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ABSTRACT

Twist  phase  is  a  nontrivial  statistical  phase  that  only  exists  in  partially
coherent  fields,  which  makes  the  beam  carry  orbital  angular  momentum
(OAM). In this paper, we introduce a new kind of partially coherent beams
carrying  high-order  twist  phase,  named  generalized  high-order  twisted
partially coherent beams (GHTPCBs).  The propagation dynamics such as
the  spectral  density  and  OAM  flux  density  propagating  in  free  space  are
investigated  numerically  with  the  help  of  mode  superposition  and  fast
Fourier  transform  (FFT)  algorithm.  Our  results  show  that  the  GHTPCBs
are  capable  of  self-focusing,  and  the  beam  spot  during  propagation
exhibits  teardrop-like  or  the  diamond-like  shape  in  some  certain  cases.
Moreover,  the  influences  of  the  twist  order  and  the  twist  factor  on  the
OAM flux density during propagation are also illustrated in detail. Finally,
we experimentally synthesize the GHTPCBs with controllable twist phase
by  means  of  pseudo-mode  superposition  and  measure  their  spectral
density during propagation. The experimental results agree well with the
theoretical  predictions.  Our  studies  may  find  applications  in  nonlinear
optics and particle trapping.

Keywords  light  manipulation, statistical  optics, twist  phase, coherence
structure, orbital angular momentum

 

1   Introduction

exp [iu (x1y2−
x2y1)] u

(xi, yi) i = 1, 2

Twist phase is a second-order statistical quadratic phase
that depends on two spatial points and cannot be separated
with respect to two positions, expressed as 

,  where  is  the  twist  factor,  a  measure  of  the
strength  of  the  phase; , ,  are  two  position
vectors.  Different  from  the  vortex  phase  and  spherical
phase, the twist phase only survives in partially coherent
light.  In  1993,  Simon et  al.  first  introduced  such  twist

phase  into  a  Gaussian  Schell-model  beam  which  is  the
well-known class of partially coherent beams [1].  It was
found that the twist phase has intrinsic chiral or handedness
property,  responsible  for  the  rotation  of  beam  spot
during propagation [1, 2]. As a new degree of freedom to
manipulate the partially coherent light,  the twist phase
has  attracted  considerable  attention  in  recent  years.
Various methods such as the coherent mode decomposi-
tion,  Wigner  distribution  function  and  efficient  tensor
method have been proposed to treat the propagation of
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the beams carrying the twist phase [3–6].
Recently,  Borghi et  al.  [7, 8]  proposed  a  criterion  to

judge  whether  the  twist  phase  can  impose  on  partially
coherent  beams  with  different  degree  of  coherences
(DOCs).  Gori et  al.  [9, 10]  established  a  condition  to
construct twisted partially coherent beam with physically
realizable.  Since  then,  twisted  beams  with  different
kinds of DOCs have been introduced, and their propagation
characteristics  in  free  space  and  turbulent  atmosphere
were investigated [11–17]. The twisted beams have found
important  applications  in  many  aspects  such  as  ghost
imaging [18], controlling the coherence of optical solitons
[19],  reducing  the  turbulence-induced scintillation  index
[20],  overcoming  the  Rayleigh  limit  in  imaging  system
[21],  generating  highly  incoherent  yet  highly  entangled
multiphoton  states  [22],  realizing  phase  conjugation  in
stimulated down-conversion [23], and others. Meanwhile,
many  experimental  setups  have  been  established  to
generate  and  measure  the  twisted  partially  coherent
beams [2, 24–26],  these  methods  have  provided  a
strongly experimental basis for the application of twisted
partially coherent beams.

Perhaps the most peculiar property of the twist phase
is  that  such  phase  induces  the  beam  carrying  orbital
angular  momentum  (OAM)  [26–28].  In  2001,  Serna
et  al.  [27]  pointed  out  that  twisted  Gaussian  Schell-
model (TGSM) beams carrying the non-zero time average
OAM  along  propagation  direction,  opens  up  a  new
dimension  for  manipulating  OAM in  partially  coherent
fields.  Later,  the  changes  of  total  OAM  of  the  TGSM
beams  propagation  through  a  gain/loss  cavity  and  a
uniaxial crystal were investigated in detail [29, 30]. The
OAM flux density of the TGSM beams exhibit the fluid
rotators  with  a  rigid  body  in  the  beam  center  and  a
constant flux density at the outskirt [28], which is similar
with that of beams carrying vortex phase.

exp [iu (xm1 ym2 − xm2 y
m
1 )] m

x1(2) y1(2)

However, most of the studies are focused on the low-
order  twist  phase,  i.e.,  quadratic  non-separable  phase
stated above. Recently, Wan and Zhao [31] introduced a
high-order twist phase in partially coherent fields, which
is ,  where  is  an integer number.
Such phase only exists in partially coherent beams with
spatially varying coherence state. Up to now, the experi-
mental  generation  of  the  beams  with  high-order  twist
phase have not been reported. In this paper, we extend
the  high-order  twist  phase  to  a  more  general  case,  i.e.,
the  powers  on  and  are  different,  and  the
partially coherent beams carrying such generalized high-
order twist phase, named generalized high-order twisted
partially  coherent  beams  (GHTPCBs),  are  constructed
theoretically. The propagation dynamics including average
spectral  density  and OAM flux  density  upon free-space
propagating  are  investigated  numerically.  Further,  an
experimental setup for the generation of the GHTPCBs
is established.  The effects of  the high-order twist phase
on  the  propagation  dynamics  of  the  generated

GHTPCBs are examined in experiment.
 

2   Theoretical models of GHTPCBs

z

z = 0

Consider a scalar, statistically stationary beam-like field,
propagating  along -axis.  The  second-order  statistics  of
such beam in the source plane ( ) can be characterized
by a two-point cross-spectral density (CSD) function in
space frequency domain

W0 (r1, r2) = ⟨E∗ (r1)E (r2)⟩, (1)

r1 = (x1, y1) r2 = (x2, y2)

E (r)

where  and  are  two  position
vectors in the source plane, perpendicular to the propa-
gation axis.  denotes the random electric filed. The
asterisk  and  the  angle  brackets  stand  for  the  complex
conjugate and ensemble average over the source fluctua-
tions, respectively.

To  be  a  genuine  CSD  function,  the  necessary  and
sufficient condition is that the CSD can be expressed as
the following alternative integral form [9]

W0 (r1, r2) =

∫ ∞

−∞
p (v)H∗

0 (r1,v)H0 (r2,v) d2v, (2)

p (v)

H0 (r,v)

H0 (r,v) exp (iar · v)
a

where  is  a  non-negative  weight  function  and
 is  an  arbitrary  kernel  function.  If  the  kernel

function  is the Fourier kernel , where
 is a real constant, it represents the Schell-model beams,

a well-known class of partially coherent beams. In order
to  introduce  a  high-order  twist  phase,  one  may employ
the kernel function as the form

H0 (r,v) =τ (r) exp
[
−2α2

β

(
x2m

x2m−2
0

+
y2n

y2n−2
0

)]
× exp

[
2α

(
xm

xm−1
0

vx +
yn

yn−1
0

vy

)]
× exp

[
−iγ

(
yn

yn−1
0

vx − xm

xm−1
0

vy

)]
, (3)

τ (r) = exp
(
−r2/4σ2

0

)
σ0 α β γ

x0

y0 m

n

p (v)

where  is an amplitude function with
 being  the  beam  width.  Here, ,  and  are  real

constants with inverse square length dimensions.  and
 are also real constants with length dimensions.  and
 are  positive  integers  that  determine  the  order  of  the

twist phase. Suppose that the  function is a Gaussian
function, given by

p (v) =
β

π
exp

[
−β

(
v2x + v2y

)]
. (4)

p (v) v

β ≥ 0

The  function  is  non-negative  for  any ,  which
implies  that .  Substitution  Eqs.  (3)  and  (4)  into
Eq.  (2),  and  after  some  integral  operations,  we  obtain
the expression for the CSD function
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W0 (r1, r2) = exp
(
−r21 + r22

4σ2
0

)
× exp

[
− (xm1 − xm2 )

2

δ2m0x
− (yn1 − yn2 )

2

δ2n0y

]
× exp [−iu (xm1 y

n
2 − xm2 y

n
1 )] ,

(5)

1/δ2m0x =
(
4α2 + γ2

)
/
(
4βx2m−2

0

)
1/δ2n0y =

(
4α2 + γ2

)
/(

4βy2n−2
0

)
u = 2αγ/

(
βxm−1

0 yn−1
0

)
u

m = n = 1

m > 1 n > 1

δ0x δ0y u

α β γ

α β γ

δ0

u2 ≤ 4/δ2m0x δ
2n
0y

with , 
 and , where  is the twist

factor. It follows from Eq. (5) that when , the
beam  reduces  to  a  TGSM  beam  [1, 2].  In  other  cases
(  or ), the beam carries high-order twist phase
but  it  becomes  spatially  varying  coherence  states,  i.e.,
the  DOC  depends  on  the  special  reference  points  one
chooses.  It  should  emphasize  here  that  the  coherence
parameter ,  and  twist  factor  are  intimately
related through ,  and . Hence, they are not independent
of each other. However, the CSD is always non-negative
definiteness by choosing different sets of ,  and , and
the value range of the twist factor for a given  satisfies

.  We term the  beam having CSD function
in Eq. (5) as the GHTPCBs. The DOC can be evaluated
via the CSD function by the definition

µ (r1, r2) =
W (r1, r2)√

W (r1, r1)W (r2, r2)
. (6)

m

n

|µ (r1, 0)|2

m n

δ0x = 0.451/m mm δ0y = 0.451/n mm u = 8 mm−m−n

α = 1 mm−2 β = 1 mm−2 γ = 4 mm−2)

u m

n

m = n = 1

m n

m n

To investigate the influence of the beam orders  and
 on the DOC in the source plane, we plot in Fig. 1 the

theoretical results of the square of the DOC  for
the  GHTPCBs  with  different  beam  orders  and .
The  beam  parameters  used  in  the  calculation  are

,  and 
( ,  and  . Note that the
dimension of the twist factor  depends on the orders 
and ,  implying  that  the  twist  factor  with  different
orders  are  physically  different.  Under  the  condition  of
the same order, the value of the twist factor reflects the
strength  of  the  twist  phase.  It  is  shown  that  different
spatial  correlation  structures  are  constructed  by  taking
different  beam  orders.  When ,  the  DOC
displays a circular Gaussian profile. Nevertheless, as the

 or  increases, the DOC patterns turn into Cartesian
symmetry.  Especially  for  and  larger  than  2,  the
patterns become squares [see Figs. 1(d) and (e)]. 

3   Statistical properties of GHTPCBs on
propagation

z

In this section, we will focus on the statistical properties
of the GHTPCBs on propagation in free space. According
to Eq. (2), the CSD function in the propagation plane 
can be written as the following discrete modes:

W (ρ1,ρ2; z) ≈
N∑
m

N∑
n

p (vxm, vyn)H
∗
z (ρ1, vxm, vyn; z)

×Hz (ρ2, vxm, vyn; z) (∆v)
2
, (7)

∆v x

y N ×N

Φmn (ρ) = p1/2 (vmn)Hz (ρ,vmn; z)∆v

p (v) |v|

Hz

where  is the discrete integral interval along the  and
 directions.  represents  the  total  number  of

discrete modes. It indicates from Eq. (7) the CSD function
is expressed as the incoherent superposition of the light
modes .  Because  the

 decays with the increase of , finite number of the
light modes could represent the theoretical model of the
CSD function accurately. Based on the Huygens–Fresnel
diffraction integral  formula [32, 33],  for  each mode,  the

 function  can  be  expressed  as  the  following  Fourier
transform:

Hz (ρ, vxm, vyn; z) = − ik
2πz

exp (ikz) exp
(
ik
2z

ρ2

)
× F

[
H0 (r, vxm, vyn) exp

(
ik
2z

r2
)]

ρ
λz

, (8)

Fwhere  denotes the Fourier transform, allowing one to
implement the Faster Fourier transform (FFT) algorithm
to evaluate Eq.  (8)  using the MATLAB or others.  The
detailed derivation of Eq. (8) is shown in Supplementary
Information S1.

W (ρ,ρ; z) m

n

u = 8 mm−m−n α = 1 mm−2 β = 1 mm−2 γ = 4 mm−2

σ0 = 0.5 mm 30× 30

v[
−2.5/β1/2, 2.5/β1/2

]
v (vxm, vyn) =

5/β1/2(m/N,n/N) m n [−N/2,

N/2− 1]

m = n = 1

m = 1 n = 2 m = 2

n = 2 y

x

Figure  2 illustrates  the  normalized  spectral  density
 of the GHTPCBs for different beam orders 

and  at  several  propagation  distances  in  free  space.
The  beam  parameters  used  in  the  calculation  are

, , ,  and
.  In  the  calculation,  the  modes  are

involved  and the  argument  is  truncated  in  the  range
.  The  is  discretized  as 

,  where  or  belongs  to 
.  For  comparison,  the  spectral  density  of  the

TGSM  beam  (carrying  conventional  twist  phase)  upon
propagation  is  also  plotted  [see Figs.  2(a1)–(a6)  for

].  The  spectral  density  remains  Gaussian
profile and keeps invariant during propagation, only the
beam size  expands  due  to  the  diffraction  effect.  As  the
order of the twist phase increases, there has a significant
influence  on  the  spectral  density  on  propagation.  The
beam profile gradually turns into teardrop-like shape for

 and ,  and diamond-like  shape for  and
.  The  beam  is  self-focused  in  direction  and

stretched  in  direction  on  propagation.  In  the  case  of

 
|µ (r1, 0)|2

m n

Fig. 1  Square  of  the  DOC  for  GHTPCBs  with
different values of beam order  and  in the source plane.
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m = 1 n = 3

x y

m = 3 n = 3

z = 1.5 m

z = 1.5 m

 and ,  the beam profile evolves into elliptical
shape with long and short  axis  along the  and  axis,
respectively.  In the case of  and ,  it  is  found
that  the  spectral  density  at  propagation  distance

 returns  to  rotational  symmetry,  but  the  self-
focusing  occurs  during  propagation,  i.e.,  the  beam spot
at  is smaller than that in the source plane. In
addition,  we  also  plot  the  other  spectral  densities  with
different  values  of  twist  factor,  and  the  results  are
shown  in  Supplementary  Information  S2.  It  was  found
that  the  value  of  twist  factor  also  plays  an  important
role  in  beam  shaping.  The  influence  of  different  twist
factors on the beam during propagation has roughly the
same trend, but with the increase of the twist factor, the
beam  shaping  becomes  more  obvious.  Therefore,  the
high-order twist phase provides a new degree of freedom
to shape the beam profile through controlling the order
and the magnitude of the phase.

u

m

n

u = −8 mm−m−n

m = n = 2

θ

In order to investigate the influence of the sign of the
twist  factor  on  spectral  density, Fig.  3 presents  the
spectral  density of the GHTPCBs with different  and
 at  several  propagation  distances.  The  twist  factor  is

chosen to be ,  and the other parameters
are the same as those in Fig. 2. Compared Fig. 3 to Fig.
2, the effect of the sign of the twist factor on the spectral
density depends on the orders of the twist phase. When

,  the  spectral  density  just  rotates  90  degree
with respect to the propagation-axis between the positive
and  negative  twist  factor,  whereas  the  spectral  density
flip  horizontally  in  other  cases.  The  different  behaviors
of the evolution of the spectral density between the positive
and negative sign are closely related to the symmetry of
the  CSD.  Suppose  that  the  CSD  of  the  GHTPCBs
rotates angle  counterclockwise with respect to coordinate
origin. The relation between the new coordinate and old

xiθ = xi cos θ + yi sin θ
yiθ = −xi sin θ + yi cos θ

m = n = 1

θ m = n = 2

W p (x1, y1, x2, y2) =Wn (y1,−x1, y2,
−x2) p n

W p (x1, y1, x2, y2) =Wn(−x1, y1,−x2,
y2) W p (x1, y1, x2, y2) =Wn (x1,−y1, x2,−y2)

coordinate can be expressed by:  and
.  On  inserting  the  new  coordinate

into  Eq.  (5),  it  readily  finds  that  when ,  the
CSD is independent upon the angle . When ,
the CSDs between the positive and negative twist factor
satisfies  the  condition 

,  where the superscript  and  denotes the case of
the  positive  and  negative  twist  factors,  respectively.
This  symmetry  of  CSD  results  in  the  rotation  of  90
degree of the spectral density between them. Other cases
shown in Figs. 2 and 3, the CSDs between two signs of
the  twist  factors  are 

 or .

Md (ρ; z)

z

We  now  pay  attention  to  the  changes  of  the  OAM
flux density of the GHTPCBs upon free-space propaga-
tion.  According  to  Ref.  [28],  the  OAM  flux  density

 of  a  partially  coherent  beam  at  propagation
distance  is expressed by the following formula:

Md (ρ; z) =
ε0
k

× Im
[
ρx1

∂W (ρ1,ρ2; z)

∂ρy2
−ρy1

∂W (ρ1,ρ2; z)

∂ρx2

]
ρ1=ρ2

,

(9)

ε0 Im

z = 0 z

where  is  the  permittivity  constant  in  vacuum. 
denotes  taking  the  imaginary  part.  In  the  source  plane

,  The -component  OAM  flux  density  of  the
GHTPCBs has found the analytical formula by inserting
Eq. (5) into Eq. (9):

Md (r; 0) = −Aε0u
k

exp
(
− r2

2σ2
0

)
×

(
nxm+1yn−1 +myn+1xm−1

)
, (10)

A = 1/(2σ2
0π)where  represents the normalized coefficient

 

u = 8 mm−m−n m

n

Fig. 2  Density  plots  of  normalized spectral  density  of  the
GHTPCBs  with  for  different  beam  orders 
and  at several propagation distances in free space.

 

u = −8 mm−m−n m

n

Fig. 3  Density  plots  of  normalized spectral  density  of  the
GHTPCBs with  for different beam orders 
and  at several propagation distances in free space.

FRONTIERS OF PHYSICS RESEARCH ARTICLE

52506-4   Hai-Yun Wang, et al., Front. Phys. 17(5), 52506 (2022)

 



of the CSD function. Therefore, the total average OAM
flux per photon is calculated by the following formula:

td =
ℏω

∫∞
−∞Md (r; 0) d2r

A
√
ε0/µ0

∫∞
−∞W (r, r; 0) d2r

= −ℏu2(m+n)/2−2σm+n
0 mnΓ

(m
2

)
Γ
(n
2

)
×

[
1− (−1)

n − (−1)
m
+ (−1)

m+n
]
/π, (11)

ℏ µ0

ω

m = n m+ n

where  is the reduced Planck constant,  is the perme-
ability in vacuum.  is the angular frequency of the light
beam. It indicates from Eq. (11) that if the beam order

 is  even  or  is  odd,  the  total  OAM  flux  is
zero. Owing to that the total OAM flux is conserved in
free-space propagation, hence it remains zero unchanged
at any propagation distance.

To evaluate the OAM flux density of  the GHTPCBs
propagation  through  free  space,  we  insert  Eqs.  (7)  and
(8) into Eq. (9), and make some partial differential oper-
ations.  The  expression  for  the  OAM  flux  density
becomes

Md (ρ; z) =
Aε0
λ2z2k

× Im
N∑
m

N∑
n

p (vmn)F
−1 [T ∗ (r1,vmn)] ρ

λz

×
{
ρxF

[
T (r2,vmn)

(
− iky2

z

)]
ρ
λz

−ρyF
[
T (r2,vmn)

(
− ikx2

z

)]
ρ
λz

}
(∆v)

2
,

(12)

with

T (r,vmn) = H0 (r,vmn) exp
(
ik
2z

r2
)
, (13)

F−1

p (v) H0 (r,v)

where  denotes the inverse Fourier transform. Based
on  Eqs.  (12)  and  (13),  the  OAM  flux  density  of  the
GHTPCBs on propagation can be numerically calculated
with the help of FFT. In fact, Eq. (12) is applicable to
calculate the OAM flux density of other kinds partially
coherent  beams  if  the  and  functions  are
known.

u = 8 mm−m−n u = −8 mm−m−n

u = 8 mm−m−n u = −8 mm−m−n

Md (r, 0) = −Md (r, 0)

m n

m = n = 1

m = n = 2

Md (x, y, z) =Md (y, x, z)

m = 1 n = 2 m = 1 n = 3

m = n = 3

Md (x, y, z) = −Md (−x, y, z)

Figures  4 and 5 show  the  OAM  flux  density  of  the
GHTPCBs  with  and  at
several  propagation  distances,  respectively.  The  other
beam  parameters  used  in  the  calculation  are  the  same
with those in Fig. 2. In the source plane, the OAM flux
density  between  and 
satisfies the relation , which also can
be  readily  obtained  from  Eq.  (10).  The  OAM  flux
density closely depends on the orders of the twist phase.
Hence  it  provides  one  a  way  to  control  the  OAM flux
density through adjusting  and . In the process of the
free-space  propagation,  it  can  be  seen  that  the  OAM
flux  density  shape  keeps  invariant  only  in  the  case  of

.  Other  orders  of  the  twist  phase  induce  the
changes of the OAM flux density on propagation. Some
special  patterns  are  formed  during  propagation.
Compared Fig.  4 to Fig.  5,  one  finds  that  when

,  the  OAM  flux  density  obeys  the  relation
 between  positive  and  negative

twist  factors.  Other  cases  for , ; , 
and ,  the  OAM flux  density  between  positive
and  negative  twist  factors  satisfies  the  relation

.  An  interesting  phenomenon

 

u = 8 mm−m−n m

n

Fig. 4  Density  plots  of  OAM  flux  density  of  the
GHTPCBs  with  for  different  beam  orders 
and  at several propagation distances in free space.

 

u = −8 mm−m−n m

n

Fig. 5  Density  plots  of  OAM  flux  density  of  the
GHTPCBs with  for different beam orders 
and  at several propagation distances in free space.
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m = n = 3in  the  case  of  is  that  the  OAM flux  density
evolves  into  a  windmill-like  shape  on  propagation,  and
the  sign  of  the  twist  factor  changes  the  orientation  of
each windmill leaf. 

4   Experimental generation and
propagation for GHTPCBs

m n Φmn (r) =

p1/2 (vmn)H0 (r,vmn)∆v

exp (iϕmn) ϕmn

0− 2π

Φmn (r)

In this section, we carry out the experimental generation
of  the  GHTPCBs  with  controllable  twist  phase  by
means  of  the  pseudo-mode  superposition  reported  in
Refs.  [25, 34].  As  we  discussed  in  Section  3,  the
GHTPCBs  can  be  represented  as  the  superposition  of
spatially  coherent,  but  mutually  uncorrelated  light
modes [see Eq. (7)]. In the source plane, the light modes
with  indices  and  take  the  form 

. In order to realize the incoherent
superposition  of  these  modes  in  practical  situation,  a
random  phase ,  where  is  in  the  range  of

 with  uniform  probability  distribution,  is  added
into  the  mode .  Therefore,  the  CSD  function
becomes

W (r1, r2) =
N∑
m1

N∑
n1

N∑
m2

N∑
n2

Φ∗
m1n1

(r1)Φm2n2 (r2)

× ⟨exp [−i (ϕm1n1 + ϕm2n2)]⟩

=
N∑
m

N∑
n

p (vmn)H
∗
0 (r1,vmn)H0 (r2,vmn) (∆v)

2
,

(14)

⟨exp [−i (ϕm1n1 + ϕm2n2)]⟩ = δm1m2δn1n2 δ

In  the  derivation  of  Eq.  (14),  the  relation
 is  applied,  where 

is the Kronecker symbol. Compared Eq. (14) to Eq. (7),
it was shown that the CSD function in this case has the
same  form  as  that  in  Eq.  (7).  In  the  experiment,  one
could encode the modes associated random phases, i.e.,

Pl (r) =
N∑
m

N∑
n

√
p (vmn)H0 (r,vmn) exp (iϕmn) ,

(l = 1, 2, 3, ..., L) , (15)

into a spatial light modulator.

λ = 632.8 nm

1920× 1080

8 μm× 8 μm

h (x, y) = exp [iψ (A,ϕ)] ψ

A ϕ

A ϕ

h (x, y)

ψ (A,ϕ) = f (A) sin (ϕ) f (A)

f (A)

J1 [f (A)] = 0.582A

L1 L2

15 cm
L1

CA2 L1

L = 1000

30× 30

The  experimental  setup  for  the  generation  of  the
GHTPCBs  is  illustrated  in Fig.  6.  A  linearly  polarized
laser  beam  ( )  generated  by  a  He-Ne  laser
first passes through a neutral-density filter (NDF) and a
beam expander (BE), then is reflected by a mirror (RM).
The  reflected  beam  passes  through  a  half-wave  plate
(HWP),  finally  arrives  at  a  phase-only  spatial  light
modulator  (SLM)  with  pixels  (HOLOEYE,
PLUTO-VIS-130,  pixel  size: )  after  reflected
by a beam splitter (BS). The SLM acts as a modulator
to  modulate  the  amplitude  and  phase  of  the  incident
beam  simultaneously.  The  method  for  the  synthesis  of
computer-generated  holograms  (CGHs)  loaded  on  the
SLM is described in [26, 35]. Here, we adopt the method
for synthesizing the CGH of type 3 described in Ref. [35].
The basic idea is as follows: we first write the phase-only
CGH as  the  form ,  where  is  the
function  of  the  prescribed  amplitude  and  phase .
Note  that  and  are  the  spatially  dependent.  The

 function  is  then  expanded  in  terms  of  Fourier
series  and  is  associated  with  the  phase  modulation

 with  being an unknown func-
tion. Finally, the function  is solved by the equation

.  Finally,  the  blazed  grating  is  added
onto  the  CGH  to  separate  the  desired  beam  and  the
other  diffraction  orders.  The  modulated  light  reflecting
from the SLM passes  through the  BS again,  entering a
4f optical system composed by lens  and  with both
focal  length  being .  The  polarizer  (P)  placed
between the BS and  is used to filter background noise
in  which  the  polarization  direction  does  not  coincide
with  that  of  the  modulated  beam.  A  circular  aperture
( ) is located in the real focal plane of  and is used
to  block  other  unwanted  diffraction  orders.  Only  the
first order is allowed to pass through. The imaging plane
of the 4f optical system is regarded as the source plane
of the generated beam. In the experiment, the number of
modes  is  chosen  to  be .  For  each  mode,  there
are  sub light modes which the selected manner is
described in Section 3.

|µ (r1, 0)|2

u = 8 mm−m−n

m n

σ0 = 0.5 mm α = 1 mm−2

Figure  7 presents  our  experimental  results  of  the
modulus  of  the  square  of  the  DOC  of
GHTPCBs with  for different beam orders

 and  in  the  source  plane.  The  beam  parameters
encoded into the CGHs are ,  and

 

CA1 CA2

L1 L2

Fig. 6  Experimental  setup  for  generating  GHTPCBs  via
pseudo-mode superposition.  NDF, neutral-density filter;  BE,
beam  expander; , ,  circular  apertures;  RM,  reflect
mirror;  HWP,  half-wave  plate;  BS,  beam  splitter;  SLM,
spatial light modulator; P, linear polarizer; , , thin lenses;
PC, personal computer; CCD, charge-coupled device.

 

|µ (r1, 0)|2

m n

Fig. 7  Experimental  results  of  square  of  the  DOC
 for GHTPCBs with different values of beam order

 and  in the source plane.
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β = 1 mm−2

m n

m n

r2 = 0

.  The  results  show  that  the  DOC  patterns
indeed closely depend on the parameter  and . As the

 and  increases, the coherence area increases when a
reference point is . The results are consistent with
the theoretical predictions shown in Fig. 1.

u = 8 mm−m−n

z L2

u = −8 mm−m−n

Figure  8 presents  the  experimental  results  of  the
normalized  spectral  density  for  the  generated  beams

 at different propagation distances.  In the
experiment, the CCD moves to the corresponding propa-
gation distances  after the lens , and records a series
of instantaneous intensity distributions. The normalized
spectral  density  is  then  averaged  over  the  recorded
intensity  distribution  for  post  data  processing.
Compared to the theoretical results shown in Fig. 2, one
finds  that  the  experimental  results  well  agree  with  the
theoretical results, except for slight speckle noise in the
experiment.  The  other  experimental  results  with

 are shown in Supplementary Information
S3,  and  they  are  all  accordance  with  the  theoretical
predictions in Fig. 3. 

5   Conclusion

x y

m

In conclusion, we extend the high-order twist phase to a
more  general  case,  and  the  GHTPCBs  are  devised  on
the  basis  of  the  non-negative  definiteness  of  the  CSD
function.  The  spectral  density  and  the  OAM  flux
density of the beams propagation in free space are studied
through numerical examples. Our results shows that the
orders  of  the  twist  phase  have  an  important  effect  on
the  evolution  of  the  spectral  density  and  OAM  flux
density. The beam will  focus self  along  direction or 
direction or both directions, depending on the indices 

n

m

n

m = 1 n = 2

m n

and  or the sign of the twist factor. Unlike the focusing
of  the  beam  by  means  of  the  Kerr  effect  in  nonlinear
medium,  this  self-focusing  is  a  linear  process  without
need of any medium. When the indexs  are not equal
to ,  the  spectral  densities  during  propagation  are  no
longer  Cartesian  symmetry.  Especially,  a  teardrop
pattern  is  formed  when  and .  In  addition,
OAM  flux  density  in  free-space  propagation  is  also
closely related to the indices  and . Through controlling
the  indices,  some  special  patterns  such  as  windmill-like
structure and fluid rotator structure will be formed. The
high-order twist phase and its orders provide a convenient
way  to  tailoring  the  spectral  density  and  OAM flux  in
light  beams.  Actually,  due  to  the  nonuniform  intensity
distribution of the GHTPCBs, that is, there exists intensity
gradient,  when the  gradient  force  is  much greater  than
the scattering force, particles can be stably captured at
the position of maximum light intensity, and under the
impetus  of  OAM,  particles  may  be  pushed  into  orbital
motion.  Furthermore,  we  report  an  experimental  setup
involving a phase-order SLM to generate the GHTPCBs
with  controllable  twist  phase.  The  spectral  density
during free-space propagation is measured in the experi-
ment.  It  is  shown  that  the  experimental  results  agree
well with the theoretical results. Our work may provide
positive suggestions and useful applications for nonlinear
optics due to the beam’s self-focusing ability, and particle
trapping based on its intensity and OAM property. 
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