaling  takes
exactly  the  same  form  as  the  single  mode  probability
density

pa(T ) ∼ P
{T}
k (T ) ∼ T−2

√
1− T 2/T 2

c . (40)

 7   Spatial spike detection probability

Due to the reciprocity of the temporal and spatial repre-
sentations of the Hamiltonian form (1) equations for the
spatial  wave  amplitude  have  the  same  form  as  the
temporal equations (21) and (22)

dÃ
dξ

= Ã+ Ã2 [Ra cos (ϕ− Φ)− α] , (41)

dϕ
dξ

= k̃ + ÃRϕ cosϕ, (42)

under  similar  scaling  (the  spatial  equivalent  of  (11))  of
the  wave  amplitude,  the  coordinate,  and  the  wave
number

 
Fig. 2  (a) The  avalanche  durations  distribution  for  all
wave modes compared with the –2 exponent. (b) WETCOW
modes  randomly  distributed  and  propagated  on  a  1000  by
1000  grid.  Two  examples  of  temporal  signal  snapshots  with
different  values  of  signal  threshold  are  shown  (color  pallet
encodes the change of frequencies from the smallest (blue) to
the  largest  (red).  Localized  regions  of  wave  activity  in  the
spatial domain are clearly evident.
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A = λÃ, x =
ξ

λ
, k = k̃λ. (43)

Ãc k̃c

In the spatial domain, this leads to the critical parameters
 and 

k̃c =
Rϕ cosϕc

α+Ra cos (ϕc + Φ)
, Ãc = k̃c/Rϕ,

ϕc = arctan

[
Ra sinΦ√

α2 − (Ra sinΦ)2

]
. (44)

Although  our  simple  one  dimensional  scaling  estimates
do  not  take  into  account  the  intrinsic  spatial  scales  of
the brain, e.g., cortex radius of curvature, cortical thick-
ness,  etc.,  nevertheless,  even in this  simplified form the
similarity between spatial and temporal nonlinear equa-
tions  suggests  that  the  nonlinear  spatial  wave  behavior
will  generally  look  like  spiking  in  the  spatial  domain
where some localized regions of activity are separated by
areas  that  are  relatively  signal  free  and  this  separation
will increase near the critical point. Exactly this behavior
was reported in the original experimental studies of the
neuronal  avalanches  [12, 13],  where  it  was  stated  that
the analysis of the contiguity index revealed that activity
detected at one electrode is most often skipped over the
nearest neighbors. Interestingly, this experimental obser-
vation of near critical nonlinear waves was presented as
the indicator that the activity propagation is not wave-
like.  But  we  see  here  that  they  are  directly  explained
within  the  context  of  the  WETCOW  wave  model.  Of
significant practical importance will be the effects of the
intrinsic  spatial  scales  of  the  brain  that  will  certainly
affect  the  details  of  the  spatial  critical  wave  dynamics
and  so  their  inclusion  will  be  important  for  more
completely  characterizing  the  details  of  brain  criticality
and will be the focus of future investigations.

k

L
ω

Using the spatial equations (41) and (42) similar scaling
results can be obtained for the wave number  and the
linear  spatial  dimension  probabilities  for  every  wave
mode with the frequency  as

P
{k}
ω (k, kc) ∼ k−1

√
k2/k2c − 1, (45)

P
{L}
ω (L,Lc) ∼ L−2

√
1− L2/L2

c , (46)

L
k = 2π/L

where  is  the  linear  spatial  scale  related  to  the  wave
number as .

L
S

L =
√
S

The  linear  spatial  dimension  of  the  avalanche  is
related  to  its  area  on  a  2  dimensional  surface  as

, hence
Lc∫
0

P {L}
ω (L,Lc)dL =

Sc∫
0

P
{L}
ω

(√
S,

√
Sc

)
2
√
S

dS

=

Sc∫
0

P {S}
ω (S, Sc)dS, (47)

P
{S}
ω (S, Sc) ∼ S−3/2

√
1− S/Sc, (48)

S

√
1− S/Sc

ωc kc
Tc Lc

hence  the  spatial  probability  scaling  for  the  size 
follows  the  power  law  with –3/2  exponent  again  with
additional  falloff in close vicinity of the critical
point,  that  is  also  in  agreement  with  experimentally
reported spatial  scaling of  neuronal  avalanches [12, 13].
We would like to mention that the nonlinear anharmonic
oscillations  described  by  (21)  and  (22)  only  exists  for
frequencies and wave numbers that are above the critical
frequency  or the critical wave number  values that
define maximal possible temporal  or spatial  scales
of the nonlinear oscillations. If the finite system sizes are
below  those  maximal  values  the  cutoffs  will  be  defined
by the system scales.

We would  like  emphasize  again  the  generality  of  our
analysis  that  makes  no  assumptions  about  parameters
used in Hamiltonian form (1), and hence in the equations
(21) and (22) or (41) and (42), analytically deriving scaling
valid for a wide (and arbitrary) range of those parame-
ters.  This  is  in  striking  difference  from  analyses  and
results based on oversimplified ad-hoc numerical studies
of  synchronization  in  networks  [33, 35].  Those  typical
numerical  analysis  studies  consider  networks  of
completely  identical individual  nodes  sometimes  even
globally connected  with completely  identical weights.
Therefore, all these studies require artificial (and signifi-
cantly high level of) noise added to each node just to be
able  to  impose  some  range  of  scales  into  the  system.
This is an artificial and, as demonstrated here, unnecessary
complication.  The  consequence  of  such  models  is  that
they are capable  of  obtaining something that resembles
scale  free  behavior  with  exponent  values  that  are  in
general  rather  vague  and  strongly  noise  dependent.
Without  this  sufficiently  strong  noise  those  studies  of
course are not capable to show any scale free behavior.
It is essential to realize that such models are thus highly
dependent  on  the  noise  properties,  and  less  so  on  the
actual  properties  of  the  brain  tissue  itself  as  in  the
WETCOW theory, which is the critical link to practical
applications  of  any  brain  activity  theory.  By  contrast,
no externally induced stochasticity in the form of additional
noise term is required for our analysis.

Another important point is that for deriving scale free
exponents in our approach we don’t require to know the
details of the coupling between nodes, essentially viewing
all nodes as completely noninteracting. Presence of inter-
actions  in the form of  (9)  will  not  modify our analysis,
and will not require any of the common ad-hoc assumptions
of  identical  global  coupling  between  nodes  [35].  When
coupling between some of the nodes in (9) is sufficiently
strong and these nodes are completely synchronized, we
can always replace this subset of completely synchronized
nodes by a single node and continue again with the same
presented  in  this  paper  “coupling-independent” node
analysis.
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 8   Effects of criticality on spike length

δtsThe  assumption  of  the  fixed  spike  duration  used  in
(33) and (35) (or the spike length for spatial spiking in
(45) and (46)) can be improved by estimating the scaling
of the spike width as a function of the criticality parameter
from the  amplitude  equation  (we  will  use  the  temporal
form of  the  equation  (21)  but  the  spatial  analysis  with
equation (41) is exactly the same).

Ã

Ãmax

Dividing  equation  (21)  by  and  taking  an  integral
around some area in the vicinity of the amplitude peak

 we can write

Ã+∫
Ã−

1

Ã
dÃ =

τ+∫
τ−

dτ +

Φ+∫
Φ−

ω̃c

Rϕ

Ra cos (ϕ− Φ)− α

ω̃ + ω̃c cosϕ
dϕ,

(49)

τ± = τmax ± δτ τmax

τ±

Ã± = Ã(τ±) = Ãmax − δÃ

Φ± = Φ(τ±) = Φ± δΦ

δts ≡ (τ+ − τ−)/γ

where , and  is the location of spiking
peak.  Neglecting  the  spike  shape  asymmetries,  i.e.,
assuming  that  correspond  to  symmetric  changes  in
both  the  amplitudes ,  and  the
phases ,  we  can  then  estimate  the
spike duration  as

δts =
1

γ

Φ+δΦ∫
Φ−δΦ

1−R[cosΦ+ cos (ϕ− Φ)]

ω̃ + ω̃c cosϕ
dϕ, (50)

Ãc

Ã δΦ

δΦ ≲ π/2

R = ω̃cRa/Rϕ

where,  similar  to  the  spiking  period  estimation  in  (31),
we again assume that the main contribution comes from
the  change  of  the  oscillation  phase,  hence  can  be
substituted  for .  For  some  fixed  value  that  is
smaller or around a quarter of the period (i.e., )
can be chosen, and .

P (S/Sc)

δls/Ls

L =
√
S dL = dS/(2

√
S) Sc

Φ

Φ = π/2

An  expression  (50)  can  be  evaluated  in  closed  form
but  we  do  not  include  it  here  and  instead  plotted  the
final spatial probability density spectra , similarly
obtained from the expression for  again substituting

 and ,  for  several  values  of  the 
parameter  (Fig.  3),  as  well  as  for  several  values  of  the
phase  shift  (Fig.  4).  The  spectra  clearly  show  again
the same power law dependence with –3/2 exponent as
was reported in Refs. [12, 13] followed by a steep falloff
sufficiently  close  to  the  critical  point.  What is  interest-
ing, however, is that the spectra for  (and this is
the phase shift value used for spiking solutions reported
in Refs. [1, 2, 36]) recover even the fine structure of the
scaling  and  clearly  show the  small  bump at  the  end  of
the scale free part of the spectra where the local probability
deflects from the initial –3/2 power exponent and flattens
first  before  turning  in  to  the  steep  falloff.  These  small
bumps  are  evident  in  all  experimental  spectra  [12, 13]
shown in Fig. 3 as well.

 9   Conclusion

One of  the properties  of  the WETCOW wave modes is
that  the  anisotropy  structure  of  brain  conductivity  as
well as the structure of brain inhomogeneity favors their
propagation  in  the  outer  regions  of  the  cortex  (see,  for
example, Fig.  2 of  [1, 2]).  Neuronal  avalanches  are
measured  in  the  most  external  layer  of  the  cortex  and,
usually, introducing the electrodes deeper in the cortical
columns  will  eliminate  the  scale-free  distributions.
Therefore,  it  seems  to  be  an  interesting  problem  to
check  the  whole-brain  scale  free  distribution  in  the
region of typical propagation of WETCOW wave modes.
To  do  this  numerical  experiment  we  generated  an
ensemble  of  106 WETCOW  modes  distributed  and
randomly  propagating  through  inhomogeneous  and
anisotropic cortical tissue. Figure 5 shows two randomly
selected  snapshots  of  wave  mode  trajectories  that  were
generated using the procedure described in details in [1]
and  propagate  in  the  surface-like  2D  manner  in  the
external  layer  of  the cortex.  Using the same procedure,
that  replicates  the  original  experimental  neuronal
avalanche  detection  method,  that  is  thresholding  and
then  binning  the  wave  signal  into  dots  or  “spikes”,  we
again  see  that  the  WETCOW  modes  show  scale  free
behavior as shown in Fig. 6.

In summary, in this paper we have presented an analysis
of temporal and spatial probability density spectra that
are generated due to the critical dynamics of the nonlinear
weakly evanescent cortical wave (WETCOW) modes [1,
2].  The  Hamiltonian  framework  developed  for  these
WETCOW modes in Ref. [36] is advantageous in that it
explicitly  uncovers  the  reciprocity  of  the  temporal  and
the  spatial  dynamics  of  the  evolutionary  equations.
Therefore,  in  the  nonlinear  regime  sufficiently  close  to

 

S/Sc

Fig. 3  (a) Analytical probability density spectra as a func-
tion of brain waves criticality parameter  show excellent
agreement  with  the  experimental  avalanche  data  [(b),  from
Refs.  [12, 13]]  reproducing not only the overall  shape of the
spectra with the –3/2 power exponent at the initial scale free
part of the spectra and the steep falling edge in the vicinity
of the critical point, but also reproduce the fine details such
as the small bump-like flattening of the spectra at the transition
from –3/2 leg to the steep falling edge that is clearly evident
in experimental spectra.
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the critical point the spatial behavior of the wave modes
displays  features  similar  to  the  properties  of  their
nonlinear  temporal  dynamics  that  can  be  described  as
spatial  domain  spiking,  with  localized  regions  of  wave

activity  separated  by  quiescent  areas,  with  this  spatial
spiking  intermittence  increasing  near  the  critical  point.
Similar spatial behavior was observed experimentally in
neuronal avalanches, when activity detected at one elec-
trode  was  typically  skipped  over  the  nearest  neighbors.
This was interpreted as evidence that avalanche spatial
intermittency  is  not  wave-like  in  nature  [12, 13].  Our
results  demonstrate  the  contrary,  however:  the  spatial
patterns are the direct result of nonlinear interactions of
weakly evanescent cortical waves.

Both temporal and spatial scaling expressions analyti-
cally  estimated  from  the  nonlinear  amplitude/phase
evolutionary  equations  show  excellent  agreement  with
the experimental neuronal avalanche probability spectra
reproducing  not  only  the  general  average  power  law
exponent values and falloffs in the vicinity of the critical
point, but also finding some very subtle but nevertheless
clearly experimentally evident fine details, like bumps in
the transition region at the edge of the scale free part of
the probability spectra.

In a more general way these results may be applicable
not  only  to  neuronal  avalanches  but  to  many  other
physical  systems  that  involve  wave  processes  as  they

 

(S/Sc)
3/2

S/Sc Φ

Fig. 4  Analytical probability density spectra multiplied by
an  as a function of brain waves criticality parameter

 plotted for several values of the phase shift .

 
Fig. 5  Examples of complete wave mode trajectory snapshots
for two randomly selected parameters and initial conditions.
The trajectories was randomly selected from an ensemble of
106 WETCOW  modes  used  for  generation  of  probability
distributions of Fig. 6. The brain substrate includes separate
regions  for  gray  and  white  matter,  such  that  the  cortical
region  (gray  matter)  is  semi-transparent  and  sub-cortical
area is not transparent, instead, it is completely opaque. The
trajectories are only visible if they are confined in the cortical
tissue and would be obscured by white-gray matter surface.
Therefore  the  figure  clearly  show that  the  wave  trajectories
mostly propagate through the cortical tissue.

 
Fig. 6  Plots  of  spatial (a) and  temporal (b) probability
density  spectra  obtained  by  binning  oscillatory  signal  of
ensemble of 106 WETCOW modes randomly distributed and
propagated through cortical tissue. Two examples of temporal
signal  (dots  or  “spikes”)  snapshots  with  different  values  of
signal  threshold  are  shown  in (c) and (d) (color  pallet
encodes the change of frequencies from the smallest (blue) to
the largest (red).
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show that  a  system of  wave  modes  interacting  through
all  possible  combinations  of  the  third  order  nonlinear
terms described by a general wave Hamiltonian necessarily
produces  anharmonic  wave  modes  with  temporal  and
spatial  scaling  properties  that  follow  scale  free  power
laws.
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