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The human brain is themost complicated and fascinated system and exe-
cutes various important brain functions, but its underlyingmechanism is
a long-standing problem. In recent years, based on the progress of com-
plex network science, much attention has been paid to this problem and
many important results have been achieved, thus it is the time to make a
summary to help further studies. For this purpose, we here make a brief
but comprehensive review on those results from the aspect of brain net-
works, i.e., from the angle of synchronization and complex network. First,
webrieflydiscuss themain features of humanbrain and its cognitive func-
tions through synchronization. Then, we discuss how to construct both
the anatomical and functional brain networks, including the pathological
brain networks such as epilepsy and Alzheimer’s diseases. Next, we discuss the approaches of studying brain networks. After
that, we discuss the current progress of understanding the mechanisms of brain functions, including the aspects of chimera
state, remote synchronization, explosive synchronization, intelligence quotient, and remote propagation. Finally, we make a
brief discussion on the envision of future study.
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1 Brief introduction of the human brain and

its cognitive functions

It is well known that the human brain is the most compli-
cated and fascinated system and is usually considered as
a “black” box, thus its underlying mechanism has always
been the most interesting topic. Based on the develop-
ment of modern physical techniques such as the electroen-
cephalography (EEG), magnetoencephalography (MEG),
and functional magnetic resonance imaging (fMRI) tech-
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niques, this system is now becoming not so “black” any-
more. Especially, based on the progress of complex net-
work science, many significant results on brain networks
have been achieved. However, these achievements are only
a tip of the iceberg and more tasks await us. For example,
both the human brain and Internet are complex networks,
with the former being part of nature and the latter being
created by man, but they work very differently and each
one surpasses the other in certain types of information
processing. On the one hand, we can fast recognize the
face and the voice of a friend in an unordered crowd, but
the Internet cannot. On the other hand, a computer con-
nected to Internet can quickly find a relevant page on the
World Wide Web among millions of pages, but the hu-
man brain cannot. More examples can be found in the
aspects of consciousness and memory. In this sense, we
here make this brief review to help future studies, which is
only mainly focused on the results from the angle of syn-
chronization and complex network as the brain network is
basically a networked dynamical system.

General speaking, the human brain is thought to be
a distributed information processing device and has ob-
tained an increasing interest in recent years. We know
that the human brain looks like a walnut and its size is
about a pomelo. The weight of human brain is about 1.4
kilograms, i.e., 2% of human body, but consumes about
20% of the body’s energy. The surface of the cerebral cor-
tex is folded into many convolutions, resulting in a com-
plex anatomical configuration that has long been thought
to increase cortical surface area while conserving axonal
volume. The brain network consists of 1011 neurons con-
nected by 1015 synapses, with 80% excitatory neurons
(i.e., pyramidal cells) and 20% inhibitory neurons (i.e.,
interneurons). These neurons are heterogeneously dis-
tributed on the brain network and can be divided into
different communities, thus the human brain consists of
complicated neural circuits with multiple spatial scales [1].
That is, it is about ∼ 10 cm at the level of whole brain,
∼ 1 cm at the level of cortical areas, 100 µm – 1 mm
at the level of local network, 10 µm – 1 mm at the level
of neuron, 100 nm – 1 µm at the level of sub-cellular
compartments, and ∼ 10 nm at the level of channel, re-
ceptor, and intracellular protein. This topological feature
of multiple spatial scales is a key element of human brain
and is also the source of our strong ability on the aspects
of memory and cognitive functions. By this feature, the
brain network can generate multiple temporal scales of
the brain, such as the days-years of long-term memory,
seconds–minutes of short-term (working) memory, 100 ms
– 1 s of behavioral time scales/reaction times, ∼ 10 ms of
single neuron/synaptic time scales, ∼ 1 ms of action po-
tential duration/local propagation delays, and ≪ 1 ms of
channel opening/closing.

Another key feature of human brain is its self-organized
criticality (SOC) [2, 3]. In the state of SOC, cortical net-
works exhibit diverse patterns of activity, including oscil-
lations, synchrony, and waves etc., thus the dynamic be-

haviors can occur in various spatial and temporal scales,
which is the basis for us to study the dynamic response of
human brain network at different scales. This sate of SOC
also makes our brain system have super computing capa-
bility. On the other hand, plasticity is also one of the most
astonishing features of the brain and can be defined as the
ability to modify the structural and functional properties
of synapses [4, 5]. Among the postulated mechanisms of
synaptic plasticity, the activity-dependent Hebbian plas-
ticity constitutes the most fully developed and influential
model of how information is stored in neural circuits [6, 7].

Based on these features, the brain networks can be clas-
sified into two kinds of networks, i.e., the structural and
functional brain networks, where the former is relatively
well studied and the latter is still in progress. For the
structural network, it can be further divided into differ-
ent subnetworks, according to its feature of multiple spa-
tial scales. Roughly speaking, we may divide the brain
network into two levels. The first level is the two hemi-
spheres connected by corpus callosum. And the second
level is the nine cognitive subnetworks named as auditory
(Aud), visual (V), motor and somatosensory (MS), ventral
temporal association (VT), attention system (Att), medial
default mode (mDm), cingulo-opercular (CO), and fron-
toparietal (FP) systems, where each cognitive system is
defined by regions that coactivate in support of a gener-
alized class of cognitive functions [8].

For the functional network, it reflects the dynamic in-
teraction of functionally specialized but widely distributed
cortical regions and is obtained by the Pearson correlation
coefficients between the measured EEG time series [1].
There are strong evidences that synchronization of neu-
ral activity, both locally and between distant regions,
is a crucial code for functional interactions. To under-
stand how the different neuronal groups interact with each
other and how their communication is flexibly modulated
to bring about our cognitive dynamics, an assumption is
that neuronal communication is mechanistically subserved
by neuronal coherence [9]. In this sense, there will be a
strong correlation or synchronization among these coop-
erated neurons and make them form a synchronized net-
work, thus each brain function will correspond to a spe-
cific brain functional network. Many evidences have been
found for this relationship between synchronization and
brain functions. For example, long-range synchronization
of oscillatory signals has been suggested to mediate the
interactions within large-scale cortical networks [10]. In-
vasive recordings reveal task-specific synchronization be-
tween pairs of focal cortical sites [11]. EEG and MEG
measure synchronized signals across widely distant ex-
tracranial sensors [12]. Synchronous neural firing at the
gamma frequency might be the neural correlate of visual
awareness [13]. And the activity of slow waves in sleep
synchronizes cortical regions with high temporal precision
and can recruit multiple subcortical targets [14]. There-
fore, synchronous neural oscillations reveal much about
the origin and nature of cognitive processes such as mem-
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ory, attention and consciousness. Moreover, specific oscil-
lations have been identified with particular cognitive pro-
cesses: theta and gamma rhythms with memory encoding
and retrieval, alpha and gamma rhythms with attentional
suppression and focusing, and global synchronization at
the gamma frequency with consciousness, etc. [15]. There-
fore, most of fundamental cognitive processes are closely
related to the synchronous activity of neurons in the brain.

2 Basic concepts of complex networks

As pointed out above, a brain network consists of a huge
number of neurons (1011) and connections (1015), thus its
structure is very complicated and can be described at dif-
ferent levels [16]. At the fundamental level, local neurons
form microcircuits, often arranged in a modular architec-
ture. These different microcircuits will be connected each
other to form a global brain network. At the middle level,
a number of neurons (i.e., thousands or even more) will
be considered as a node and a fraction of all the nodes
will form a cognitive subnetwork. These different cog-
nitive subnetworks will execute different brain functions.
While at the global level, all the nodes will form a globally
connected network. Figure 1 shows a schematic figure of
brain network.

Obviously, Fig. 1 is a typical complex network, thus the
approaches of complex networks may be applied to study
brain networks. In fact, this is what we have done as the
first step to understand the brain network. So far, we have
known that the brain network is unique and has its own
characteristic features such as the community, rich club,
hub, and core. Figure 2 shows such a schematic figure.

Based on these characteristic features of Figs. 1 and
2, we can make further studies of brain network such as
the dynamics, relationship with brain functions, and even
pathological disorders. They are what we will gradually
introduced in the following sections. But here, as a prepa-
ration, we would like to briefly introduce some basic con-
cepts of complex networks to help us to roughly under-

Fig. 1 A schematic figure of brain network where the red
“circles” represent the network nodes and the solid lines rep-
resent the network connections. Reproduced from Ref. [16].

Fig. 2 Some characteristic features of brain network such
as the community, rich club, hub, and core. Reproduced from
Ref. [16].

stand the brain network.
Node degree: The degree of a node is the sum of its

incoming (afferent) and outgoing (efferent) connections.
The number of afferent and efferent connections is also
called the “in-degree” and “out-degree”, respectively.

Degree distribution: The degrees of all the network’s
nodes form a degree distribution. In random networks
all connections are equally probable, resulting in a Gaus-
sian and symmetrically centred degree distribution. Com-
plex networks generally have non-Gaussian degree distri-
butions, often with a long tail towards high degrees. The
degree distributions of scale-free networks follow a power
law.

Hub: A node with higher node degree or larger be-
tweenness centrality. Hubs play an important role in in-
formation integration in a network.

Path length: Path length is the minimum number of
edges that must be traversed to go from one node to an-
other. Random and complex networks have short mean
path lengths whereas regular lattices have long mean path
lengths.

Efficiency: Efficiency is inversely related to path
length but is numerically easier to use to estimate topo-
logical distances between elements of disconnected graphs.

Betweenness centrality: Betweenness centrality is a
measure of the extent to which a node acts as a bridge
that creates the shortest path between two other nodes.

Assortativity: Assortativity is the correlation be-
tween the degrees of connected nodes. Positive assorta-
tivity indicates that higher degree nodes tend to connect
to each other. While disassortativity or negative assor-
tativity indicates that higher degree nodes tend to lower
degree nodes.

Module: Each module contains several densely inter-
connected nodes, and there are relatively few connections
between nodes in different modules.

Community structure: The sub-global organization
of a complex network. Modularity is an example of com-
munity structure, but not all network communities are
simply modular.

Rich club: A rich club is of densely inter-connected
hubs that has a central role in generating globally efficient
information flow.

Robustness: The degree to which the topological
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properties of a network are resilient to “lesions” such as
the removal of nodes or edges.

Global efficiency: Global efficiency is the inverse of
average shortest path lengths over all pairs of nodes. This
measure reflects the capacity of global integration of a
network.

Adjacency matrix: An adjacency matrix is an N×N
matrix with entries aij = 1 if node j connects to node i,
and aij = 0 if there is no connection from node j to node
i.

Clustering coefficient: The clustering coefficient Ci

of a node i is calculated as the number of existing con-
nections between the node’s neighbors divided by all their
possible connections. The clustering coefficient ranges be-
tween 0 and 1 and is typically averaged over all nodes of
a network to yield the network’s clustering coefficient C.

3 Construction of the structural and functional

brain networks

The ultimate goal of human brain research is to under-
stand the neural basis of human behavior, so as to provide
theoretical basis for a profound understanding of human
intelligence, improving the efficiency of human brain, ac-
curate diagnosis and treatment of various neurological dis-
eases and mental diseases. For this goal, much attention
has been paid to the construction of the structural and
functional brain networks as they are the key elements to
study brain functions. In this section, we briefly discuss
how to detect or construct the structural and functional
brain networks. We first focus on the case of the structural
brain network.

For the brain network with 1011 neurons and 1015

synapses, it is very difficult to experimentally measure the
brain structure network at the level of neurons, thus an
available brain network has to be a simplified one. In this
sense, an alternative approach is to estimate the anatom-
ical connectivity by the technique of diffusion spectrum
imaging (DSI), which is the set of physical or structural
(synaptic) connections linking neuronal units at a given
time [17]. Anatomical connectivity data can range over
multiple spatial scales, from local circuits to large-scale
networks of inter-regional pathways, i.e., mesoscale maps
of anatomical brain connectivity. Anatomical connection
patterns are relatively static at shorter time scales (sec-
onds to minutes), but can be dynamic at longer time scales
(hours to days). The upper-left of Fig. 3(a) shows such
an example by DSI. We see that it is still very large and
complicated at the level of mesoscale, although it is much
simplified than the brain structure network at the level of
neurons.

A further simplification step is to divide the human
brain into different regions of interests (ROIs) and con-
sider each ROI as a network node [17]. In this framework
of network, each network edge represents the strength of
the connection between two brain regions, i.e., a weighted

connectivity. The lower part of Fig. 3(a) shows the re-
sulted network with 234 nodes. It is now a typical com-
plex network and can be conveniently used to study the
brain dynamics.

How to define these ROIs, i.e., brain parcellation, is
a key problem in the construction of brain network [18],
which depends on the spatial heterogeneity of brain orga-
nization or the multiple topographies at different scales.
A basic condition is that the constructed brain network
comprises multiple discontinuous but closely interacting
regions, which is fundamental for understanding brain or-
ganization and function. Moreover, a wealth of different
features should be considered, ranging from local prop-
erties of brain tissue to long-range connectivity patterns,
in addition to structural and functional markers. In fact,
brain cartography has a long history, over which different
properties of brain tissues have been progressively inte-
grated towards the now commonly accepted conceptual-
ization of brain areas as entities that show distinct connec-
tivity, microarchitecture, topography and function [19].
More specifically, properties of these features regularly
reveal zones of homogeneity and abrupt changes between
zones, such as the thickness of cortical layers, the size of
pyramidal cells or the extent of myelination. Two concep-
tually distinct approaches are the boundary mapping and
clustering or factorization, which are referred to as local
partitioning and global partitioning approaches, respec-
tively. In the boundary mapping approach, a border is
detected by localizing the most abrupt spatial changes in
the assessed feature using a local border detection tech-
nique. In clustering and factorization approaches, spa-
tial elements (voxels or vertices) are grouped on the basis
of their similarity and dissimilarity according to a given
marker. Clustering is used to group similar voxels or ver-
tices together and apart from different voxels or vertices,
whereas factorization organizes the data sets into dimen-
sions and components that best represent variations in the
data. Importantly, all methods have distinct advantages
and disadvantages, and thus the choice of approach should

Fig. 3 Schematic figure for the construction of the struc-
tural brain network. (a) The brain connectivity is obtained
by combining tractography estimates from diffusion spectrum
imaging data of a specific individual’s brain and a parcellation
of the brain into 234 regions. (b) The resulting anatomical
connectivity matrix where entries indicate the density of con-
nections between two brain regions. Reproduced from Ref. [17].
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depend on the data at hand, as well as the objective of the
parcellation.

Accordingly, the upper-right of Fig. 3(a) shows such a
parcellation. Combining the two parts of the upper-left
and upper-right of Fig. 3(a) gives the network of the lower
part of Figs. 3(a) and (b) shows the resulting anatomical
connectivity matrix where entries indicate the density of
connections between two ROIs. From Fig. 3(b) we see that
its structure is of the properties of small-world topology,
highly connected hubs and modularity.

As an example, we use the data of Refs. [18, 20] to con-
struct a brain network. In this data, the cerebral cortex
was divided into relatively uniform 998 ROIs with each
representing a network node, and the connections in all
possible pairs of 998 ROIs were measured noninvasively
by using DSI. In this way, a connection between two ROIs
was derived from the number of fibers found by the trac-
tography algorithm, which results in 17865 connections
and 9 isolated nodes without detected fibers due to res-
olution limitation of DSI. Furthermore, the cerebral cor-
tex can be parcellated into 66 functional regions [18, 20].
In this work, we remove the 9 isolated nodes, leaving
N = 989 nodes, with Nr = 496 nodes in the right hemi-
sphere and Nl = 493 nodes in the left hemisphere. The
number of cortical regions covered by these nodes is also
reduced to 64. The obtained 989× 989 connection matrix
is actually weighted, with the connection weights repre-
senting the fiber density between the connected nodes. To
clearly see the cortical regions, we put all the 989 nodes
on a circle and number them from one cortical area to
another one. We find that the 64 regions are equally dis-
tributed on the left and right hemispheres, i.e., 32 on the
left hemisphere and 32 on the right hemisphere. We label
the nodes in each region consecutively. Then, we put the
17865 links correspondingly into the circle [21]. In this
way, the links in the same cortical region, between differ-
ent regions, and between the left and right hemispheres
will not be overlapped, so that it is clear to see how the
cortical regions are connected. Figure 4 shows the topol-
ogy where the names of anatomical cortical regions are
labeled on the circle and the green, blue and red lines rep-
resent the links among the nodes within cortical regions,
between different regions, and between the left and right
hemispheres, respectively.

There has been more and more evidences that brain
networks, ranging from simple nets of interconnected neu-
rons up to macroscopic networks of brain areas, display
the typical features of complex systems: high cluster-
ing, short path lengths, skewed degree distributions, pres-
ence of hubs, assortative mixing and the presence of mod-
ules [22].

In contrast to the structure brain network, the func-
tional brain network is not static but time-dependent
(hundreds of milliseconds) and “model-free”. The concept
of functional connectivity refers to the statistical interde-
pendencies between physiological time series recorded in
various brain areas, and is thought to reflect communica-

Fig. 4 The network topology of the 64-region parcellation
for the network of cerebral cortex with 989 nodes and 17865
links, where the names of functional brain regions are put on
the circle and the green, blue and red lines represent the links
within cortical region, between different regions, and between
the left and right hemispheres, respectively. Reproduced from
Ref. [21].

tion between several brain areas [23]. MEG is a method
used to assess functional connectivity within the brain.
The functional connectivity between each pair of channels
represents a link whose weight reflects the strength of the
connectivity or correlation. Regardless of the modality of
recording activity (EEG, MEG, or fMRI), topological fea-
tures of functional brain networks are defined over long
periods of time, neglecting possible instantaneous time-
varying properties of the topologies. Thus, a functional
brain network is created by regarding each MEG channel
as a node, which may be based on reconstructed anatom-
ical ROIs. However, different methodologies of measuring
brain activity will generally result in different statistical
estimates of functional connectivity [24–27]. On the other
hand, it is increasingly evident that brain regions are con-
tinuously interacting even when the brain is “at rest” and,
more importantly, that the functional networks uncovered
from resting data closely match those derived from a wide
variety of different activation conditions.

In fact, attempts to track the functional connectivity
of the brain have a long history. The Dutch neurosci-
entist Barenne used strychnine-induced disinhibition to
track functional interactions in the macaque cerebral cor-
tex [22]. Many years later, Stephan et al. [28] collected
data from the literature to reconstruct the functional net-
work of primate cortex. However, it should be stressed
that this study was based on purely historical data, and
that the concept of functional connectivity was rather in-
direct since it was not based upon the direct observa-
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tion of correlated or synchronized electrical activity in dis-
tant neuronal populations. A more direct observation was
made by Bettencourt et al. [29] who looked at the spik-
ing activity of cultured neuronal cell assemblies. After
that, various techniques have been used to construct the
functional brain networks.

As an example, we follow Eguiluz et al. to show how
to extract functional networks and analyze them in the
context of the current understanding of complex net-
works [24]. Their approach is the following. For a given
task, at each time step, magnetic resonance brain activ-
ity is measured in 36 × 64 × 64 brain sites. The activity
of voxel x at time t is denoted as V (x, t). Two voxels are
defined as functionally connected if their temporal correla-
tion exceeds a positive predetermined value rc, regardless
of their anatomical connectivity. Then, the linear correla-
tion coefficient between any pair of voxels, x1 and x2, can
be calculated as

r(x1, x2) =
⟨V (x1, t)V (x2, t)⟩ − ⟨V (x1, t)⟩⟨V (x2, t)⟩

σ(V (x1))σ(V (x2))
,

(1)

where σ2(V (x)) = ⟨V (x, t)2⟩ − ⟨V (x, t)⟩2, and ⟨·⟩ repre-
sents temporal averages.

Figure 5 shows how underlying functional networks are
exposed during any given task. Top four images represent
snapshots of activity and the three traces correspond to
selected voxels from visual (V1), motor (M1) and posterio-
parietal (PP) cortices. The correlation matrix is calcu-
lated by Eq. (1) and then used to define the network
among the highest correlated nodes. A crucial issue is
the choice of threshold rc. Different thresholds will gener-
ate graphs of different sparsity or connection density, and
so network properties are often explored over a range of
plausible thresholds.

While differences in brain connectivity have long been
known to exist between diseased and healthy popula-
tions [17]. A hypothesis is that cognitive impairment
in most brain pathologies is linked to the impact of the
pathology on brain connectivity [30]. Besides the clas-
sical disconnection syndromes, almost all neurological or
psychiatric disorders may be regarded as network dyscon-
nections or deregulations. This is obvious for the diseases
classically regarded as localized or global network patholo-
gies such as epilepsy, autism spectrum disorders (ASD),
schizophrenia or Alzheimer’s disease (AD). For examples,
it was assumed that the cognitive dysfunction in AD could
be due, at least in part, to a functional disconnection be-
tween distant brain areas [31]. For a wide range of thresh-
olds, the characteristic path length L was significantly
longer in AD, whereas the cluster coefficient C showed
no significant changes. That is, AD is characterized by a
loss of small-world network characteristics. For the emer-
gence of epileptic discharges, Chavez et al. [32] analyzed
the connectivity structure of weighted brain networks ex-
tracted from spontaneous MEG signals of healthy subjects

and epileptic patients recorded at rest. They found that,
for the activities in the 5–14 Hz range, healthy brains ex-
hibit a sparse connectivity, whereas the brain networks of
patients display a rich connectivity with a clear modular
structure. Further, the no-task fMRI data showed that
people with schizophrenia tend to have a less strongly in-
tegrated, more diverse profile of brain functional connec-
tivity, associated with a less hub-dominated configuration
of complex brain functional networks [33]. Thus, these
studies have opened new avenues for disease analysis. On
brain imaging, the affected brain regions of Alzheimer’s
patients matched exactly the regions that make up the
default mode neural network [30]. Thus, AD may one day
be classified as a default mode neural network associated
disease.

The approach of Eq. (1) is a symmetrical measure and
can be generalized to asymmetrical measures of causal as-
sociation or effective connectivity [34]. Unlike functional
connectivity, effective connectivity is not “model-free”,
but requires the specification of a causal model including
structural parameters. Experimentally, effective connec-
tivity can be inferred through perturbations, or through
the observation of the temporal ordering of neural events.

Importantly, structural, functional and effective connec-
tivity are mutually interrelated [23]. Structural connectiv-
ity is a major constraint on the kinds of patterns of func-
tional or effective connectivity. Structural inputs and out-
puts of a given cortical region are major determinants of its
functional properties. Conversely, functional interactions
can contribute to the shaping of the underlying anatom-
ical substrate, either directly through activity-dependent
synaptic modification, or, over longer time scales, through
affecting an organism’s perceptual, cognitive or behavioral
capabilities, and thus its adaptation and survival.

4 Approaches of studying brain functions

Considering the fact that brain functions are based on
neural synchronization, its study has gone through two
stages in history: relationship between phase synchroniza-
tion and brain functions and the partial synchronization of
brain networks. In the first stage, the concepts of synchro-
nization are well studied and various models of cognitive
functions are proposed. Thus, the attention was mainly
concentrated on principles of synchronization in cognitive
processes such as the cognition and memory. While in
the second stage, the attention is transferred to how the
unique topology of real brain network influences its func-
tions. We firstly discuss the first stage.

In this stage, many concepts of synchronization have
been introduced such as complete synchronization, phase
synchronization, delay synchronization, and generalized
synchronization [35–37]. Among them, the phase syn-
chronization is evidenced to have close relationship with
brain functions and is thus a fundamental neural mecha-
nism [38]. In human brain, phase synchronization refers
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Fig. 5 Methodology used to extract functional networks from the signals. The correlation matrix is calculated and then used
to define the network among the highest correlated nodes. Top four images represent snapshots of activity and the three traces
correspond to selected voxels from visual (V1), motor (M1) and posterio-parietal (PP) cortices. Reproduced from Ref. [24].

to the synchronization of oscillatory phases between dif-
ferent brain regions. It supports neural communication
and neural plasticity and is probably relevant for many
cognitive processes. If synaptic connections between two
regions are strengthened, phase synchronization will be
more easily induced, and the two regions will be more
likely to communicate with each other.

Phase synchronization supports two general func-
tions, namely, neural communication and spike timing-
dependent plasticity, thus phase synchronization takes im-
portant role in memory processes. Several human scalp
EEG studies show that theta phase synchronization be-
tween the prefrontal cortex and the temporal lobe occurs
not only during encoding and retrieval [39], but persists
during the maintenance interval of working memory [40].
Interestingly, beta phase synchronization was accompa-
nied by increases in the power (that is, the square of the
EEG signal amplitude) of gamma oscillations in the visual
cortex and in gamma phase synchronization in the medial
temporal lobe [41].

In addition to phase synchronization of oscillations in
different brain regions, other synchronization mechanisms

facilitate the representation of multiple objects in mem-
ory. They include cross-frequency phase–amplitude cou-
pling and cross-frequency phase–phase coupling [42]. Sev-
eral studies suggest that phase–amplitude coupling sup-
ports multi-item working memory, for which it may be
necessary to separate the representations of individual ob-
jects [42]. Phase synchronization can also occur between
oscillations of different frequencies, an effect known as
“m :n phase synchronization” with m ̸= n. The com-
plementary mechanisms of phase–amplitude coupling and
m :n phase coupling are crucial for a non-interfering rep-
resentation of multiple objects in working memory.

Figure 6 shows an integrative view of memory-related
synchronization mechanisms [38]. It shows the schematic
flow of how all three synchronization mechanisms are re-
lated to both working memory and long-term memory
(and to the interaction between these memory processes).
From this figure we see that phase synchronization sup-
ports two general functions — namely, neural communi-
cation and spike timing-dependent plasticity. In addition,
phase synchronization probably supports object represen-
tation — for example, through feature binding. This func-
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Fig. 6 An integrative view of memory-related synchroniza-
tion mechanisms. In this schematic overview, dotted arrows
point to the functions that are supported by the different neu-
ral mechanisms. Thin black arrows indicate that functions
contribute to cognitive operations. Thick double-headed ar-
rows represent interactions between mechanisms, functions or
cognitive operations. Reproduced from Ref. [38].

tion also relies on neural communication (as indicated by
the double-headed arrow). Neural communication facili-
tates both working memory and long-term memory pro-
cesses, whereas spike timing-dependent plasticity specifi-
cally contributes to long-term memory.

In the second stage, our main task is to study the influ-
ence of network topology on synchronization and then to
understand the mechanism of mind from the angle of brain
networks. The brain is inherently a dynamic system, in
which the traffic between regions, during behavior or even
at rest, creates and reshapes continuously complex func-
tional networks of correlated dynamics. Concerning dy-
namics, the performance of cognitive tasks can be consid-
ered as the emergence of spatiotemporal patterns of brain
activity. Thus, understanding the dynamical patterns is a
key to understand the mechanism of brain functions. For
this purpose, a main assumption is that network structure
and nodes dynamics make variety of brain functions [43].
That is, we assume

Network structure+Nodes dynamics = Brain functions.

To illustrate this idea in details, Fig. 7 shows its schematic
diagram. We first extract the functional network from se-
quential fMRI signals. Then, we add a dynamic model
on each network node, representing the activities Ai(t) of
the cognitive modes. After that, we figure out the optimal
parameters in parenthesis by comparing the network out-
puts with the measured data of cognitive tasks. Finally,
we use the network dynamics to predict cognitions and
behaviors.

For such a brain network, a general way to study its dy-
namics is by letting each node be a neural oscillator such
as the FitzHugh–Nagumo neuron or Hindmarsh-Rose neu-
ron. However, this approach may be problematic as each
node represents in fact the collective behaviors of thou-
sands of neurons in an ROI, i.e., a mean-field. For an

isolated node with thousands of neurons, we may expect
two kinds of behaviors, i.e., high or low firing rates. For
the former, the total input coupling to each neuron in a
ROI is sufficiently high to fire, thus making the neurons of
ROI insensitive to further input from other nodes. Conse-
quently, the node may keep its state of high firing rate for
a finite time. We call this state activation. While for the
latter, the total input of each neuron in a ROI is insuffi-
cient to reach the threshold of firing, thus it is possible for
the neurons of ROI to receive input from other nodes. We
call this state inactivation. Thus, for two connected nodes
in brain network, their interaction can be approximately
classified into three cases: (i) There is no interaction be-
tween them when both nodes are in the state of inactiva-
tion. (ii) There is a firing transmission from the activated
one to the inactivated one when one node is in the state
of activation while the other is in the state of inactivation.
The firing of inactivated node depends on the total input
received from all its neighbors. (iii) The interaction will
be small and can be ignored when both nodes are in the
state of activation.

In mean-field, the dynamics of each node on the brain
network can be modeled by nonlinear Wilson–Cowan os-
cillators (WCOs). The WCO is a biologically motivated
model of local brain activity, developed to describe the
mean behavior of small neuronal populations [44]. The
model therefore simulates regional brain dynamics. In
this biologically motivated model of neuronal populations,
the fraction of excitatory and inhibitory neurons active at
time t in the i-th brain region are denoted by Ei(t) and
Ii(t), respectively, and their temporal dynamics are given
by [17]

τ
dEi

dt = −Ei(t) + (SEm − Ei(t))SE(c1Ei(t)− c2Ii(t)

+c5
∑
j

AijEj(t− τ ijd ) + Pi(t)) + σwi(t),

τ
dIi
dt = −Ii(t) + (SIm − Ii(t))SI(c3Ei(t)− c4Ii(t)

+c6
∑
j

AijIj(t− τ ijd )) + σvi(t), (2)

where

SE,I(x) =
1

1 + e−aE,I(x−θE,I)
− 1

1 + eaE,IθE,I
, (3)

Aij is an element of the subject-specific coupling matrix,
A, whose value is the connection strength between brain
regions i and j as determined from DSI data. The global
strength of coupling between brain regions is tuned by
excitatory and inhibitory coupling parameters c5 and c6
respectively. They are fixed as c6 = c5/4, representing
the approximate ratio of excitatory to inhibitory coupling.
Pi(t) represents the external inputs to excitatory state ac-
tivity and is used to perform computational stimulation
experiments. The parameter τ ijd represents the communi-
cation delay between the regions i and j. If the spatial
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Fig. 7 Brain imaging to a low-dimensional model of cognition and behavior. Characterizing and predicting cognitive processes
as measured with modern imaging techniques require the inclusion of temporal sequencing in the description of brain networks
and their conceptualization as nonlinear dynamical systems. The bidirectional interaction among experimental and theoretical
approaches will lead to a better understanding of the dynamics of cognitive processes. Top feedback arrow represents the
influence of cognitive processes, such as learning and attention focusing, on the functional brain networks architecture. The
dynamical model is represented in the general form of coupled kinetic equations for the activities Ai(t) of the cognitive modes. In
this representation, function F characterizes the competition of the modes that can depend on internal and external conditions
represented by the parameters in parentheses. Reproduced from Ref. [43].

distance between the regions i and j is dij , τ ijd = dij/τd,
where τd = 10 m/s is the signal transmission velocity. Ad-
ditive noise is input to the system through the parameters
wi(t) and vi(t) which are derived from a normal distribu-
tion and σ = 10−5. Other constants in the model are bi-
ologically derived: c1 = 16, c2 = 12, c3 = 15, c4 = 3, aE =
1.3, aI = 2, θE = 4, θI = 3.7, τ = 8 as described in refer-
ences [44, 45].

An important feature of the Wilson–Cowan oscillator
is that an uncoupled oscillator can exhibit one of three
states, depending upon the amount of external current
applied to the system [45]. When no external current is
applied (P = 0), the system relaxes to a low fixed point,
see Figs. 8(a) and (b). For moderate amounts of applied
current, the oscillator is pushed into an oscillatory limit
cycle, and if sufficiently high amounts of current are ap-
plied, the system settles at a high fixed point.

An equivalent model is the neural mass model [46, 47],
which describes the mean field activity of a neuronal pop-
ulation. This low-dimensional model with biological plau-
sible interactions between excitatory and inhibitory neu-
ral populations can generate oscillations in the alpha band
(∼ 10 Hz) and is used to represent resting brain states [48].
There are now increasing evidences to show that the local
circuits in the cortical regions are not identical [49], but
display heterogeneity in neuronal density and spine den-
sity, etc. However, modeling the regions with simplified
assumption of identical neural mass oscillators allow us
to focus on the effect of underlying network architecture

on the dynamical patterns. The dynamical equations of
identical neural mass oscillators coupled by the underlying
cortical network read as
v̈pI = Aaf(veI − viI)− 2av̇pI − a2vpI ,

v̈iI = BbC4f(C3v
p
I )− 2bv̇iI − b2viI ,

v̈eI = Aa[C2f(C1v
p
I ) + pI

+
c

λI

N∑
J=1

MIJf(v
e
J(t−τ)−veI)]−2av̇eI−a2veI , (4)

where I = 1, · · · , N , vpI , v
i
I and veI are the post-synaptic

membrane potentials for three subpopulations (pyrami-
dal, inhibitory and excitatory) of the node-I, respectively.
The sigmoid function f(v) converts the average membrane
potential into an average pulse density of action poten-
tials, which propagate among subpopulations within each
node and between nodes through synaptic coupling. The
parameters A and B represent the average synaptic gains,
1/a and 1/b are the average dendritic-membrane time con-
stants. C1 and C2, C3 and C4 are the average number of
synaptic contacts among the subpopulations. MIJ is the
coupling matrix with the real connection weights from the
data of Refs. [18, 20]. The coupling strength c is nor-
malized by the mean intensity λI across the nodes, where
λI =

∑N
J MIJ is the total input weight to node-I. τ is the

time-delay for interregional signal transmission, assumed
to be common for different links.

In numerical simulations, both the coupling matrix Aij
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Fig. 8 Nonlinear brain dynamics and variability. (a) Exci-
tatory–inhibitory phase space plots depicting behavior for a
single Wilson–Cowan oscillator in the presence of no external
current input (left; P = 0; low-fixed point), moderate exter-
nal current input (middle; P = 1.25; limit cycle), and high
external current input (right; P = 2.5; high fixed point). All
simulations are started with initial conditions E = 0.1, I = 0.1
and nullclines are plotted in green. (b) The corresponding fir-
ing activities of the excitatory population plotted as a function
of time for the simulations depicted in (a). Reproduced from
Ref. [45].

of Eq. (2) and MIJ of Eq. (4) can be chosen from the
resting-state. Recent evidence suggests that resting-state
functional network reflects the human brain’s invariant
global routing architecture. Supporting this, it has been
demonstrated that most of the functional network topol-
ogy variance present during task performance (80%) is al-
ready present during rest. Thus, resting-state functional
connectivity primarily reflects an intrinsic functional net-
work architecture that is present regardless of cognitive
context, given that there are only moderate changes to
functional network organization across tasks [50].

5 Current progress in the mechanisms of brain

functions

Experiments have shown that cortical networks exhibit
diverse patterns of activity, such as oscillations, synchrony,
and waves. During neuronal activity, each neuron can
receive inputs by thousands of other neurons and, when it
reaches a threshold, redistributes this integrated activity
back to the neuronal network. So far, how to scientifically
analyze the massive and high-dimensional brain data has
become a new challenge for researchers. In recent years,
complex network analysis has been successfully applied
to the study of brain science and formed a new branch
of brain science, i.e., brain connectome, which has now
become one of the most active research fields.

Up to now, the studying of brain network has discov-

ered a variety of important mechanisms of brain functions
such as the small world effect, community topology, and
hierarchical and rich-club connectivity. However, there
are still many important open problems which are waiting
for us to solve. For simplicity, we here classify them into
three aspects: (i) The first aspect is how the consciousness
emerges from a population of neurons. This problem has
been studied for a long time and a general idea is the emer-
gence of synchronization. Currently, its study is focused
on partial synchronization such as the chimera states and
spatiotemporal chimera states. The derived problem is
the continuous and discontinuous phase synchronization,
i.e., the first and second phase synchronization. The un-
clear problem is the switching between the first and second
phase synchronization and their coexistence, etc. (ii) The
second aspect is about the functional integration and seg-
regation. It is well known that the organization of the
human brain is governed by two fundamental principles:
functional integration into large-scale networks, which is
realized through long-range connections, and functional
segregation into distinct regions, which is realized through
local differentiation. Importantly, these two principles are
not mutually exclusive but rather jointly form the neuro-
biological basis of all higher brain functions that arise from
interactions between specialized regions. The question is
how to implement the functional integration and segrega-
tion in brain networks by dynamical models. In this way,
we may understand the mechanism of the unification of
the two principles. Currently, its study is focused on clus-
tering synchronization [51]. The untouched problem is
the topic of multiple stimulated signals and the mutual
influence between the activated subnetworks of cognitive
function and the inactivated subnetworks of background.
(iii) The third aspect is how the functional network comes
from the structural network. As pointed out in Section 3,
the functional brain network is distinct from the struc-
tural brain network but generated from it. A general ap-
proach to measure the functional brain network is through
the Pearson correlation coefficient of measured time series.
But this approach does not tell us where the correlation
comes from. To figure out the answer, its current study is
focused on the research directions of remote synchroniza-
tion and remote propagation. They are hopeful directions
but still long way to go.

In sum, it will be not easy to figure out all the answers
for these three aspects, even part of them. Fortunately,
some progresses have been achieved so far, with the help
of complex network analysis. We here make a brief dis-
cussion on these achievements as follows.

5.1 Chimera states in brain networks

A paradigmatic example to study the mechanisms of
brain functions is the effect of unihemispheric sleep, which
has been observed in some birds and aquatic mammals
(Cetaceans, eared seals and manatees) and in numerous
lizards, turtles and tortoises, and caiman. In unihemi-
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Fig. 9 EEG recorded from the parieto-occipital cortex (a)
of a bottlenose dolphin during unihemispheric slow-wave sleep
with either the left (b) or right (c) hemisphere asleep. Note
the high-amplitude, low-frequency EEG activity in the sleep-
ing hemisphere and the low-amplitude, high-frequency EEG
activity in the awake hemisphere. Reproduced from Ref. [54].

spheric sleep, brain activity measured by EEG shows a
pattern characteristic of sleep in one hemisphere, while the
other hemisphere shows brain waves more closely resem-
bling wake related activity, i.e., with one cerebral hemi-
sphere sleeps while the other remains awake [52]. It was
even interestingly reported that ducks arranged in a row
sleep largely bihemispherically when safely flanked by oth-
ers, yet switch to sleeping unihemispherically when on the
edge of the group, and orient their open eye away from
the others as if watching for potential threats [53]. To
see it more details, Fig. 9 shows the time series of such
an example, where (a) represents the positions of elec-
trodes, and (b) and (c) show the EEG recorded from the
parieto-occipital cortex of a bottlenose dolphin during uni-
hemispheric for slow-wave sleep with either the left (b) or
right (c) hemisphere asleep [54]. Obviously, in either (b)
or (c), the time series of electrodes 1−3 are different from
that of electrodes 4−6, marking the unihemispheric sleep.
Moreover, the difference between (b) and (c) manifests the
switching of sleep between the two hemispheres.

It was assumed that the reason for unihemispheric sleep
is to mitigate the fundamental conflict between sleep and
wakefulness as reduced vigilance is the conspicuous cost
of sleep in most animals. According to this assumption,
our human being should also have unihemispheric sleep
when we are in an unsafe night. However, this scenario
had not been confirmed until 2006 that Tamaki et al. [55]
found that when humans sleep in a novel environment,
the default-mode network in one hemisphere is kept more
vigilant to wake the sleeper up as a night watch upon
detection of deviant stimuli, which is called the first-night
effect (FNE) in human sleep.

To study the physics mechanism of unihemispheric
sleep, Abrams and Strogatz [56] presented a coupled os-
cillators model to implement the coexistence of one com-
pletely synchronized part and another completely desyn-
chronized part in 2004 and named it as chimera state. The
difficulty of this coexistence is that all the coupled oscil-
lators are identical and their stable attractor is the syn-

chronization solution, thus the state of coexistence is un-
stable and is generally unobservable. After that, numer-
ous efforts have been paid to this topic, such as the neu-
ron systems, experimental systems, and multiple chimera
states, see reviews [57–60] for details. However, most of
these works are only focused on the mechanisms or con-
ditions of chimera states but have no direct relationship
with real brain networks. Moreover, a few works have dis-
cussed the alternating activity patterns between the hemi-
spheres over time [61], i.e., the switching phenomenon of
Fig. 9, and extension to complex networks [62]. Recently,
some attention has been paid to the case of real brain net-
works [63, 64]. We here discuss three of these works that
are closely related to the real brain networks.

The first one is contributed by Bansal et al. [8] in 2019.
This work considered an empirical brain network consist-
ing of 76 brain regions (or nodes) and paid attention to
how brain structure influences the dynamical patterns pro-
duced by stimulation. They divided this network into
nine cognitive systems by using personalized brain net-
work models, where each of them consists of the coacti-
vated regions for supporting a generalized class of cog-
nitive functions. Then, they presented a chimera-based,
cognitively informed framework to study how large-scale
brain structure influences brain dynamics and functions.
They found that all nine systems produce chimera states
due to stimulations and named them cognitive chimera
states.

The second one is contributed by Kang et al. [65]
in 2019. They considered the empirical brain network
of Fig. 4 with 989 nodes and considered it as a two-
layered network with the left and right hemispheres of
cerebral cortex being different layers, respectively. In this
model, the intra-coupling strength λin and inter-coupling
strength λout are considered to be different. They found
that the model can reproduce a variety of different dy-
namical behaviors, including the phenomenon of unihemi-
spheric sleep. Figure 10 shows the results for four typical
cases where ωr

i and ωl
i are the effective frequencies of the

oscillator i in the right and left hemispheres, respectively,
and the insets are their corresponding dynamics, i.e., ur

i

and ul
i, respectively. From Fig. 10 we see that (a, e) rep-

resent the case of disorder in both hemispheres; (b, f) the
case of chimera state in both hemispheres; (c, g) the case
of disorder in the right hemisphere but synchronization in
the left hemisphere, indicating the case of unihemispheric
sleep; and (d, h) the case of synchronization in both hemi-
spheres. In sum, the first case of Figs. 10(a) and (e) and
the last case of Figs. 10(d) and (h) denote the two extreme
states of desynchronized and synchronized states, respec-
tively. The second case of Figs. 10(b) and (f) represents
a chimera state where there is a plateau of ωi in both the
up and down panels and their insets show a coexistence
of synchronized and unsynchronized ui(t). The most in-
teresting is the third case of Figs. 10(c) and (g) where the
right hemisphere is disordered but the left hemisphere is
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Fig. 10 Four typical dynamical states in the two-layered brain network model where the upper panels represent the right
hemisphere and down panels the left hemisphere. The inset in each panel is a snapshot of ui at time t. (a) and (e) represent
the case of disorder with λin = 0.1 and λout = 0.3; (b) and (f) the case of chimera state with λin = 0.1 and λout = 1.8; (c) and
(g) the case of unihemispheric sleep with λin = 0.4 and λout = 3.5; and (d) and (h) the case of synchronization with λin = 4.0
and λout = 3.5. Reproduced from Ref. [65].

synchronized, marking the unihemispheric sleep.
The third one is contributed by Huo et al. [66] in 2021.

They also considered the empirical brain network of Fig. 4
with 989 nodes but focus on how to produce the diversity
of patterns. More precisely, they let each node be rep-
resented by the mean-field mass model of Eq. (4). Ex-
cept the collective behaviors of global network, Huo et al.
also considered the local behaviors of brain network. As
pointed out in Fig. 4, this brain network can be parcel-
lated into 64 functional regions and each one contains Nj

nodes, with
∑64

j=1 Nj = 989 = N . To quantify and distin-
guish the patterns, an order parameter R can be adopted
as follows:

Reiϕ =
1

Nj

Nj∑
k=1

eiθk , (5)

where R characterizes phase coherence, ϕ the average
phase, θ the phase of oscillator, and Nj the number of
coupled oscillators to be examined.

By calculating the order parameter R for each of the 64
functional regions, it is revealed that the dynamics of each
region typically consists of the coexistence of coherent and
incoherent groups of oscillators, suggesting that chimera
state also appears at the local level of functional regions.
Thus, chimera state in brain network can be observed on
both the global and local levels, which is called spatial
multi-scaled chimera states [66]. Let the physical position
of each functional region be the average of the positions of
all its Nj nodes on the cerebral cortex. Figure 11(a) shows
the position distribution of these 64 functional regions in
human brain network where the numbers are the index

of these regions and their functional names are given in
Fig. 4. The original 989 nodes of Fig. 4 are remained as the
gray background of Fig. 11(a), for visualization effect. For
a set of specific parameters with a small R at the global
level, the different colors of points in Fig. 11(a) show the
values of R in the 64 functional regions. We see that the
degree of synchronization differs across cortical regions in
the whole brain. To confirm the feature of chimera state in
local level, Figs. 11(b)–(d) shows the snapshots of those

Fig. 11 Spatial multi-scaled chimera states. (a) Local rep-
resentation of R, where the color points with numbers repre-
sent the network of the 64 local regions and the gray back-
ground points represent the network of 989 nodes. The func-
tional names of these 64 local regions are given in Fig. 4. (b–
d) show three arbitrary snapshots for the oscillators within the
cortical region 38 from (a), respectively, where the blue oscil-
lators on the dotted lines represent the synchronized cluster
which is stable. Reproduced from Ref. [66].
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oscillators within the cortical region 38 from Fig. 11(a)
for three arbitrary moments, respectively. We see that
the oscillators on the dotted lines represent the synchro-
nized clusters and others unsynchronized, confirming the
coexistence of stable synchronized cluster with incoherent
oscillators, i.e., a chimera state within the region 38.

Ref. [66] pointed out that these patterns of spatial
multi-scaled chimera states can be activated and recruited
under different parameters to form diverse combinations
of coherent-incoherent states. These results may help to
explain the multiple brain rhythms observed in experi-
ments.

5.2 Remote synchronization in brain networks

Except the chimera state, another hot topic of synchro-
nization in brain network is the remote synchronization,
which is characterized by the synchronization of pairs of
nodes that are not directly connected via a physical link or
any sequence of synchronized nodes. Remote synchroniza-
tion was firstly revealed as a zero time lag synchronization
among remote cerebral cortical areas by multielectrode
recordings [67]. As the axonal conduction delays among
distant regions can amount to several tens of milliseconds,
the zero time lag synchrony among such distant neuronal
ensembles must be established by mechanisms that are
able to compensate for the delays involved in the neuronal
communication. Its biological significance derives from
the observation that such precise and coordinated spike
timing correlates with perception and behavioral perfor-
mance [27, 68, 69].

Remote synchronization is closely related to functional
connectivity of distant cortical regions where functional
correlations have also been observed between cortical re-
gions without apparent neural links [70]. To understand
the mechanisms generating functional connectivity be-
tween distant cortical regions, it has been suggested that
indirect connections and collective effects governed by the
network properties of the cortex play a significant role.
Vuksanovic and Hovel [70] showed that remote synchrony
between pairs of nodes clearly arises from symmetry in
the interactions, which are quantified by the number of
shared neighbors. A larger joint neighborhood positively
correlates with a higher level of synchrony, i.e., a large
overlapping neighborhood in complex networks of brain
interactions gives rise to functional similarity between dis-
tant cortical regions. This symmetry can be defined by the
size of shared neighborhoods of the synchronized nodes.

In contrast to the approach of symmetry, Bergner
et al. [71] presented an alternative approach for remote
synchronization. They studied phase synchronization in
a network motif with a starlike structure in which the
central node’s (the hub’s) frequency is strongly detuned
against the other peripheral nodes. For example, for a
star motif with one hub and four peripheral nodes, the
frequencies can be chosen as ω1 = 2.5 for the hub node
and {ωn}5n=2 = {0.975, 0.992, 1.008, 1.025} for the periph-

eral nodes, i.e., the frequency of the hub node is larger
than two times of that of the peripheral nodes. They in-
terestingly found that the peripheral nodes form a phase
synchronized cluster, while the hub remains free with its
own dynamics and serves just as a transmitter for the
other nodes. That is, remote synchronization is induced
by a transmitter.

However, the intrinsic frequencies of neurons in a spe-
cific cognitive subnetwork generally do not have so large
difference and thus it is better to consider them as approx-
imately identical oscillators. Then, an interesting question
arises: whether it is possible to observe remote synchro-
nization in the systems of identical oscillators. To answer
this question, Kang et al. [72] considered the case of iden-
tical oscillators but did not observe the remote synchro-
nization. Fortunately, they found that remote synchro-
nization can be still observed, provided that a time delay
is considered. This condition is reasonable as the axonal
conduction delays in cerebral cortex can amount to several
tens of milliseconds [67]. Kang et al. also considered the
empirical brain network of Fig. 4 with 989 nodes and let
the node dynamics be equipped with the Stuart–Landau
oscillator as follows:

u̇j = (α+ iω−|uj |2)uj+ε
N∑

k=1

Wjk(uk(t−τ)−uj(t)), (6)

where i =
√
−1, j = 1, 2, · · · , N = 989, Wjk denotes the

weighted connection matrix from [18, 20].
√
α and ω are,

respectively, the amplitude and natural frequency of os-
cillator i when uncoupled. ε is the coupling strength, and
τ is the time delay.

To conveniently study the patterns of remote synchro-
nization in the empirical brain network, Kang et al. [72]
extracted both the hub nodes and all their synchronized
leaf nodes but ignored the unsynchronized leaf nodes. In
this way, they found many star motifs with remote syn-
chronization in the empirical brain network. Figure 12

Fig. 12 Six typical patterns of remote synchronization for
τ = 0.5 and ε = 0.1. Each pattern is chosen by the conditions:
(i) there is no synchronization between the hub and its periph-
eral nodes; and (ii) all the peripheral nodes are synchronized
each other. Reproduced from Ref. [72].
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shows six typical patterns of remote synchronization for
τ = 0.5 and ε = 0.1. Similar patterns of remote synchro-
nization can be also found for other sets of parameters τ
and ε in the empirical brain network. From Fig. 12 it is
clear that each of the patterns in the second and third
columns has two or more hub nodes, in contrast to the
patterns with only one hub node in the first column. This
finding may be significant as it is distinguished from the
paradigmatic pattern of remote synchronization with only
one hub node in previous studies.

A common feature for the patterns in the second and
third columns of Fig. 12 is that two hub nodes are con-
nected by some common leaf nodes. To understand the
mechanism of these patterns of remote synchronization
with two or more hub nodes, Kang et al. [72] presented
a new framework of remote synchronization as shown in
Fig. 13, where the nodes with red, blue and pink num-
bers represent the hub, leaf and common leaf nodes, re-
spectively. They found that with the increase of coupling
strength ε, the two leaf clusters of the hub nodes “1” and
“2” will first self-synchronize at εc1, respectively, but do
not synchronized each other, and then the two synchro-
nized leaf clusters will gradually merge into a larger syn-
chronized one at ε ≈ εc2 [72]. In this process, the com-
mon leaf nodes “8” and “9” do take a key role for remote
synchronization in the framework of Fig. 13. This result
shows a new way for remote synchronization to appear in
different local places of cerebral cortex and thus may be
helpful to understand the functional connectivity of dis-
tant cortical regions.

5.3 Explosive synchronization in brain networks

Another approach to understand brain functions is
through pathological disorders such as the epileptic
seizure. In general, epilepsy has four phases: the inter-
ictal period, the onset of the seizure, and the propagation
and termination phases. It is found that the coupling
between brain areas during seizures changes with time,
increasing or decreasing at the seizure onset in different
cases [73]. Both the onset and termination processes are

Fig. 13 A schematic figure of the new framework of remote
synchronization with two hubs, where the nodes with red, blue
and pink numbers represent the hub, leaf and common leaf
nodes, respectively. Reproduced from Ref. [72].

Fig. 14 Definition of the time-frequency (TF) representa-
tion of a seizure recorded in the Hip from a patient with mesial
TLE (Temporal lobe epilepsy). TF is used to reveal the high-
frequency activity at the seizure onset (red arrow) and the end
of rhythmic ictal activity (yellow arrow) recorded here in the
Hip. The period SO (seizure onset) includes 5 s before and 5 s
after the onset of high-frequency activity. The period ES (end
of seizure) is defined as the last 10 s of the seizure. Period MS
(middle of seizure) is the junction between these two periods.
Reproduced from Ref. [74].

very fast, indicating a jumping phase transition at critical
coupling. Fig. 14 shows such as an example of temporal
lobe epilepsy [74]. It is clear that both the SO (seizure
onset) and ES (end of seizure) are suddenly happened.

Figure 14 reveals that during the seizure, synchroniza-
tion is significantly higher than that of the background
period, indicating a jumping transition called as explosive
synchronization. Wang et al. [75] analyzed intracranial
electroencephalography (IEEG) recordings of a seizure
episode from a epilepsy patient and uncovered that ex-
plosive synchronization-like transition occurs around the
clinically defined onset of seizure. This phenomenon re-
cently got much attention in the field of complex networks
and many different models have been presented to describe
its mechanisms [76–83]. A characteristic feature of ex-
plosive synchronization is that its forward and backward
processes are different and thus form a hysteresis loop.
Therefore, two key elements of explosive synchronization
are the jumping transition and hysteresis loop.

On the other hand, the explosive synchronization with a
hysteresis loop has also been observed in the brain during
anesthetic state transitions [84–86]. Anesthetics is very
popular for humans by which an annual 234 million sur-
gical procedures are performed worldwide. During the
process of anesthetics, a patient will undergo two stages,
i.e., gradually become unconscious and then re-establish
consciousness upon emergence from anesthesia. One com-
mon belief is that emergence from anesthesia is the in-
verse process of induction. However, these two stages are
of significant difference and thus make the inhaled general
anesthetics offer the opportunity to study the molecular
and neuroanatomical pathways essential for the aroused,
conscious state as well as the orderly transition to and
from the unconscious state. These two stages may have
the same mechanism with the alternating activity between
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states of conscious wakefulness and the unconsciousness
associated with natural sleep. As with wake and sleep,
consciousness and anesthetic-induced unconsciousness are
bistable, as subjects exist in only one of the mutually ex-
clusive states at a time.

Experimentally, Friedman et al. [85, 86] studied
anesthetic-induced unconsciousness and wakefulness in
both mice and fruit flies and found that different concen-
trations of anesthetics are required for induction of and
emergence from general anesthesia. Take the mice as an
example. By definition, anesthetic induction in mice oc-
curs at the drug concentration at which the righting reflex
is lost, whereas emergence occurs at the concentration at
which the righting reflex returns. Figure 15 shows the
results of wild-type mice exposed to volatile anesthetics
where (a) and (b) represent the cases of halothane dose-
response and isoflurane dose-response, respectively. We
see that both (a) and (b) exhibit hysteresis between in-
duction and emergence but there is a jumping transition
in (a) but no jumping transition in (b). A more com-
prehensive description is shown graphically by the shaded
area bracketed between the solid induction and dashed
emergence curves.

Instead of the case of animals, Kim et al. [87] stud-
ied the case of humans and focused on the functional
and topological conditions for explosive synchronization
developed in human brain networks with the onset of
anesthetic-induced unconsciousness. For human beings,
the mechanisms of the emergence from unconsciousness
in sleep, anesthesia, and coma are still elusive, although
they share a number of neural features but the recov-
ery profiles are radically different. Thus, the studying
of anesthetic-induced unconsciousness is also a good win-
dow for understanding the mechanism of brain functions.
During anesthetics, diverse anesthetics reduce network
communication and the capacity of information integra-
tion, which is thought to be necessary for consciousness.
In the experiment, Kim et al. [87] constructed the func-
tional brain networks from multi-channel EEG recordings

in seven healthy subjects across conscious, unconscious,
and recovery states. They demonstrated for the first time
that the network conditions for explosive synchronization,
formerly shown in generic networks only, are present in
empirically-derived functional brain networks.

Kim et al. [87] used the inhaled anesthetic sevoflurane
to gradually modulate the level of consciousness across
multiple states: eyes-closed waking, unconsciousness, re-
covery, and the transitions between. They found that
slow titration of the inhaled anesthetic sevoflurane results
in a dose-dependent reconfiguration of network topology
and dynamics. Figure 16 shows the results for two vol-
unteers whose recovery trajectories represent gradual and
abrupt state transitions to responsiveness, respectively.
Figure 16(a) shows the case of slow loss and recovery of re-
sponsiveness. In order to show a trend of temporal change,
the responsiveness was smoothed by averaging 5 min long
time window and moving it 30 s. It took about 40 min for
the subject in Fig. 16(a) to reach the point of 0% respon-
siveness (from 20 to 60 min in Fig. 16(a), black line), and
25 min to recover back to 100% responsiveness (from 65

to 90 min). While Fig. 16(b) shows fast loss and recovery
of responsiveness. The participant first lost responsive-
ness around 10 min in Fig. 16(b); the time taken for loss
and recovery of 100% responsiveness were about 5 min.
Correlating this with a change of network properties, the
two subjects demonstrated dramatically distinct patterns
of suppression strength S, which represents a suppres-
sive anesthetic effect on local synchronization [87]. That
is, Fig. 16(a) demonstrates gradual changes of S, while
Fig. 16(b) shows an abrupt increase of S before the first
large drop of responsiveness and then maintains large S
during the anesthetized state.

5.4 Intelligence quotients from brain networks

It is well known that in our society, some people are smart
while others are not. In particular, a specific person may
be smart at gaining knowledge but not smart at master-

Fig. 15 Neural inertia in wild type mice. Within the shaded area, subjects will be awake or anesthetized depending upon
their previous state of arousal. This area represents a resistance to change in arousal state and graphically depicts neural inertia.
(a) Halothane dose-response curve in wild-type mice for induction and emergence. (b) Isoflurane dose-response in wild-type
mice. Reproduced from Ref. [85].
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ing skills. The measure most commonly used to quantify
smartness is that of intelligence, often termed the intelli-
gence quotient (IQ). Undoubtedly, IQ is close to the topol-
ogy of brain network and has always been an efficient way
to study brain functions. From the very beginning of in-
telligence research, there has been a profound interest in
linking inter-individual differences measured by psycho-
metric test instruments to differences possessing a neuro-
biological substrate. It was usually assumed that individ-
uals with more cortical brain volume possess more neurons
and thus exhibit more computational capacity during rea-
soning.

However, modern techniques such as MRI have revealed
that intelligence is not a function of how hard the brain
works but rather how efficiently it works, an observa-
tion known as the neural efficiency hypothesis of intelli-
gence [88]. In addition, neuroimaging studies have shown
that intelligent individuals, despite their larger brains,
tend to exhibit lower rates of brain activity during reason-
ing. By combining advanced multi-shell diffusion tensor
imaging with a culture-fair matrix-reasoning test, Genc
et al. found that higher intelligence in healthy individ-
uals is related to lower values of dendritic density and
arborization [89]. That is, the neuronal circuitry associ-
ated with higher intelligence is organized in a sparse and
efficient manner, fostering more directed information pro-
cessing and less cortical activity during reasoning. Fig-
ure 17 shows the results.

On the other hand, we also know that the brain con-
sumes about 20% of the body’s energy although it is only
about 2% of the body weight. Thus, the brain network
has to be a trade-off between minimizing energy consump-
tion and maximizing efficiency. Two obvious but appar-
ently contradictory constraints are low wiring cost and
high processing efficiency, characterized by short overall
wiring length and a small average number of processing
steps, respectively. Growing evidence shows that neu-
ral networks are results from a trade-off between physi-
cal cost and functional value of the topology. To explain

Fig. 16 Two representative subjects for gradual and abrupt
state transitions. The responsiveness (black line) and suppres-
sion strength S (blue line) of (a) the gradual and (b) abrupt
state transition are presented. The responsiveness was aver-
aged by 5 min time period with shifting 30 s to show the trend
of temporal change. In comparing the two subjects, the gradual
state transition has a lower S, whereas the abrupt state tran-
sition has a relatively higher S. Reproduced from Ref. [87].

this trade-off, Chen et al. [90] presented an approach to
quantitatively measure this trade-off in the networks of
Macaque cortical connectivity and C. elegans neuronal
connections. This approach is based on the fact that the
wiring of the whole neural network of the Macaque cor-
tex and C. elegans neuronal network are optimized under
the single wiring cost constraint- the total wiring could
be decreased to 64% of the original length in Macaque
and to 52% in C. elegans [91] when applying the compo-
nent placement optimization to minimize the total wiring
length while preserving the specific network connectivity.
Alternatively, it has been suggested that constraints such
as signal propagation efficiency, measured by the global
minimization of processing steps across the network, may
shape the organization of neural systems [92]. In conclu-
sion, these two constraints need to be considered in com-
bination. For this purpose, Chen et al. [90] used the total
physical distance of the wiring Lp to represent the effect
of the wiring cost constraint, and the total graph distance
of the shortest paths Lg to represent the influence of the
processing efficiency constraint, and defined an objective
function L as a combination of both constraints using a
weight parameter α, namely,

L = (1− α)Lg + αLp, (7)

with Lg and Lp appropriately normalized. So α = 0 or

Fig. 17 Schematic depiction of differences between low-IQ
and high-IQ individuals with regard to brain volume, neurite
density, and arborization of dendritic trees within the cortex.
High-IQ individuals are likely to possess more cortical vol-
ume than low-IQ individuals, which is indicated by differently
sized brains (left side) and differently sized panels showing ex-
emplary magnifications of neuron and neurite microstructure
(right side). Due to their larger cortices, it is conceivable that
high-IQ individuals benefit from the processing power of ad-
ditional neurons, which are marked by the dotted line in the
lower panel. Reproduced from Ref. [89].
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α = 1 corresponds to a single constraint of path efficiency
or wiring cost, respectively. By Eq. (7), an optimal α can
be figured out for the minimum of L, i.e., the solution of
trade-off.

Chen’s approach of index α did not discuss the aspect
of IQ as their data are from animals [90]. To extend this
approach to the case of humans, the aspect of IQ has to
be considered. For example, it was revealed that the val-
ues of IQ for females are statistically different from that
for males. In general, males score higher on the spatial
navigation problems, mental rotation test, embedded fig-
ures test, and engineering and physics problems, whereas
females perform better on emotion recognition, verbal flu-
ency, and social sensitivity [93]. Increasing evidence has
also shown that IQ depends not only on the aspect of phe-
nomenology such as the size of brain and sexuality but
also on the topology of the brain network [94]. To figure
out the relationship between the trade-off and IQ, Cao
et al. [95] recently focused on the real data of 63 subjects
with known IQ and constructed their brain networks from
the data. They interestingly found that IQ has a positive
correlation with the total wiring length of the links lp and
a negative correlation with the processing efficiency lg.
Thus, they modified Eq. (7) into

L = (1− α)
lg − lmin

g

lmax
g − lmin

g

+ α
lp − lmin

p

lmax
p − lmin

p

, (8)

so that both the two terms of Eq. (8) may change from 0 to
1, where lmax

p corresponds to the case of α = 1 and lmax
g

corresponds to the case of α = 0. Similar to Eq. (7), an
optimal α can be figured out by Eq. (8) for the minimum of
L, which represents the trade-off between wiring cost and
processing efficiency. Cao et al. [95] calculated the optimal
α for each subject from the real data of the cerebral cortex
and found that the correlation between optimal index α
and IQ is negative but females have a stronger correlation
than males. This is consistent with the established sex
differences showing better spatial abilities in males and
better verbal abilities in females [94].

To further find out the mechanism for the functional
difference between males and females, Cao et al. [95] con-
sidered the local level of brain regions and studied the
relationship between regional optimal α and IQ. They cal-
culated the Pearson coefficient r(X,Y ) by Eq. (1), where
X represents the full IQ, verbal IQ, and performance IQ,
respectively, and Y represents lp and lg, respectively. Let
rm and rf be the Pearson coefficients for male subjects
and female subjects, respectively. It is found that rm and
rf are significantly different in some regions but similar in
others. Figure 18 shows the results where all the rm are
negative but rf can be either positive or negative. These
findings show that the functional differences between in-
dividuals, including the differences between males and fe-
males, are closely related to the different running modes
of their brain networks.

5.5 Remote propagation in brain networks

Except the above aspects, one more aspect to understand
brain functions is the signal propagation. It is well known
that in executing a normal brain function, each neuron
receives electrical signals via its treelike dendrites, con-
nected via synaptic inputs from other neurons. In this
process, part of network nodes will be activated and thus
form a functional brain subnetwork when a stimulus is
received. Thus, a variety of functional subnetworks can
be formed for different stimuli, which are associated with
specific cognitive networks such as the visual networks,
sensorimotor networks, auditory networks, default mode
networks (DMNs), executive control networks, and some
others. It is revealed that each of these functional subnet-
works consists of nodes distributed in different regions,
including distant nodes. Then, a key question arises: how
these distant connections emerge during the formation of
a specific functional subnetwork. To figure out the an-
swer, much attention has been paid to how brain func-
tions emerge from external stimuli or how different cog-
nitive subnetworks are activated to respond to different
external stimuli. For example, Wang et al. [96] studied
how signals are transmitted along a chain of Rossler os-
cillators by frequency-locking. Liu [97] studied how an
external signal is transmitted in a hierarchical organiza-
tion network by introducing a self-tuning mechanism of
transmission links. Bansal et al. [8] studied how regional
brain stimulation generates different patterns of synchro-
nization across predefined cognitive systems. These stud-
ies revealed the possibilities of signal transmission on dif-
ferent network topologies but did not answer how the lo-
cal structures of the network influence signal propagation,
especially the unique topology of the brain network with
the properties of small world, richer-club, and community,
etc. This problem is not trivial as its study may also help
us diagnose and control diseases. For example, the treat-
ment of an epileptic seizure is to stop the fast spread of
abnormal synchronization in the brain network.

Toward this aim, Shen et al. [98] recently considered
the neural network of C. elegans with 277 nodes and 2105
directional links and found an interesting effect of remote
firing propagation between two distant and indirectly con-
nected nodes with the intermediate nodes being inacti-
vated. This finding is of interesting as it is in contrast
to the general believing that a specific firing in a brain
network may be gradually propagated from a source node
to its neighbors and then to the next nearest neighbors
and so on. On the other hand, this finding also implies
that it is possible for the distant connections to show up
by the way of remote signal propagation, which provides
a possible way for functional subnetworks to emerge.

In Ref. [98], one node is initially chosen as the signal
source node and all the other nodes as the target nodes.
Then, it is revealed that except the normal propagation,
there is an abnormal phenomenon, i.e., remote propaga-
tion between distant nodes without the activation of inter-
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Fig. 18 Distribution of the values of rf and rm on different brain regions. The first row is the abbreviated names of all the
68 regions. (a–c) represent the case of males with (a) full IQ, (b) verbal IQ, and (c) performance IQ. (d–f) represent the case
of females with (d) full IQ, (e) verbal IQ, and (f) performance IQ. Reproduced from Ref. [95].

mediate nodes. Figure 19(a) shows such an example of the
source node 138 where the network topology is plotted as
the center for the source node, the first circle for the near-
est neighboring nodes of the source node, and the second
circle for the next nearest neighbors and so on. The red
nodes represent all the activated nodes from the source
node. To make the pathway of firing propagation clear,
Fig. 19(a) is simplified into Fig. 19(b) by keeping only the
red nodes and those links among them, i.e., remove all the
other nodes and their links. We see that only the three
nodes 139–141 of the first circle are connected to source
node 138 and thus form a core cluster of four connected
nodes, while all the other nodes are not directly connected
to them, indicating that they must be indirectly connected
to the core cluster. Moreover, some of them even have no
connections to others such as the nodes 46, 35, and 253,
implying that they are isolated to all the other activated
nodes.

Wang et al. [99] considered the empirical brain network
of Fig. 4 and found that the effect of remote propagation
can be also observed. To understand the mechanism of
this phenomenon, they rechecked the nodes with remote
propagation and found a characteristic feature that each
node of remote propagation is connected to multiple un-

successful propagated nodes, i.e., weak input signals from
multiple channels. Thus, they simplified the brain net-
work into a heterogeneous chain, see the schematic Fig. 20

Fig. 19 A typical example of remote firing propagation
where the source node is chosen as node 138. (a) The paths of
firing propagation in the neural network of C. elegans where
the central red node is source node 138, other red nodes are
the propagated nodes, and the different circles from the cen-
ter represent the nearest neighboring nodes, the next nearest
neighbors, and so on. (b) A part of the network of (a) with
only the firing nodes and the links among them, where the col-
ors of nodes are changed to be different from circle to circle,
as a guide for the eyes. Reproduced from Ref. [98].
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Fig. 20 Signal propagation of three typical cases for the
heterogeneous chain model where (a)-(c) represent the results
of finite propagation, remote propagation, and infinite propa-
gation, respectively, with λ = 0.19, 0.2, and 0.3, respectively.
Reproduced from Ref. [99].

where a hub node is directionally connected to 4 target
nodes and then the 4 nodes will be directionally converged
to a common hub node and so on. They found that this
chain model can show different behaviors, depending on
the coupling strength λ. Figure 20 shows the results where
(a)–(c) represent the cases of finite propagation, remote
propagation, and infinite propagation, respectively. Espe-
cially, Fig. 20(b) shows that all the hub nodes are “firing,”
while all the leaf nodes are not propagated, confirming the
effect of remote propagation. Therefore, the accumulation
of weak signals from multiple channels makes a strong in-
put signal to the next node, resulting in remote propaga-
tion.

6 Discussion and outlook

We have systematically discussed our current understand-
ing on brain functions from the angle of synchronization
and complex network, including the aspects of structural
and functional networks, methods to study brain func-
tions, and the mechanisms of brain functions obtained so
far from different partial synchronization and signal prop-
agation. These achievements make us a fundamental step
toward understanding the brain and its functions, result-
ing in the brain not so “black” again. However, they are
still in the primary stages and far from complete under-
standing. First of all, the studies in Section 5.2–5.5 are
all on the global level of brain network, but in fact, all
the brain functions are performed on the local level of
cognitive subnetworks, implying that all the related re-
sults are only a good beginning in these directions. Sec-
ond, even for the relatively well studied chimera state, i.e.,
Section 5.1, its results are all based on the resting-state
networks. It is well known that brain network dynami-
cally changes in task-states and is thus different from the
resting-state networks, although the latter are a pivotal
element for understanding the dynamics and organization
of the brain basal activity in health. Thus, it is also nec-

essary to make the research of chimera state to go deeper,
at least in the direction of task-states. Therefore, we still
face a lot of problems. Limited by our knowledge, we
suggest the following directions for future studies.

(i) Resting-state networks emerge from the correlation
in signal fluctuations across brain regions during the rest-
ing state and have rich and complex dynamics, it will still
be the main networks in open fields of brain networks such
as the memory related fields. Especially, different resting-
state networks have been associated with specific cognitive
networks [100], thus the focus of partial synchronization
and signal propagation should be concentrated on these
subnetworks in the future studies.

(ii) Resting-state networks are also useful in detecting
diseases, as they are particularly relevant to the disease-
driven changes in functional connectivity. When a disease
progresses, resting-state networks are in turn affected and
accompanied by a loss of functional correlation between
them [101]. That is, altered functional activity induced
by a local dysfunction might influence the functioning of
additional brain regions, leading to the spread of changes
in the whole-brain functional connectivity pattern [102].
Deeper studies of this direction are needed.

(iii) Synchronization in different frequency bands may
correspond to different networks and different cognitive
functions [103], which will provide useful information for
the mechanism of multiple rhythms of brain networks.
The question how these highly structured and robust
patterns of correlated activity arise from the underlying
neural dynamics and structural connections still remains
poorly understood.

(iv) Although functional properties are expressed lo-
cally, they are the result of the action of the entire network
as an integrated system. Of course, structural connectiv-
ity places constraints on which functional interactions oc-
cur in the network [104]. An interesting question is how
functional connections are predicted by structural connec-
tions. A primary step for this question is the approach of
intrinsic eigenmodes [105], but further studies are defi-
nitely necessary.

(v) Our brains usually perceive signals from different
senses (like touch, sound, vision) and then combine them
to produce a neural response and eventually a behavioral
one. In contrast to single stimulus in previous studies, this
is in fact a multisensory integration and thus arises a lot of
questions such as how the multi-sensory stimuli influence
the remote propagation and how the multi-sensory stimuli
provide a benefit to working memory processing.

In sum, the so far obtained results are great progress
in understanding the brain functions and will be also the
basis for future studies in these directions. Especially, the
revealed brain networks (including both the structural and
functional brain networks) and research approaches will
be still useful for further studies. Therefore, we believe
that with the increasing of data from EEG, MEG and
fMRI techniques etc, the data-driven synchronization and
complex network analysis will continuously provide new
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insights to understand the mechanisms of brain functions.
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