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Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian normal
diffusion (NGND), whereby their displacements grow with mean square proportional to the observation
time and non-Gaussian statistics. Their distributions appear to decay almost exponentially according
to “universal” laws largely insensitive to the observation time. This effect is generically attributed
to slow environmental fluctuations, which perturb the local configuration of the suspension medium.
To investigate the microscopic mechanisms responsible for the NGND phenomenon, we study Brown-
ian diffusion in low dimensional systems, like the free diffusion of ellipsoidal and active particles, the
diffusion of colloidal particles in fluctuating corrugated channels and Brownian motion in arrays of
planar convective rolls. NGND appears to be a transient effect related to the time modulation of the
instantaneous particle’s diffusivity, which can occur even under equilibrium conditions. Consequently,
we propose to generalize the definition of NGND to include transient displacement distributions which
vary continuously with the observation time. To this purpose, we provide a heuristic one-parameter
function, which fits all time-dependent transient displacement distributions corresponding to the same
diffusion constant. Moreover, we reveal the existence of low dimensional systems where the NGND dis-
tributions are not leptokurtic (fat exponential tails), as often reported in the literature, but platykurtic
(thin sub-Gaussian tails), i.e., with negative excess kurtosis. The actual nature of the NGND transients
is related to the specific microscopic dynamics of the diffusing particle.
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1 Introduction

Possibly misinterpreting the original works of Albert Ein-
stein and Marian Smoluchowski on Brownian motion, one

∗arXiv: 2101.06875. Special Topic: Thermodynamics and
Thermal Metamaterials (Editor: Ji-Ping Huang). This
article can also be found at http://journal.hep.com.cn/
fop/EN/10.1007/s11467-020-1022-0.

tends to associate the normal diffusion of an ideal Brow-
nian particle with the Gaussian distribution of its spa-
tial displacements. Recent observations [1–6] of Brownian
motion in fluctuating crowded environments led to ques-
tion the generality of this notion. Indeed, it implicitly
assumes Fick’s diffusion [7], whereby the directed displace-
ments of an overdamped particle, say, in the x direction,
∆x(t) = x(t)− x(0), would grow according to the asymp-
totic Einstein law, ⟨∆x2(t)⟩ = 2Dt, and with Gaussian
statistics. The probability density function (pdf) of the
rescaled observable, δt = ∆x/

√
t, would thus be a sta-

tionary Gaussian function with half-variance D.
However, there are no fundamental reasons why the dif-

fusion of a physical Brownian tracer should be of the Fick-
ian type. For instance, in real biophysical systems, dis-
placement pdf’s have been reported, which retain promi-
nent exponential tails over extended intervals of the obser-
vation time, even after the tracer has attained the asymp-
totic condition of normal diffusion. Such an effect, of-
ten termed non-Gaussian normal diffusion (NGND), dis-
appears only for exceedingly long observation times (pos-
sibly inaccessible to real experiments [1]), when the dis-
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placement distributions eventually turn Gaussian, as dic-
tated by the central limit theorem, without changes of the
diffusion constant. Persistent diffusive transients of this
type have been detected in diverse experimental setups
[1–3, 8–10]. Extensive numerical simulations confirmed
the occurrence of NGND in crowded environments featur-
ing slowly diffusing or changing microscopic constituents
(filaments [1, 3], large hard spheres [4–6], clusters [11, 12],
and other heterogeneities [13–15]).

The current interpretation of this phenomenon postu-
lates the existence of one or more fluctuating processes
affecting composition and geometry of the particle’s sus-
pension medium [1]. It seems reasonable that, for obser-
vation times comparable with the relevant environmental
relaxation time(s), the tracer displacements may obey a
non-Gaussian statistics. The rescaled pdf’s, p(δt), are ex-
pected to be Gaussian for both much shorter and much
larger observation times, but with different half-variance:
the free diffusion constant, D0, for t → 0 (no crowding
effect) and the asymptotic diffusion constant, D, intro-
duced above, for t → ∞ (central limit theorem). The
mechanism how the tracer’s normal diffusion sets in and
the constant D remains unaltered through the entire non-
Gaussian transient, varies, instead, from case to case. In
summary, key features of the NGND phenomenon appear
to be: (i) its transient nature, whereby the observables
taken into account are intrinsically non-stationary; (ii) a
time-modulated instantaneous diffusivity of the tracer. As
discussed in the following, these conditions can occur even
in the absence of external (non-equilibrium) perturbations
of the Brownian dynamics.

A simple heuristic explanation [1] of the NGND phe-
nomenon models the effects of the slowly fluctuating en-
vironment in terms of an ad hoc distribution of the tracer’s
diffusion constant. Imposing an exponential distribu-
tion of the diffusion constant with average D, a straight-
forward superstatistical procedure yields the exponential
(Laplace) rescaled distribution, p(δt) = exp(−δt/α)/(2α),
with α2 = D. A more suggestive NGND paradigm is pro-
vided by the notion of diffusing diffusivity [16], whereby
the asymptotic particle’s diffusion constant is replaced by
a time fluctuating auxiliary observable, D(t). Regard-
ing D(t) as a continuous stochastic process with average
D and time constant τ , the distribution p(δt) changes
from exponential for t ≪ τ to Gaussian for t ≫ τ ; in
both time regimes, the displacement diffusion is normal,
with ⟨∆x2(t)⟩ = 2Dt [16]. Refined variations of these
paradigms [17–23], predict different exponential decays of
the transient distributions. These phenomenological ap-
proaches have two major limitations, namely: (i) They
fail to incorporate the free Gaussian diffusion detected in
most real and numerical experiments at very short obser-
vation times, t → 0, when crowding plays no role. This
is because these approaches purportedly ignore the micro-
scopic details of the actual diffusion mechanisms; (ii) They
generally aim at “universal” non-Gaussian transient pdf’s,

namely, at functions p(δt) insensitive to t over extended
domains, t < τ . [In the superstatistical models τ = ∞.]
However, even if this strategy may appear to agree with
NGND observations for complex systems [1–6], it is obvi-
ous that to reproduce the exponential-Gaussian crossover,
the transient rescaled distributions must assume the form
p(δt, t), i.e., they must depend explicitly on t.

This study focuses on the microscopic mechanisms re-
sponsible for NGND. To this purpose, motivated by a pre-
liminary study [24], we investigated, both numerically and
analytically, directed diffusion of different idealized trac-
ers in confined geometries. We selected low dimensional
systems mostly inspired to cell biology [25, 26]. For ap-
propriately short observation times, NGND emerges as a
transient effect of the time modulation of the tracers’ mi-
croscopic diffusivity. This effect can occur even in the
absence of environmental fluctuations. It suffices to re-
quire that the tracer’s dynamics be governed by two con-
curring diffusion mechanisms, at least one of them char-
acterized by a finite relaxation time, τ . During transients
times of the order of τ , the displacement distributions can
deviate from their asymptotic Gaussian profile also after
normal diffusion has set in. Moreover, such deviations do
not necessarily imply the emergence of “fatter” exponen-
tial tails (leptokurtic transients), but under certain condi-
tions, the distribution tails can get “thinner” (platykurtic
transients).

This observation suggests typical NGND features are
to be found in much wider a class of diffusion systems.
Indeed, contrary to experimental and numerical observa-
tions on extended systems, the NGND transient displace-
ment distributions in low dimensional models, are found
to depend on the observation time. This led us to ad-
dress the question of phenomenological fitting functions
capable of reproducing the t-dependence of the rescaled
pdf’s, p(δt, t). We also noticed that the t dependence of
the transient rescaled pdf’s can be suppressed, though not
completely, by considering models where the onset of nor-
mal diffusion is controlled by some intrinsic time constant,
which can be taken much shorter than the upper bound,
τ , of the non-Gaussian transient. This provides us with
a criterion to formulate low dimensional models that bet-
ter capture the known NGND phenomenology in complex
systems.

The present paper is organized as follows. In Section 2
we elaborate on a toy discrete model of NGND proposed
first in Ref. [16] and then revisited in Ref. [24]. The pur-
pose of this section is to single out key NGND aspects, like
the time scales regulating the diffusion mechanisms and
the nature of the non-Gaussian transients, that is, lepto-
versus platykurtic. In Section 3 we consider the diffusion
of a two-dimensional (2D) ellipsoidal Brownian particle in
a highly viscous, homogeneous and isotropic fluid in ther-
mal equilibrium. For observation times shorter than its
rotational relaxation time, the particle does undergo nor-
mal diffusion. However, its instantaneous diffusivity in a
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given direction is modulated in time due to its elongated
shape. This results in exponentially decaying transient
distributions of the particle’s directional displacements. In
Section 4 we analyze the diffusion of a 2D self-propelling
symmetric particle in a homogeneous and isotropic active
medium with finite orientational relaxation time. NGND
is characterized here by thin tails of the transient displace-
ment distributions. In both cases, however, transients are
governed by one time scale, only, their orientational dif-
fusion time, τ : on increasing the observation time, nor-
mal diffusion just anticipates the onset of the Gaussian
statistics of the particle’s displacements. In Section 5 we
introduce a phenomenological fitting function, pβ(δt) for
the rescaled displacement distributions, with only one ad-
justable parameter, β. This function is designed ad hoc to
ensure normal diffusion with the observed diffusion con-
stant, D, at any time, while β encodes the t-dependence
of the rescaled displacement distributions. Relevant val-
ues of the fitting parameter β are β = 2 for a Gaussian
pdf, β = 1 for a Laplace (exponential) pdf, β < 2 for
a leptokurtic pdf. In Section 6 we analyze the NGND
phenomenon in a narrow corrugated channel [27, 28] with
fluctuating pores [24]. NGND occurs for time-correlated
pore fluctuations, random and periodic, alike, and, more
importantly, for observation times comprised between two
distinct, controllable time scales. The correlation time
of the pore fluctuations sets the transient time scale, τ ,
whereas the average pore-crossing time governs the on-
set of normal diffusion. Upon choosing the former much
larger than the latter, the NGND transient is made grow
wider and the t-dependence of β weaker. As a practical
application of the tools introduced thus far, in Section 7
we investigate the diffusion of a passive Brownian tracer
in a periodic array of planar counter-rotating convection
rolls. The peculiarity of this model is that, by tuning its
dynamical parameters, transients can change from lepto-
to platykurtic. Two are the systems’s characteristic time
scales: the mean time for the particle to first exit a convec-
tion roll and its average revolution period inside the roll.
At low (high) temperatures, the former (latter) time scale
is larger and thus plays the role of transient time, τ ; ac-
cordingly, the NGND transients are leptokurtic (platykur-
tic). Finally, in Section 8 we summarize the main conclu-
sions of our approach to NGND.

2 A discrete NGND model

Though sounding exotic to some readers, the phenomenon
of NGND turns out to be way more general than the more
familiar Fickian diffusion. To make this point, we elabo-
rate now on a coarse grained model, first proposed in Ref.
[16], which serves well the purpose of illustrating NGND
in continuous systems of any dimensionality.

Let us coarse grain the trajectory of a tagged particle
in the x direction as the sum of small random steps, ∆xi,

taken at fixed discrete times, ti = i∆t, where i = 1, . . . , N
and ∆t = 1, for simplicity. Accordingly, the position of
the particle at time N is xN =

∑N
i=1 ∆xi. A stochas-

tic average over the particle’s steps ∆xi yields the mean
square displacement at time N ,

⟨x2N ⟩ =
N∑
i=1

⟨∆x2i ⟩+ 2
∑
i̸=j

′⟨∆xi∆xj⟩, (1)

where
∑′

i̸=j stays for
∑N−1

i=1

∑N
j=i+1. Sufficient condi-

tions to establish normal diffusion are that: (i) the step
directions are uncorrelated, ⟨∆xi∆xj⟩ = 0, that is, for any
given ∆xi, displacements ∆xj and −∆xj , are equiprob-
able; (ii) the variance, ⟨∆x2i ⟩, of the step probabilities,
p(∆xi), are of the same order of magnitude, though not
necessarily identical. These requirements are less strin-
gent than the assumptions implicit in the standard ran-
dom walker model for Brownian motion [7].

Indeed, for the sake of generality, one should not rule
out finite correlations of the step lengths [16]. For instance,
we can assume that during each unit time step the par-
ticle’s diffusion is normal with time-dependent constant,
Di, i.e.,

p(∆xi) = (4πDi)
−1/2 exp(−∆x2i /(4Di)). (2)

This assumption guarantees that the directions of the par-
ticle’s steps are uncorrelated, while their length correla-
tion is controlled by the auto-correlation of the time se-
quence of the constants Di, which, in turn, is specific to
the system at hand. It follows immediately that

⟨x2N ⟩ = 2⟨D⟩N, (3)

and

⟨x4N ⟩ − 3⟨x2N ⟩2 = 12µD⟨D⟩2N + 24
∑
i̸=j

′
Cij , (4)

with µD = (⟨D2⟩ − ⟨D⟩2)/⟨D⟩2 and Cij = ⟨DiDj⟩ −
⟨Di⟩⟨Dj⟩. For any given stationary model, there exists
an appropriate distribution of the constants Di, p(Di), so
that ⟨Di⟩ ≡ ⟨D⟩.

Suppose now that two particle steps, ∆xi and ∆xj are
statistically uncorrelated only for large time differences,
i.e., ⟨DiDj⟩ = ⟨Di⟩⟨Dj⟩ for |i − j| > τ . We then distin-
guish two limiting cases.

(i) N ≫ τ , where

µx =
⟨x4N ⟩ − 3⟨x2N ⟩2

⟨x2N ⟩2
=

3µD

N
→ 0. (5)

A vanishing excess kurtosis, µx, hints at a Gaussian xN
distribution. This is the asymptotic limit of the displace-
ment distributions predicted by the central limit theorem.

(ii) N < τ , where

µx =
⟨x4N ⟩ − 3⟨x2N ⟩2

⟨x2N ⟩2
= 3µ̄D. (6)

33203-3 Qingqing Yin, et al., Front. Phys. 16(3), 33203 (2021)



Topical Review

with µ̄D = (2/N2⟨D2⟩)
∑

i̸=j
′Cij . Eqs. (3) and (6) em-

body the definition of NGND. The finite excess kurtosis,
µx depends on the actual auto-correlation of the constants
Di. For instance, on assuming ⟨DiDj⟩ = ⟨D2⟩ for all i and
j with |i− j| < τ , we obtain µ̄D = µD. In particular, for
the exponential distribution p(Di) = exp(−Di/⟨D⟩)/⟨D⟩
assumed in the diffusing diffusivity model of Ref. [16],
µD = 1. Not surprisingly, the resulting value of the excess
kurtosis, µx = 3, corresponds to a Laplace distribution of
the total displacement xN [16].

Of course a more realistic choice of the correlator Cij

can yield different values of µx. In most applications Cij

is definite positive and decays to zero with time, i.e., with
|i − j|; hence 0 < µx < 3, Accordingly, the correspond-
ing xN distributions are leptokurtic, with tails decaying
slower than those of a Gaussian distribution, but typically
faster than exponentially. On the other hand, we cannot
exclude the possibility that Cij decays to zero oscillating.
This implies that, in principle, µD can assume negative
values, so that the corresponding transient distribution
of xN may be platykurtic. In Refs. [29–31] the present
approach has been extended also to microscopically non-
Gaussian diffusive processes [where the ∆x distribution of
Eq. (2) does not apply].

We conclude this section with a final remark about the
time scales involved in this discrete model. One time scale
has been introduced explicitly, namely the characteristic
decay time, τ , of the correlator Cij or, equivalently, the
correlation time of the step lengths, ∆xi. A second one
is implicit in our choice for the step distribution, p(∆xi).
In Eq. (2) the coarse grained diffusion was assumed to
be normal over the time step ∆t = 1. This implies that
in the corresponding continuum system normal diffusion
is expected to have occurred at some intrinsic time scale
much shorter than τ . Of course, the discrete model of this
section cannot reproduce the diffusion properties at times
shorter than the discretization time scale, ∆t.

3 Diffusion of an ellipsoidal particle

We consider first the simple case of a 2D ellipsoidal par-
ticle of semiaxes a and b, with a > b, diffusing in a highly
viscous, homogeneous and isotropic medium, subject to
equilibrium thermal fluctuations. This is a well-known
problem in biological physics [32]. The particle’s elonga-
tion causes a dissipative coupling between the center of
mass translational degrees of freedom, x and y in the lab-
oratory frame, and the rotational degree of freedom, θ. As
sketched in Fig. 1(b), the angle θ defines the orientation
of the particle’s long axis with respect to the horizontal
x axis. The physical consequences of such a mechanism
were first recognized by Perrin [33]. An ellipsoidal particle
tends to diffuse independently in directions parallel and
perpendicular to its long axis, that is along its principal
axes. The relevant diffusion constants in the body frame

are denoted here by Da and Db, with Da ≥ Db. In 2D,
rotational diffusion is governed by an additional diffusion
constant, Dθ, which will be handled here as unrelated to
the translational constants, Da and Db, to avoid unnec-
essary complications involving hydrodynamic effects and
fabrication issues [32, 33]. Over the angular relaxation
time τ = 1/Dθ, random diffusion erases any directional
memory of the particle’s motion. Related to this mech-
anism is the crossover between anisotropic diffusion with
constants Da and Db at short observation times, t ≪ τ ,
and isotropic diffusion with constant D = (Da +Db)/2 at
long observation times, t > τ [34].

The anisotropic-isotropic crossover can be numerically
investigated by integrating the Langevin equations [35] de-
scribing the roto-translational motion of a free ellipsoidal
Brownian particle,

ẋ = ξx(t), ẏ = ξy(t), (7)
θ̇ = ξθ(t), (8)

where the translational noises, ξi(t) with i = x, y, and
the rotational noise, ξθ(t), model three independent sta-
tionary Gaussian fluctuation sources with zero means
and autocorrelation functions ⟨ξi(t)ξj(0)⟩ = 2Dijδ(t) and
⟨ξθ(t)ξθ(0)⟩ = 2Dθδ(t). The matrix Dij encodes the dis-
sipative roto-translational coupling, namely [34],

Dij =
1

2
[(Da +Db)δij + (Da −Db)Mij(θ)], (9)

with M =
( cos 2θ sin 2θ

sin 2θ − cos 2θ
)
.

Despite their apparent simplicity, the analytical so-
lution of the Langevin Eqs. (7)–(9) is rather cumber-
some [36, 37]. The diffusion properties of a typical ellip-
soidal particle are summarized in Fig. 1. The mean square
displacement, ⟨∆x2(t)⟩, plotted in panel (b) as a function
of the observation time t, was first computed under assum-
ing a uniform distribution of θ(0). This initial condition
(i.c.) was justified with the practical difficulty of mea-
suring the particle instantaneous orientation and with the
isotropy of the suspension medium. The resulting asymp-
totic diffusion constant, numerically determined as

D = lim
t→∞

⟨∆x2(t)⟩/(2t),

agrees with the expected value, D = (Da + Db)/2, ob-
tained by averaging Dij(θ) in Eq. (9) with respect to the
isotropic equilibrium distribution of θ. This result is in-
deed an effect of our choice for the i.c. of θ. A stochas-
tic average over a uniform θ(0) distribution is equivalent
to imposing isotropic particle’s diffusion, that is estab-
lishing Einstein law at any time. In contrast, by setting
θ(0) = 0, the numerical data for ⟨∆x2⟩ versus t, also shown
in Fig. 1(b), bridge two linear laws with different diffusion
constant: D = Da for t ≪ τ and D = (Da + Db)/2 for
t≫ τ .

More revealing are the distributions of the unidirec-
tional displacements, ∆x, for increasing observation times,
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Fig. 1 Overdamped 2D ellipsoidal particle of semi-axes
a = 0.5 and b = 0.05 diffusing in a homogeneous medium
with Langevin Eqs. (7)–(9): (a, c) displacement pdf’s for dif-
ferent initial orientations [uniform θ(0) distribution in (a), and
θ(0) = 0 in (c)] and increasing observation times, t, see leg-
ends; (b) ⟨∆x2⟩ vs. t for the initial conditions (i.c.) of (a)
(empty symbols) and (c) (filled symbols). Simulation param-
eters are: Da = 1, Db = (b/a)Da and Dr = 0.01. Asymptotic
diffusion in (b) follows the normal diffusion law, 2Dt with
D = (Da + Db)/2 (dashed line), independent of the i.c. At
very short times, the diffusion constant depends on θ(0) (see
sketch). The pdf’s have been fitted by means of Eq. (17) for
D fitting the large-t simulation data of (b) and β as reported
in the legends.

t, plotted in panels (a) and (c), respectively for a uniform
initial angular distribution and θ(0) = 0. As first theoret-
ically predicted by Prager [38] and numerically confirmed
by the authors of Ref. [37], for both i.c. the rescaled dis-
placement pdf’s do approach the Gaussian profile of Fick-
ian diffusion with half-variance D = (Da + Db)/2, but
only for t≫ τ , that is well after the anisotropic–isotropic
crossover took place. Most remarkably, for θ(0) = 0,
in panel (c), the displacement distributions approach a
Gaussian profile both for t ≪ τ and t ≫ τ , each with

the corresponding half-variance D shown in panel (b), re-
spectively, Da and (Da +Db)/2. The short-t “reentrant”
Gaussian distribution does not appear in panel (a), due
to the randomized i.c.. The explanation of this behav-
ior is simple. In panel (c), the particle’s long axis was
initially oriented parallel to the x axis, θ(0) = 0. There-
fore, it started diffusing in the x direction like a one di-
mensional Brownian particle, with diffusion constant Da.
Subsequently, angular fluctuations mixed diffusion along
the two symmetry axes with time constant τ . This ar-
gument can be extended to any choice of θ(0): based on
Eq. (9), the short-t diffusion constant is expected to be
D = (1/2)[(Da + Db) + (Da − Db) cos θ(0)], see inset of
Fig. 1(b). Of course, the i.c. only influence the anisotropic
diffusion regime at short t.

There is only one characteristic time scale in this model,
namely, the angular relaxation time, τ = 1/Dθ. However,
normal diffusion turns out to set in for shorter observa-
tion times, t ∼ τ , than the displacement Gaussian statis-
tics. To explain this behavior, we notice that during the
transient time, τ , a maximum mean square displacement,
2Daτ , occurs parallel to the major axis; observing the
same displacement in the perpendicular direction would
take a larger time, τ∗ = τ(Da/Db). The onset of the
Gaussian ∆x statistics is thus delayed to larger observa-
tion times with t > τ∗.

In conclusion, this simple model of equilibrium Brown-
ian motion exhibits NGND. On decreasing the observation
time, t, the rescaled displacement distribution in a fixed
laboratory direction, changes from Gaussian for t ≫ τ ,
to a leptokurtic distribution with fat exponential tails for
t ∼ τ , independently of the i.c.. This behavior is consis-
tent with the phenomenological picture of Section 2. This
is apparent in the case of uniform initial orientation. Nor-
mal diffusion is ensured by the fact that, after the particle
has taken a step ∆xi at the discrete time ti = i∆x, it
will next take a step ±∆xj at time tj , with equal prob-
ability. On the contrary, the step lengths ∆xi and ∆xj
are correlated for |tj − ti| < τ . Indeed, the effective half-
width of the diffusing particle parallel to the x axis, varies
randomly between b at θ = 0, π and a at θ = ±π/2. Ac-
cordingly, the particle’s instantaneous diffusion constant
fluctuates between Da and Db; its fluctuations are expo-
nentially time correlated with time constant τ . As dis-
cussed in Section 2, this leads to a rescaled pdf, p(δt, t),
with positive excess kurtosis.

4 Diffusion of a Janus particle

We consider next the case of a pointlike particle under-
going persistent Brownian motion, namely, a 2D artifi-
cial microswimmer. Typical artificial microswimmers are
Brownian particles capable of self-propulsion in an active
medium [39, 40]. Like in the foregoing section, the sus-
pension medium can be taken homogeneous, isotropic and
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highly viscous. Such particles are designed to harvest en-
vironmental energy by converting it into kinetic energy.
The simplest class of artificial swimmers investigated in
the literature are the so-called Janus particles (JP), mostly
spherical colloidal particles with two differently coated
hemispheres, or “faces” [41, 42]. Recently, artificial micro-
and nanoswimmers of this class have been the focus of
pharmaceutical (e.g., smart drug delivery [43]) and medi-
cal research (e.g., robotic microsurgery [44]). Relevant to
the present work is the observation that their function is
governed, in time and space, by their diffusive properties
through complex environments, which are often spatially
patterned [45] or confined [46].

The overdamped dynamics of a pointlike active JP can
be formulated by means of two translational and one ro-
tational Langevin equation

ẋ = v0 cos θ + ξx(t), ẏ = v0 sin θ + ξy(t), (10)
θ̇ = ξθ(t), (11)

where x and y are the coordinates of the particle’s center of
mass, and the self-propulsion velocity has constant modu-
lus, v0, and orientation θ, taken with respect to the x axis,
see sketch in Fig. 2(b). The translational noises in the x
and y directions, ξx(t) and ξy(t), and the rotational noise,
ξθ(t), are stationary, independent, delta-correlated Gaus-
sian noises, ⟨ξi(t)ξj(0)⟩ = 2δijDiδ(t) with i, j = x, y, θ.
The noise strengths Dx = Dy = D0 (isotropic transla-
tional fluctuations) and Dθ are assumed here to be un-
related for generality (e.g., to account for different self-
propulsion mechanisms [46]). The reciprocal of Dθ is the
correlation (or angular persistence) time, τ , of the self-
propulsion velocity. For simplicity, we ignore chiral ef-
fects due to unavoidable fabrication defects [44, 47, 48].
It is worthy comparing the Langevin Eqs. (7, 8) and (10,
11): for the ellipsoidal particle anisotropy is geometric,
i.e., due to its elongated shape, whereas, for a pointlike
JP anisotropy is dynamical, i.e., associated with the in-
stantaneous orientation of its self-propulsion velocity.

A detailed analytical treatment of the Langevin
Eqs. (10, 11) is to be found in Ref. [49]. The unidirec-
tional diffusion of a free JP in 2D reads [50–52],

⟨∆x2(t)⟩ = 2(D0 +Ds)t+Dsτ(e−|t|/τ − 1), (12)

which approaches the Einstein law,

⟨∆x2(t)⟩ = 2(D0 +Ds)t, (13)

only for t≫ τ . Here, the unidirectional diffusion constant,
D, consists of two distinct contributions, a translational,
D0, and a self-propulsion term, Ds = v20/(2Dθ). Instead,
for short observation times Eq. (12) tends to

⟨∆x2(t)⟩ = 2D0t, (14)

that is, to the normal diffusion law of a passive particle
with v0 = 0. The analytical law of Eq. (12) and its normal

limits for large and small observation times compare well
with our simulation results in Fig. 2(b).

The displacement distribution, p(δt, t), exhibits a Gaus-
sian profile both for t→ 0 and t→ ∞, but with different
half-variances, respectively D0 and D = D0 + Ds, see
Fig. 2(a). The crossover between these two Gaussian lim-
its is characterized by platykurtic transient pdf’s with fast
decaying tails. Experimental evidence of this phenomenon
has been reported in Ref. [53]. In the limit t → 0, the
displacement distributions become sensitive to the parti-
cle’s initial orientation. For a uniform distribution of θ(0),
shown in Fig. 2(a), the rescaled pdf’s approach a Gaus-
sian function with half-variance D0, as to be expected for
an isotropic persistent Brownian motion in the ballistic
regime, t ≪ τ . However, for a fixed value of θ(0), say,
θ(0) = 0, the pdf is still a Gaussian with the same half-
variance, D0, but its center moves to higher ∆x values,
with ⟨∆x(t)⟩ = v0t [54] (not shown). For intermediate
observation times, t ≃ τ , the displacement pdf’s develop
two symmetric maxima a distance of the order of the per-
sistence length, ∆x ∼ v0τ , from their centers [53].

The different nature of the diffusion transients of ellip-
soidal and active JP’s can be easily explained in terms

Fig. 2 Symmetric Janus particle diffusing in a homogeneous
medium with D0 = 1, v0 = 1, Dθ = 0.01, and uniform distribu-
tions of the particle’s initial position and orientation, Eqs. (10,
11): (a) displacement pdf’s at different observation times, t;
(b) diffusion law, ⟨∆x2⟩ vs. t. The numerical data agree well
with the analytical law of Eq. (12) (solid curve); the normal
diffusion limits at large and short t, Eqs. (13) and (14), are
drawn for a comparison (dashed lines); the pdf’s in (a) have
been fitted by means of Eq. (17) with D fitting the large-t data
in (b) and an appropriate choice of β (see legend). The pdf’s
with β = 2 at the shortest and largest t, panel (a), are Gaus-
sian curves with half-variance D0 and D0 + Ds, respectively.
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of the coarse grained model of Section 2. The orien-
tation of a JP is time correlated; from Eqs.(10)–(11),
⟨cos θ(t) cos θ(0)⟩ = ⟨sin θ(t) sin θ(0)⟩ = (1/2) exp(−|t|/τ).
This implies that both the orientation and the length of
the discrete steps in the x direction, ∆xi are time corre-
lated; given any pair of steps, ∆xi and ∆xj , both their
time correlations vanish asymptotically only for |tj−ti| ≫
τ . However, on comparing panels (a) and (b) of Fig. 2 we
notice the existence of a rather wide range of observation
times, where ⟨∆x2(t)⟩ has approached a linear function of
t, Eq. (13), while the rescaled ∆x distributions are still
apparently platykurtic.

The platykurtic nature of this transient is consistent
with the coarse grained model of Section 2, because the
angular correlation of the self-propulsion velocity vec-
tor amounts to an oscillatory behavior of Di − ⟨Di⟩, a
necessary condition to observe a negative excess kurto-
sis, µx < 0. It remains to explain why, like in Sec-
tion 3, the onset of normal diffusion anticipates the onset
of the Gaussian ∆x statistics. We know [53] that the
self-propulsion mechanism of Eqs. (10, 11) is responsible
for the non-Gaussian profile of p(δt), an effect mitigated
by the translational noise as long as 2D0t > l2θ , where
lθ = v0τ is the JP persistence length. Therefore, the
Gaussian statistics of the unidirectional JP displacements
is expected to emerge only for t > τ∗, with τ∗ = τ(Ds/D0).
Note that in the simulations of Fig. 2 we set τ∗ > τ .

The results presented in this section lead us to conclude
that we are in the presence of another manifestation of the
NGND phenomenon.

5 Transient displacement distributions

As mentioned in Section 1, the notion of NGND is com-
monly associated with the existence of a wide interval of
observation times, where diffusion follows a normal law
with fixed constant, D, and the rescaled displacement
distribution, p(δt), decays (almost) exponentially inde-
pendently of t. The exponential to Gaussian crossover
is hardly accessible to direct observation [1]. In the low
dimensional systems investigated here, instead, such a
transition takes place over a relatively narrower t inter-
val, which led us to look for a phenomenological func-
tion p(δt, t) fitting our simulation data from transient up
asymptotic t values.

Contrary to the diffusing diffusivity models, where the
limiting Laplace and Gaussian distributions are functions
of the sole diffusion constant, D, a more realistic fitting
procedure needs at least one additional parameter, β, to
capture the t-dependence of the transient pdf’s. Inspired
by the numerical findings of Sections 3 and 4, we started
from the compressed exponential function

p(δt) = p0e
−(δt/δ0)

β

, (15)

where β ≥ 1. The scaling factor, δ0, and the normaliza-

tion constant, p0, have been computed by imposing the
conditions∫ ∞

0

p(δt)dδt = 1,

∫ ∞

0

δ2t p(δt)dδt = 2D, (16)

to obtain the one-parameter ad hoc fitting function,

pβ(δt) =
β

Γ( 1β )
3
2

[
Γ( 3β )

2D

] 1
2

exp

−( δ2t
2D

Γ( 3β )

Γ( 1β )

) β
2

.
(17)

This function has been derived phenomenologically start-
ing from the standard stretched exponential distribution,
pβ(δt) = A exp(−Bδβt ). The constants A and B have then
be determined by normalizing pβ(δt) to one and ensuring
that its second moment yields ⟨δ2t ⟩ = 2D for any value of
the free parameter β. In view of its derivation, the heuris-
tic distribution (17) may apply also to the transients of mi-
croscopically non-Gaussian diffusion models [29–31]. The
fitting parameter β is allowed to vary with t; it assumes
values in the range 1 ≤ β ≤ 2 for leptokurtic distribu-
tions (positive excess kurtosis) and β ≥ 2 for platykurtic
distributions (negative excess kurtosis).

The fits of the pdf’s drawn in panels (a), (c) of Fig. 1
and (a) of Fig. 2 have been generated from Eq. (17) by
setting D equal to the diffusion constants that best fit-
ted the large-t diffusion data in the respective panels (b)
and, then, computing β to get the best fit of the rescaled
displacement distributions at different t. The same fit-
ting procedure has been applied in Figs. 3 and 4 of the
forthcoming sections.

Our phenomenological formula (17) fits rather closely
the numerical pdf’s reported in Sections 3 and 4, at least
for sufficiently large observation times. As a matter of
fact, the heuristic argument leading to the fitting function
pβ(δt) assumes normal diffusion at any t. This is consis-
tent with the diffusive dynamics of the ellipsoidal Brow-
nian particle with isotropic i.c., displayed in Figs. 1(a)
and (b). However, this cannot be the case, for instance,
of the active JP of Fig. 2, whose diffusion law for t < τ
clearly deviates from the asymptotic law of Eq. (13). A
comparison with the simulation output confirms that the
proposed fitting procedure works well for both systems in
the transient regime, t > τ .

6 Diffusion in a time modulated channel

In most numerical and experimental investigations [1–6]
the transient distributions of δt are presented as sort of
universal functions, p(δt), which decay with (almost) ex-
ponential law independently of t. Sometimes the transient
interval is so wide that the exponential-Gaussian crossover
is not accessible to direct observation. The question then
rises as to what extent the low dimensional systems ad-
dressed in this work may share that property. In the no-
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Fig. 3 Diffusion of a pointlike overdamped particle in a ran-
domly fluctuating channel, Eq. (19) with ε(t) representing the
Ornstein–Uhlenbeck process of Eq. (20). Simulation param-
eters are: yL = 1, xL = π, D0 = 1, Dε = 3, τ = 50, and
random x(0), y(0) and ε(0). In the main panel, rescaled dis-
placement pdf’s are shown for increasing observation times, t,
in the normal diffusion regime, see data for ⟨∆x2⟩ vs. t in the
inset. The fitting β values have been obtained from Eq. (17)
with D = 0.335. At short t, the statistics of our data is not
good enough to resolve the t dependence of β.

tation of Section 5, this corresponds to determining con-
ditions for the fitting parameter β to be constant with
β ̸= 2 (non-Gaussian transient) over a wide range of t.
Note that in the models of Sections 3 and 4 the onset of
the normal diffusion and the Gaussian statistics regimes,
which delimit the NGND transient, are governed by the
sole angular relaxation time τ (τ∗ being proportional to
τ). In the standard formalism of the central limit theorem
this would correspond to saying that the higher cumu-
lants of the displacement distribution vanish slower with
the observation time than the second moment approaches
its linear growth [55]. In this regard, more interesting are
systems where the NGND transients are delimited by two
distinct time constants.

A study case is represented by the diffusion of a stan-
dard Brownian particle in a confined geometry [27], the
simplest example being a chainlike structure of cavities
connected by narrow pores [24]. In 2D, the dynamics of
an overdamped symmetric Brownian particle in a channel
is modeled by two simple Langevin equations

ẋ = ξx(t), ẏ = ξy(t), (18)

where x and y are the coordinates of the particle’s center
of mass and the translational fluctuations ξx(t) and ξy(t)
are zero-mean, white Gaussian noises with autocorrela-
tion functions ⟨ξi(t)ξj(0)⟩ = 2δi,jD0δ(t) and i, j = x, y.
The strength of ξi(t) coincides with the free-particle dif-
fusion constant, D0, which is typically proportional to the
temperature of the suspension fluid. However, contrary
to Sections 3 and 4, the particle is now confined to dif-
fuse inside a narrow corrugated channel with axis oriented

along x and symmetric walls, y = ±w(x, t). Following Ref.
[27], we assumed for simplicity the sinusoidally modulated
channel half-width

w(x, t) = (yL/2)[ε
2 + (1− ε2) sin2(πx/xL)]. (19)

Here yL and xL are respectively the maximum width and
the length of the unit channel cell, sketched in Fig. 3,
and ε2yL is the fluctuating width of the pores located at
xmod(xL) = 0. In the case of a pointlike particle, hy-
drodynamic effects [28] can be ignored. Moreover, let the
width of the channel pores be time modulated without
affecting the particle’s free diffusion constant, D0, for in-
stance, by applying a tunable external gating potential.
Therefore, when integrating the Langevin Eq. (18), we
neglected the particle radius with respect to xL and yL
(pointlike particle approximation) and imposed reflecting
boundary conditions at the walls [46].

In Ref. [24] we considered the case when ε(t) is an
Ornstein–Uhlenbeck process

ε̇ = −ε/τ +
√
Dε/τ2 ξε(t), (20)

where ξε(t) is another Gaussian zero-mean valued noise,
independent of ξx(t) and ξy(t) and delta-correlated,
⟨ξε(t)ξε(0)⟩ = 2δ(t). The channel pores open and close
randomly in time with average width ⟨ε2⟩yL, where ⟨ε2⟩
coincides with the variance of ε(t), Dε/τ = (π/2)⟨|ε|⟩2.

This channel model manifests prominent NGND, as il-
lustrated in Fig. 3. The displacement distributions are
Gaussian for both very short (not shown, see Ref. [24]) and
asymptotically long observation times. Indeed, the parti-
cle diffuses freely with constant D0 inside each channel’s
cell for t < τL, with τL = x2L/(8D0), before escaping into
an adjacent cell after a mean exit time τ0 = τL/⟨|ε|⟩ [24].
For t ≫ τ0, the x directed diffusion process can thus be
described as a random walker with spatial step xL and
time constant τ0; memory of the i.c. adopted in our sim-
ulations is completely erased. The ensuing mean square
displacement then follows the Einstein law with approx-
imated diffusion constant D = x2L/(2τ0) [56]. The dis-
placement distribution assumes its asymptotic Gaussian
profile only for observation times much larger than the
correlation time of the pore fluctuations, t ≫ τ . In the
simulations of Fig. 3, we set τ ≫ τ0, which thus defines a
NGND transient interval, (τ0, τ), where diffusion is nor-
mal, but the displacement distributions are non-Gaussian.
By taking such interval wide enough, the transient pdf’s,
p(δt, t), grow insensitive to t, and so do the fitted β val-
ues. This way, we mimic the situation reported in the
literature [1–6] for more complex systems.

This prescription for NGND control is independent of
the detailed statistics of the pore fluctuations. For in-
stance, one can consider the case of a periodically time
modulated pore width with

ε(t) = δε cos(t/τ). (21)
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The simulation data plotted in Fig. 4(a) confirm the ex-
istence of the NGND transient interval (τ0, τ), where τ is
now the period of the sinusoidal function ε(t) of Eq. (21)
and ⟨ε2⟩ = δ2ε/2 = (π2/8)⟨|ε|⟩2. For a quantitative com-
parison, in Figs. 3 and 4(a) ⟨ε2⟩ have been assigned the
same value, so that for the simulation parameters of Fig. 4
both time scales, τ0 and τ , are larger by approximately the
same factor two.

The NGND phenomenon in Fig. 4(a) is apparent. The
rescaled pdf’s shown there are clearly non-Gaussian. Fat
oscillating tails arise for t > τ , as an effect of the spatial
periodicity of the channel. Indeed, the oscillation period
of the plotted distributions is of the order xL/

√
t. This

effect, detectable also in Fig. 3 and Fig. 4(b), plays here
a marginal role. Indeed, on disregarding such oscillations,
the tails of the non-Gaussian distributions can still be fit-
ted by the function of Eq. (17) for an appropriate choice
of the free parameter β.

However, in Fig. 4(a) and in contrast with Fig. 3, the

Fig. 4 Diffusion of a pointlike overdamped particle in a cor-
rugated channel, Eq. (19), with ε(t) representing the periodi-
cally time modulation of Eq. (21). Simulation parameters are:
yL = 1, xL = π, D0 = 1, δ2ε = 0.03, and (a) τ = 100, (b)
τ = 500. The initial conditions were set by imposing uniform
distributions of the particle’s initial position and ε(t) initial
phase. In the main panels, rescaled displacement pdf’s are plot-
ted for increasing t, in the normal diffusion regime. The values
of β in the legend have been obtained by fitting Eq. (17) with
D computed numerically from the asymptotes, ⟨∆x2⟩ = 2Dt,
drawn in the insets.

deterministic nature of the pore time modulation allowed
us to resolve a weak t-dependence of β, without increas-
ing the statistical accuracy of our simulation runs. It is
important to remark that such a residual t-dependence
of the transient rescaled pdf’s can be further suppressed
by widening the transient interval (τ0, τ). An example is
shown in panel (b) of Fig. 4, where the simulation parame-
ters are the same as in panel (a), except for the modulation
period, τ , which is five times larger. We remark that, for
the simple model at hand, this result is analytically pre-
dictable upon reformulating the particle’s dynamics in the
dimensionless units, x→ x/xL, y → y/xL and t→ t/τ .

7 Diffusion in convection rolls

We finally address the reasons why transients under
NGND conditions can be either lepto- or platykurtic. In
Sections 3 and 4 we looked at two simple models, which
exhibit distributions of the one or the other type, respec-
tively, with 1 ≤ β ≤ 2 and β ≥ 2. We consider now a
slightly more complicated 2D system, which can undergo
both transients, depending on the choice of its dynamical
parameters. The numerical analysis of its diffusion prop-
erties will help us shed light on the different microscopic
mechanisms responsible for these two type of transients,
thus justifying the generalization of the NGND notion pro-
posed in this work.

To this purpose we investigated the diffusion of a point-
like overdamped particle of coordinates x and y, sus-
pended in a stationary planar laminar flow with periodic
center-symmetric stream function [57–63]:

ψ(x, y) = [U0L/(2π)] sin(2πx/L) sin(2πy/L), (22)

where U0 is the maximum advection speed and L the wave-
length of the flow unit cell. The ensuing particle’s dynam-
ics can be formulated in terms of two driven Langevin
equations,

ẋ = ux + ξx(t), ẏ = uy + ξy(t), (23)

with the vector (ux, uy) = (∂y,−∂x)ψ representing the lo-
cal advection velocity. As illustrated in Fig. 5(a), this de-
fines four counter-rotating flow subcells, also termed con-
vection rolls. The translational noises, ξi(t) with i = x, y
are stationary, independent Gaussian noises with auto-
correlation functions ⟨ξi(t)ξj(0)⟩ = 2D0δijδ(t). They can
be regarded as modeling homogeneous, isotropic thermal
fluctuations. In our simulations, the flow parameters, U0

and L were kept fixed, as they define the natural length
and time units, L and Ω−1

L = L/(2πU0), respectively.
Therefore, the only tunable parameter left is the noise
strength, D0. Having in mind a stationary system, we
assumed uniform distributions of the initial particle’s co-
ordinates, x(0) and y(0). Indeed, due to the incompress-
ibility of (ux, uy), in the presence of translational noise, a
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particle’s trajectory eventually fills up the flow unit cell
uniformly. To this regard, we remind that, in the ab-
sence of noise, the advection period tends to diverge as
the closed trajectory of a dragged particle runs close the
subcell boundaries [64]; hence, for D0 = 0 the particle gets
trapped in a convection roll [59, 60, 63].

Particle transport in such a flow pattern has been stud-
ied under diverse conditions and a rich phenomenology
has emerged [57–63]. We focus here on the Brownian dif-
fusion of a passive particle under the simultaneous action
of translational fluctuations and advective drag. A first
important feature of this system is illustrated in Fig. 5(b),
where we plotted the dependence of the asymptotic diffu-
sion constant, D, on the noise intensity (and particle’s
no-flow diffusion constant), D0. The mean square dis-
placement is an asymptotically linear function of time for
any choice of D0. However, on increasing D0, the diffusion
constant, D, changes from

D = κ
√
DLD0, (24)

for D0 < DL (advective diffusion), to D = D0, for

Fig. 5 Diffusion in the periodic convective flow pattern of
Eq. (22): (a) Flow cell unit consisting of four counter-rotating
subcells; (b) The asymptotic diffusion constant, D vs. D0:
the numerical data (dots) are compared with the analytical
prediction discussed in the text, see Eq. (24). The stream
function parameters are U0 = 1 and L = 2π, and the diffusion
scale is DL = U0L/(2π).

D0 > DL (thermal diffusion), an abrupt crossover oc-
curring at D0 ≃ DL, with DL = U0L/2π [65]. The con-
stant κ depends on the geometry of the flow cells [59, 60];
for a 2D array of square counter-rotating convection rolls,
κ ≃ 1.06 [59]. This property can be explained with the fact
that for D < DL the spatial diffusion occurs along the sep-
aratrices delimiting the four subcells of the stream func-
tion, ψ(x, y), of Fig. 5(a). Stated otherwise, the diffusion
process is regulated by the advection velocity field [66].
Vice versa, for D0 > DL the effects of advection on the
particle’s diffusion become negligible. Not surprisingly,
we detected NGND only for D0 < DL.

The diffusion process is governed by two competing
mechanisms: (i) Particle’s circulation inside the counter-
rotating subcells of ψ(x, y). The corresponding vorticity,
∇ × u⃗ = −∇2ψ, has a maximum, ΩL = 2πU0/L, at
the center of the subcells. This defines the time scale,
TL = 2π/ΩL, for the advection period, that is an esti-
mate of the average time taken by advection to drag the
particle around a convection roll; (ii) Diffusion across the
convection rolls. The mean first-exit time, TD, of a Brow-
nian particle out of a unit convection cell of ψ(x, y), can
be easily computed for D0 ≫ DL simply by ignoring ad-
vection [7],

T0 =
1

D0

(
L

2π

)2(
4

π

)4 (odd)∑
m,n

1

m2

1

n2
1

m2 + n2
, (25)

where the summation is restricted to the odd values of
m and n. In the opposite limit, D0 ≪ DL, TD is just
one fourth of T0, because, as anticipated above, at very
low noise levels, the exit process consists of a slow acti-
vation mechanism, which takes the particle from the cen-
ter of a subcell to its boundaries, followed by a relatively
faster flow-driven propagation along the grid formed by
the subcell separatrices. Thanks to thermal fluctuations,
the Brownian particle jumps from roll to roll, thus diffus-
ing in the x, y plane. Its coarse-grained motion can be
modeled as a discrete random walker with time constant
TD [7]. Therefore, for large observation times, t > TD, the
particle executes normal diffusion.

For the simulation parameters adopted in Fig. 6, the
crossover between low- and high-noise estimates of T , re-
spectively TD = T0 and TD = T0/4, occurs in the region
of advective diffusion, D0 < DL. More remarkably, it ap-
pears to correspond to the condition, TD = TL, namely,
when the two competing time scales of the particle’s dy-
namics inside a convection roll coincide. Such a condition
defines a unique D0 value, D∗, which splits the advec-
tive diffusion domain into two distinct subdomains, re-
spectively, D0 < D∗ and D∗ < D0 < DL.

Numerical simulation clearly shows evidence of NGND
for t > TD, in close analogy with the models of Sections 3
and 4, except for an important peculiarity: The transient
displacement distributions displayed in Fig. 7, turn out
to be leptokurtic, with 1 ≤ β ≤ 2, for D0 < D∗, and
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Fig. 6 Diffusion mechanisms in the periodic flow pattern
of Eq. (22): mean first-exit time, TD, vs. thermal noise, D0.
Convection flow parameters are U0 = 1 and L = 2π. The
asymptotic solid lines on the left and right are respectively T0

and T0/4, with T0 given in Eq. (25); the horizontal dashed
line represents the advection period, TL. Three D0 intervals.
shaded in different colors, are separated by D∗, obtained by
imposing TD = TL, and DL, defined in Fig. 5. In each interval,
the range of β is reported for reader’s convenience; no NGND
was detected for D0 > DL.

platykurtic, with β ≥ 2, for D∗ < D0 < DL. This can be
explained with the fact that here the displacement length
correlation, see Section 2, is dominated by thermal noise
in the lower D0 interval, where TD > TL, and by advection
in the larger D0 interval, where TL > TD. Accordingly, in

Fig. 7 Leptokurtic, D0 < D∗ (a), and platykurtic tran-
sients, D∗ < D0 < DL (b), in a periodic array of 2D convec-
tion rolls. D0, t and β are reported in the legends; convection
flow parameters are U0 = 1 and L = 2π. All transient pdf’s
were taken in the regime of normal diffusion, see insets.

the formulation of Sections 3 and 4, the role of transient
time, τ , is played respectively by TD for D0 < D∗ and by
TL for D0 > D∗.

For D∗ ≪ D0 < DL, the onset of normal diffusion and
the exponential-Gaussian transitions are thus regulated by
two distinct time scales, respectively, T0 and TL. Indeed,
the slowest time modulation of the particle’s dynamics
is due to the advective drag inside the convection rolls.
By generalizing our discussion for the NGND of a free
JP, Section 4, we conclude that such a rotational dynam-
ics must be responsible for the negative excess kurtosis
of the unidirectional particle’s displacements reported in
Fig. 7(b). The range of the β values, fitted according to
the procedure of Section 5, is shown in Fig. 6 for each D0

interval.
In conclusion, the NGND transients of this model can

change from leptokurtic to platykurtic simply by raising
the strength of the internal noise. Most remarkably, this
and related diffusive systems are easily accessible to direct
experimental demonstration [58, 61].

8 Conclusions

In this work we have investigated NGND transients [1–6]
in low dimensional stochastic processes. These become ap-
parent when the Einstein law, which characterizes normal
diffusion, sets in for observation times, t, shorter than the
asymptotic Gaussian displacement statistics, predicted by
the central limit theorem. A wide class of low dimensional
systems manifest NGND under the condition that their lo-
cal dynamics is subjected to time correlated modulations.

Time modulation can affect the effective particle ge-
ometry (e.g., its cross-section in the diffusion direction,
Section 3), its dynamics (e.g., its isotropic self-propulsion
mechanism, Section 4), or its confinement geometry (e.g.,
the cross-section of the directed channel containing the
particle, Section 6). In all cases discussed here the sys-
tem’s modulation is time correlated with time constant, τ ,
larger than any other microscopic dynamical time scale.
We then noticed that NGND becomes more prominent
when the onset times of normal diffusion and the Gaus-
sian displacement statistics are well separated, with the
former much lower than the latter. This situation is well
illustrated by the fluctuating narrow channel of Section 6,
where normal diffusion occurs for t larger than the mean
pore crossing time and the Gaussian statistics sets in for t
larger that the tunable correlation time of the pore mod-
ulation.

In low dimensional systems, NGND features exhibit a
smooth dependence on the observation time. The tran-
sient rescaled displacement distributions are not “univer-
sal” over large t intervals, in sharp contrast with the ex-
tended disordered systems first studied in the literature
[1–6]. To quantify the t-dependence of the transient pdf’s
we introduced an ad hoc fitting function, pβ(δt), which, by
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construction, reproduces the normal diffusion law, with
diffusion constant obtained by direct observation, and fits
the numerical curves p(δt, t) by tuning only one free pa-
rameter, β. Actually, in Section 6 we noticed that by
increasing the gap between the two distinct time scales
defining the transient interval, the t-dependence of β is
suppressed, with β tending to one (Laplace distribution).
This situation closer resembles the current description of
the NGND phenomenon in complex systems.

However, NGND in low dimensional systems has the
advantage of being easily controllable by tuning the time
modulation of the microscopic dynamics. For instance,
the two simplest models discussed here, the free ellipsoidal
and Janus particles, exhibit remarkably different transient
distributions, respectively with fat, 1 ≤ β ≤ 2, and thin
tails, β ≥ 2. Platykurtic transient distributions are pe-
culiar to systems with rotational modulation of the diffu-
sion process, because, as discussed in Section 2, this can
cause negative time correlations of the unidirectional dis-
placement lengths; hence the negative values of the excess
kurtosis.

This conclusion is corroborated by Brownian diffusion
in the periodic array of 2D convection rolls discussed in
Section 7. In contrast with the elementary models of Sec-
tions 3 and 4, there the physical mechanism determining
the transient time varies depending on the strength of the
thermal fluctuations. At low temperatures, the transient
dynamics of the particle is governed by isotropic random
jumps from convection roll to convection roll, largely in-
sensitive to the details of its trajectory inside the individ-
ual rolls. On the contrary, at higher temperatures, but
still in the advective diffusion regime, roll jumping grows
faster compared with the circulation inside the rolls; tran-
sients are then dominated by a rotational dynamics, which
causes a negative excess kurtosis of the particle’s displace-
ments.

We conclude now mentioning a number of open issues
we intend to address in the future.

(i) We showed that low-dimensional systems exhibit
NGND transients for observation times not too much
larger than their largest intrinsic relaxation time. It re-
mains to be seen how one can make such transient time
intervals wider, for instance, by means of a hierarchy of
additional stochastic degrees of freedom.

(ii) We wonder to what extent our discussion of dis-
crete NGND in Section 2 is related to the formalism of
the large deviations theory [67]. This might provide an al-
ternate phenomenological description of the NGND tran-
sients, also applicable to higher dimensional systems.

(iii) NGND transients in laminar flows are of great rel-
evance in microfluidics. The results reviewed in Section
7 will be published in a more detailed report to be ap-
peared soon [68]. We showed that leptokurtic (platykutic)
transients are an effect of the mostly thermal (advective)
tracer’s diffusion. The question then rises as how this
explanation translates in the cases of turbulent flows, a

recurrent problem in biological systems.
(iv) Finally, it is conceivable that persistent NGND

transients impact how active micro-swimmers interact
with each other or with confining walls or other obstacles,
to form all kinds of clustered structures. The implications
of such a mechanism in the technology of active matter
need further investigation.
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