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Using the single-mode approximation, we first calculate entanglement measures such as negativity
(1–3 and 1–1 tangles) and von Neumann entropy for a tetrapartite W-Class system in noninertial
frame and then analyze the whole entanglement measures, the residual π4 and geometric Π4 average of
tangles. Notice that the difference between π4 and Π4 is very small or disappears with the increasing
accelerated observers. The entanglement properties are compared among the different cases from one
accelerated observer to four accelerated observers. The results show that there still exists entanglement
for the complete system even when acceleration r tends to infinity. The degree of entanglement is
disappeared for the 1–1 tangle case when the acceleration r > 0.472473. We reexamine the Unruh
effect in noninertial frames. It is shown that the entanglement system in which only one qubit is
accelerated is more robust than those entangled systems in which two or three or four qubits are
accelerated. It is also found that the von Neumann entropy S of the total system always increases with
the increasing accelerated observers, but the Sκξ and Sκζδ with two and three involved noninertial
qubits first increases and then decreases with the acceleration parameter r, but they are equal to
constants 1 and 0.811278 respectively for zero involved noninertial qubit.
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1 Introduction

One of the most studied notions of quantum correlations is
the entanglement due to its important role in quantum in-
formation theory. The study of entanglement begins with
Einstein, Podolsky, and Rosen [1], and Schrödinger [2–4]
around 1930s. Now, entanglement is regarded as a key re-
source in quantum technology and it is often intertwined
with quantum non-locality [5–8]. To quantify entangle-
ment, a well justified and mathematically tractable mea-
sure is required. Negativity is one of the most common
methods to quantify entanglement [9, 10] as well as whole
entanglement [11]. Also, another useful measurement is
von Neumann entropy, relative entropy [12–14]. Up to
now, some works have been treated on bipartite systems
except for a few multipartite systems [15–17] since entan-
glement shared between two or multiple parties [6, 18–22]
illustrates novel features. Collections of shared entangled
qubits allow one to perform a number of quantum me-
chanical forms of communication, such as quantum dense
coding and quantum teleportation [23–25] since they play
a significant role in efficient quantum communication [26–
31] and computational tasks [32, 33].

∗arXiv: 1911.03399.

In this work, we will investigate the tetrapartite entan-
glement of Dirac fields and consider the implementation of
quantum information task between observers in uniform
relative motion for a tetrapartite state, which is initially
entangled in a W-Class state. This is because the quantum
information in noninertial frame, which is a combination
of general relativity, quantum field theory and quantum
information theory, has been a focus of research topic in
recent years. Its main aim is to incorporate relativistic
effects to improve quantum-information tasks and to un-
derstand how such protocols will happen in curved space
times. Since tripartite entangled state was worked out [19]
and the Unruh effect was studied, most of the papers focus
their investigation in two main states, i.e., Greenberger–
Horne–Zeilinger (GHZ), W-state and other related states,
but the W-state with less study due to the complexity of
their calculations [34–39]. It should be pointed out that
the computation of entanglement for the tripartite pure
or mixed state in an accelerated frame is much more com-
plicated because the density matrix cannot be written as
the form of an X matrix. Nevertheless, we have recog-
nized that the degree of entanglement for the W-Class
state is more robust than that of the GHZ or relevant
states [40, 41]. This is another reason why we attempt to
carry out the W-Class entangled pure states even though
its relevant calculations are rather complicated in com-
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parison with other entangled states. Among the recent
study on the Unruh effect in quantum information, it is
found that in the fermionic case the degree to which en-
tanglement is degraded depends on the election of Unruh
modes. As done before, we also make use of the Rindler
coordinates which define two disconnected regions I and
II [42–44]. For tetrapartite W-Class state, say Alice, Bob,
Charlie, and David, in this work we will consider all differ-
ent cases from one accelerated observer to four accelerated
observers and calculate their negativity, and whole entan-
glement π4-tangle and Π4-tangle but we restrict ourself to
use the single mode approximation.

This work is organized as follows. In Section 2 we de-
scribe the tetrapartite entanglement of the W-Class for
various cases which are from one accelerated observer to
four accelerated observers. We obtain their density ma-
trices and calculate their negativities (1–1 tangle and 1–3
tangle) and whole entanglement measures. The von Neu-
mann entropy will be studied in Section 3. Finally, some
discussions and concluding remarks are given in Section
4.

2 Tetrapartite entanglement from one to four
accelerated observers

A generalization for N qubits of the W-Class entangled
state which we are going to consider in this work has the
form [45]:

|W ⟩N =
1√
N

|N − 1, 1⟩, (1)

where |N − 1, 1⟩ is a symmetric state involving a “1” and
others (N − 1) “0”s. For the tetrapartite system N = 4,
the W-Class entangled state can be written as follows

|W ⟩ = 1

2
[|1Â0B̂0Ĉ0D̂⟩+ |0Â1B̂0Ĉ0D̂⟩

+ |0Â0B̂1Ĉ0D̂⟩+ |0Â0B̂0Ĉ1D̂⟩], (2)

where we use subscripts A,B,C and D to denote those
observers and the Minkowski modes labeled with M are
omitted for observers A,B,C and D.

For this entangled W-Class state in noninertial frame, it
is conventional to use Rindler coordinates to describe this
system. The Rindler coordinates describe a family of ob-
servers with uniform acceleration and divide Minkowski
space-time into two inaccessible Regions I and II. The
rightward accelerating observers are located in Region
I and causally disconnected from their analogous coun-
terparts in Region II [46, 47]. We first give a brief re-
view of the connection between the vacuum and excita-
tion states in Minkowski coordinates and those in Rindler
coordinates. Our setting consists of two observers: Alice
and Bob. We first let Alice stay stationary, while Bob
moves in uniform acceleration. Consider Bob to be accel-
erated uniformly in the (t, z) plane. Rindler coordinates

(τ, ξ) are appropriate for describing the viewpoint of an
observer moving in uniform acceleration. Two different
sets of the Rindler coordinates, which differ from each
other by an overall change in sign, are necessary for cov-
ering Minkowski space. These sets of coordinates define
two Rindler regions that are disconnected from each other
[19, 48]

t=a−1eaξ sinh(aτ), z=a−1eaξ cosh(aτ), Region I
t=−a−1eaξ sinh(aτ), z=−a−1eaξ cosh(aτ), Region II.

(3)

A free Dirac field in (3+1) dimensional Minkowski space
satisfies the Dirac equation

iγµ∂µψ −mψ = 0, (4)

where m is the particle mass, γµ are the Dirac gamma
matrices, and ψ is a spinor wave function, which is com-
posed of the complete orthogonal set of fermion ψ+

k , and
antifermion ψ−

k modes and can be written as the following
form

ψ =

∫
(akψ

+
k + b†kψ

−
k )dk, (5)

where a†k(b
†
k) and ak(bk) are the creation and annihilation

operators for fermions (antifermions) of the momentum
k, respectively. They satisfy the anticommutation rela-
tion {ai, a†j} = {bi, b†j} = δij . The quantum field theory
for a Rindler observer can be constructed by expanding
the spinor field in terms of a complete set of fermion and
antifermion modes in Regions I and II as

ψ =

∫ ∑
τ

(cτkψ
τ+
k + dτ†k ψ

τ−
k )dk, τ ∈ {I, II}. (6)

Similarly, cτ†k (dτ†k ) and cτk(dτk) are the creation and anni-
hilation operators for fermion (antifermions), respectively,
acting on Region I (II) for τ = I (II) and satisfying sim-
ilar anticommutation relation as above. The relation be-
tween creation and annihilation operators in Minkowski
and Rindler space times can be found by using Bogoli-
ubov transformation

ak = cos rcI
k − sin rdII†

−k,

bk = cos rdI
k − sin rcII†

−k, (7)

where cos r = 1/
√
1 + e−2πωkc/a with ωk =

√
|k|2 +m2

and r is Bob’s acceleration parameter with the range r ∈
[0, π/4] for a ∈ [0,∞). It is seen from this equation and its
adjoint that Bogoliubov transformation mixes a fermion
in Region I and antifermions in Region II. As a result, it
is assumed that the Minkowski particle vacuum state for
mode k based on Rindler Fock states is given by

|0k⟩M =
1∑

n=0

An|nk⟩+I |n−k⟩−II , (8)
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where the Rindler Region I or II Fock states carry a sub-
script I and II, respectively on the kets, but the Minkowski
Fock states are indicated by the subscript M on the
kets. As what follows, we are only interested in using the
single mode approximation [19, 35, 49, 50, 50–53], i.e.,
wA,B,C,D = w and also uniform acceleration aA,B,C,D = a
(aw,M ≈ aw,U is considered to relate Minkowski and
Unruh modes) for simplicity and we will drop all labels
(k,−k) on the states. Even though the single mode ap-
proximation is invalid for general states, however the ap-
proximation holds for a family of peaked Minkowski wave
packets provided constraints imposed by an appropriate
Fourier transform are satisfied [54].

Using the single mode approximation, Bob’s vacuum
state |0B⟩ and one-particle state |1B⟩ in Minkowski space
are transformed into Rindler space. By applying the cre-
ation and annihilation operators to above equation (8)
and using the normalization condition, we can obtain
[19, 35, 49, 50, 50–53]

|0⟩M = cos(r)|0I0II⟩+ sin(r)|1I1II⟩,
|1⟩M = |1I0II⟩, (9)

where |nBI
⟩ and |nBII

⟩ (n = 0, 1) are the mode decom-
position of |nB⟩ into two causally disconnected Regions
I and II in Rindler space. It should be pointed out that
Bruschi et al. discussed the Unruh effect beyond the single
mode approximation [54], in which two complex numbers
qR and qL (the subindexes L and R corresponding to the
Left and Right regions in Rindler diagram, i.e., Regions I
and II) are used to construct the one-particle state, i.e.,
|1⟩ = qR|1R0L⟩ + qL|0R1L⟩. However, in the present case
for single mode approximation one has qR = 1, qL = 0 to

satisfy the normalization condition |qR|2 + |qL|2 = 1. It is
also worth noting that a Minkowski mode that defines the
Minkowski vacuum is related to a highly nonmonochro-
matic Rindler mode rather than a single mode with the
same frequency (see Refs. [43, 44, 54] for details). Other
relevant contributions [55–59] have also been made.

Since the moving observers are confined to Region I,
we have to trace out the part of the antiparticle state
in Region II. Let us apply Eq. (9) to the |W ⟩ state (2).
We study this entanglement system in four different cases.
First, we study the case when David is accelerated,

|WD⟩ = 1

2
[sin r(|0Â0B̂1Ĉ1D̂I⟩+ |0Â1B̂0Ĉ1D̂I⟩

+ |1Â0B̂0Ĉ1D̂I⟩) + cos r(|0Â0B̂1Ĉ0D̂I⟩
+ |0Â1B̂0Ĉ0D̂I⟩+ |1Â0B̂0Ĉ0D̂I⟩)+|0Â0B̂0Ĉ1D̂I⟩].

(10)

Second, we consider the case when Charlie and David
are accelerated,

|WCD⟩ = 1

2
[sin2 r(|0Â1B̂1ĈI1D̂I⟩+ |1Â0B̂1ĈI1D̂I⟩)

+ cos2 r(|0Â1B̂0ĈI0D̂I⟩+ |1Â0B̂0ĈI0D̂I⟩)

+ cos r sin r(|0Â1B̂0ĈI1D̂I⟩+ |0Â1B̂1ĈI0D̂I⟩

+ |1Â0B̂0ĈI1D̂I⟩+ |1Â0B̂1ĈI0D̂I⟩)

+ sin r(|0Â0B̂1ĈI1D̂I⟩+ |0Â0B̂1ĈI1D̂I⟩)

+ cos r(|0Â0B̂0ĈI1D̂I⟩+ |0Â0B̂1ĈI0D̂I⟩)]. (11)

Third, we consider the case when Bob, Charlie and
David are accelerated,

|WBCD⟩ = 1

2
(sin3 r|1Â1B̂I1ĈI1D̂I⟩+ cos3 r|1Â0B̂I0ĈI0D̂I⟩+ cos2 r sin r|1Â0B̂I0ĈI1D̂I⟩+ cos2 r sin r|1Â0B̂I1ĈI0D̂I⟩

+ cos r sin2 r|1Â0B̂I1ĈI1D̂I⟩+sin r cos2 r|1Â1B̂I0ĈI0D̂I⟩+sin2 r cos r|1Â1B̂I0ĈI1D̂I⟩+sin2 r cos r|1Â1B̂I1ĈI0D̂I⟩

+ sin2 r|0Â1B̂I1ĈI1D̂I⟩+ cos2 r|0Â0B̂I0ĈI1D̂I⟩+ cos r sin r|0Â0B̂I1ĈI1D̂I⟩+ sin r cos r|0Â1B̂I0ĈI1D̂I⟩

+ sin r cos r|0Â1B̂I1ĈI0D̂I⟩+ sin2 r|0Â1B̂I1ĈI1D̂I⟩+ cos2 r|0Â1B̂I0ĈI0D̂I⟩+ sin2 r|0Â1B̂I1ĈI1D̂I⟩

+ cos2 r|0Â0B̂I1ĈI0D̂I⟩+ cos r sin r|0Â0B̂I1ĈI1D̂I⟩+cos r sin r|0Â1B̂I0ĈI1D̂I⟩+sin r cos r|0Â1B̂I1ĈI0D̂I⟩). (12)
Fourth, we will study the case when Alice, Bob, Charlie, and David are accelerated,

|WABCD⟩=1

2
(cos3 r|0ÂI0B̂I0ĈI1D̂I⟩+cos3 r|0ÂI0B̂I1ĈI0D̂I⟩+cos2 sin r|0ÂI0B̂I1ĈI1D̂I⟩+cos2 r sin r|0ÂI1B̂I0ĈI1D̂I⟩

+cos2 r sin r|0ÂI1B̂I1ĈI0D̂I⟩+cos2 r sin r|0ÂI1B̂I1ĈI0D̂I⟩+cos r sin2 r|0ÂI1B̂I1ĈI1D̂I⟩+cos r sin2 r|0ÂI1B̂I1ĈI1D̂I⟩

+cos r sin2 r|0ÂI1B̂I1ĈI1D̂I⟩+sin r cos2 r|1ÂI0B̂I1ĈI0D̂I⟩+cos2 r sin r|1ÂI0B̂I1ĈI0D̂I⟩+sin2 r cos r|1ÂI0B̂I1ĈI1D̂I⟩

+sin2 r cos r|1ÂI0B̂I1ĈI1D̂I⟩+cos r sin2 r|1ÂI0B̂I1ĈI1D̂I⟩+sin r cos2 r|1ÂI1B̂I0ĈI0D̂I⟩+sin r cos2 r|1ÂI1B̂I0ĈI0D̂I⟩

+sin2 r cos r|1ÂI1B̂I0ĈI1D̂I⟩+sin2 r cos r|1ÂI1B̂I0ĈI1D̂I⟩+sin2 r cos r|1ÂI1B̂I0ĈI1D̂I⟩+sin2 r cos r|1ÂI1B̂I1ĈI0D̂I⟩

+sin2 r cos r|1ÂI1B̂I1ĈI0D̂I⟩+cos3 r|1ÂI0B̂I0ĈI0D̂I⟩+sin r cos2 r|1ÂI0B̂I0ĈI1D̂I⟩+cos2 r sin r|1ÂI0B̂I0ĈI1D̂I⟩

+cos2 r sin r|0ÂI0B̂I1ĈI1D̂I⟩+cos3 r|0ÂI1B̂I0ĈI0D̂I⟩+cos2 r sin r|0ÂI1B̂I0ĈI1D̂I⟩+sin2 r cos r|1ÂI1B̂I1ĈI0D̂I⟩

+sin3 r|1ÂI1B̂I1ĈI1D̂I⟩+sin3 r|1ÂI1B̂I1ĈI1D̂I⟩+sin3 r|1ÂI1B̂I1ĈI1D̂I⟩+sin3 r|1ÂI1B̂I1ĈI1D̂I⟩). (13)
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As what follows, we will study these different cases for
their negativities and von Neumann entropy to show their
entanglement properties which are related to the uniform
acceleration r.

2.1 Negativity

As a quantitative entanglement measure, the negativity
has been computed for many entangled systems. Negativ-
ity quantifies the entanglement in a state as the degree
to see whether the entangled system is still entangled or
not. An entangled system ρ is entangled if there exists
at least one negative eigenvalue for the partial transpose
of the corresponding density matrix. The negativity for a
tetrapartite state is defined as [11]

Nκ(ξøζ) = ||ρTκ

κ(ξøζ)|| − 1, Nκξ = ||ρTκ

κξ || − 1, (14)

which describe the entanglements 1–3 tangle and 1–1 tan-
gle, respectively. The notations ||ρTκ

κξøζ || and ||ρTκ

κξ || are the
trace-norm of each partial transpose matrix.

Alternatively, since ||O|| = tr
√
O†O for any Hermitian

operator O [60], one can write

||M || − 1 = 2

N∑
i=1

|λ(−)
M |i, (15)

where λ(−)
M are the negative eigenvalues of the matrix M .

After obtaining the density matrix of each system
and tracing out the antiparticle in Region II, we pro-
ceed to find the negative eigenvalues of each density
matrix in order to solve Eq. (15). This will make us
find negativities (1–3 tangle) for NA(BCD), NB(ACD),
NC(ABD), ND(ABC) by varying the quantities of accel-
erated qubits 1, 2, 3 or all. Analytical expressions of
the negativity are not written out due to their com-
plications, while we illustrate them in Fig. 1. Consid-
ering the symmetry of this entangled system, we have
NA(BCDI) = NB(ACDI) = NC(ABDI), NCI(ABDI) =
NDI(ABCI), NBI(ACIDI) = NCI(ABIDI) = NDI(ABICI)

and NAI(BICIDI) = NBI(AICIDI) = NCI(AIBIDI). We no-
tice that the entanglement degree decreases along with the
increasing accelerated observers. This means that the en-
tanglement system in which only one qubit is accelerated
is more robust than those entangled systems in which two
or three or four qubits are accelerated. It should be recog-
nized that the degree of entanglement for each system has
never been disappeared even in the infinite acceleration.

On the other hand, it is also important to find the 1–1
tangle which is required to calculate the whole entangle-
ment measures. With the similar process to the 1–3 tangle
case, we also trace out the necessary qubits and generate
bipartite subsystems with all possible combinations of all
qubits. Importantly, we might use the symmetry between
the negativity computations for each pair of qubits to get
those commutative negativities. The corresponding results

Fig. 1 The 1–3 tangle negativities as a function of the ac-
celeration parameter r. The blue solid line “1” corresponds to
NA(BCDI ) = NB(ACDI ) = NC(ABDI ), the gray dotdashed and
purple dotted lines “2” and 3 correspond to NA(BCIDI ) and
NDI (ABC), respectively. The red dashed line “4” corresponds
to NCI (ABDI ) = NDI (ABCI ), the brown dotdashed line “5” cor-
responds to NA(BICIDI ), the green dotted line “6” corresponds
to NBI (ACIDI ) = NCI (ABIDI ) = NDI (ABICI ) and the black
dashed line “7” corresponds to NAI (BICIDI ) = NBI (AICIDI ) =
NCI (AIBIDI ).

Fig. 2 The 1–1 tangle negativities as a function of the ac-
celeration parameter r. The blue solid line “1” corresponds to
NA(B) = NA(C) = NB(C), the green dotted line “2” corre-
sponds to NA(BI ) = NA(CI ) = NA(DI ) = NB(CI ) = NB(DI ) =
NC(DI ) and the red dashed line “3” corresponds to NAI (BI ) =
NAI (CI ) = NAI (DI ) = NBI (CI ) = NBI (DI ) = NCI (DI ).

are plotted in Fig. 2. There are 24 analytical results of the
1–1 tangle, which have the following possible values,

Nκξ =
1

2
(
√
2− 1) = 0.2071,

NκIξ =
1

16

[
− 2 cos(2r)− 6

+
√
2
√

28 cos(2r) + 9 cos(4r) + 27
]
,

NκIξI =
1

8

[
2 cos(2r)− cos(4r)− 5

+ 2
√
5 cos(4r)− 4 cos(2r) + 7

]
, (16)

where Nκξ > NκIξ > NκIξI and the Nκξ, NκIξ and NκIξI

with κ, ξ ∈ (A,B,C,D), are all possible subsystem com-
binations with two inertial qubits, one inertial qubit and
without any inertial qubit. It is interesting to see that the
degree of entanglement will be disappeared for the accel-
eration parameter r > 0.472473 in the case of the four
qubits being accelerated simultaneously.
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2.2 Whole entanglement measures

Another quantification of multipartite entanglement is the
residual tangle π4. The residual tangle which measures en-
tanglement among the four components can be calculated
by the following form [61] (see Fig. 3)

πκ = N2
κ(ξøζ) −N2

κξ −N2
κø −N2

κζ , (17)
πξ = N2

ξ(κøζ) −N2
ξκ −N2

ξø −N2
ξζ , (18)

πø = N2
ø(κξζ) −N2

øκ −N2
øξ −N2

øζ , (19)
πζ = N2

ζ(κξø) −N2
ζκ −N2

ζξ −N2
ζø, (20)

from which we are able to obtain the π4-tangle by

π4 =
1

4
(πκ + πξ + πø + πζ) . (21)

Moreover, we might use another whole entanglement
measurement defined as geometric mean [62] to describe
the entanglement property of this tetrapartite system

Π4 = (πκπξπøπζ)
1
4 . (22)

Likewise, we are going to omit the analytical results
due to the size of the polynomials and show their corre-
sponding plots in Fig. 4. In Fig. 5 we show a comparison
between π4 and Π4. Their difference implies that the en-
tangled system becomes more robust only when one qubit,

Fig. 3 Residual entanglement of Alice πA, Bob πB , Charlie
πC , and David πD as a function of the acceleration parameter
r illustrated in (a), (b), (c) and (d), respectively.

Fig. 4 Whole π4-tangle and geometric average Π4 as a func-
tion of the acceleration parameter r illustrated in (a) and (b)
respectively.

Fig. 5 Difference between π4 and Π4 as a function of the
acceleration parameter r.

say Alice in our case, is accelerated but other observers
are stationary. However, we notice that either π4-tangle
or Π4 can be used to describe the entanglement property
of this system since because of their small difference be-
tween them when three qubits (Bob, Charlie, and David)
or four qubits (Alice, Bob, Charlie, and David) are moving
in uniform acceleration.

3 von Neumann entropy

In order to know the measure of information for an en-
tangled quantum system it is necessary to study the von
Neumann entropy defined as [63]

S = −Tr(ρ log2 ρ) = −
n∑

i=1

λ(i) log2 λ(i), (23)

where λ(i) denotes the i-th eigenvalue of the density ma-
trix ρ. It should be pointed out that the density matrix
is not taken as its partial transpose. Based on this we are
able to measure the degree of the satiability of the studied
quantum state. We show the behaviour of the von Neu-
mann entropy in Fig. 6. As expected, the von Neumann
entropy of whole tetrapartite system increases with the
increasing acceleration. It is more interesting to see that
the von Neumann entropy becomes large with the number
of accelerated observers as shown in panel (a) of Fig. 6.

On the other hand, we show the subsystem entropies
for the bipartite case, which exists only 3 possible entropy
values. For the case when there is no any accelerated qubit,
the entropy of the subsystem will be Sκξ = 1. However,
when the system has only one accelerated qubit we have
the following eigenvalues:

λ
(1)
κIξ

=
1

2
cos2 r, λ

(2)
κIξ

=
1

2
sin2 r,

λ
(3,4)
κIξ

=
1

32

[
10− 2 cos(2r)

∓
√
2
√
−20 cos(2r) + 9 cos(4r) + 43

]
, (24)

where “∓” corresponds to λ(3)κIξ
and λ(4)κIξ

, respectively. On
the other hand, we find the eigenvalues for the bipartite
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Fig. 6 The von Neumann entropies S, Sκζδ and Sκξ as a function of acceleration parameter r are plotted in (a), (b) and
(c) respectively. They correspond to the tetrapartite, tripartite and bipartite systems.

system which has all the qubits accelerated,

λ
(1)
κIξI

=
1

2
cos4 r,

λ
(2)
κIξI

=
1

16
[1− cos(4r)],

λ
(3)
κIξI

=
1

16
[4 cos(2r)− cos(4r) + 5],

λ
(4)
κIξI

= −1

4
sin2 r[cos(2r)− 3]. (25)

The von Neumann entropies for the cases when one and
two observers are accelerated in uniform acceleration are
illustrated in panel (b) of Fig. 6. Finally, let us consider
the tripartite systems which include all possible combina-
tions, e.g. without accelerated observer and with one, two
and three accelerated observers. When there is no any ac-
celerated observer, the eigenvalues are given by 3/4 and
1/4 so one has Sκζδ = 0.811278. When the tripartite sys-
tem has only one accelerated observer, the eigenvalues are
given by

λ
(1)
κIζδ

=
1

4
cos2 r,

λ
(2)
κIζδ

=
1

4
[1−cos(2r)],

λ
(3,4)
κIζδ

=
1

32

[
2 cos(2r)∓

√
2
√
20 cos(2r)+9 cos(4r)+43+10

]
,

(26)

where the symbols “∓” correspond to λ
(3)
κIζδ

and λ
(4)
κIζδ

,
respectively.

When the tripartite system has two accelerated ob-
servers, the eigenvalues are given by

λ
(1)
κIζIδ

=
1

4
cos4 r,

λ
(2)
κIζIδ

=λ
(2)
κIζIδ

=
1

32
[1− cos(4r)],

λ
(4,5)
κIζIδ

=
1

16

[
3 cos(2r)+3∓

√
2
√

cos(4r) cos4 r+17 cos4 r
]
,

λ
(6,7)
κIζIδ

=3−3 cos(2r)∓
√
2

√
17 sin4 r+sin4 r cos(4r), (27)

When the tripartite system has three accelerated ob-

servers, the eigenvalues are given by

λ
(1)
κIζIδI

=
1

4
cos6 r,

λ
(2)
κIζIδI

= λ
(3)
κIζIδ

=
1

128
[cos(2r)−2 cos(4r)−cos(6r)+2],

λ
(4)
κIζIδI

=
1

128
[49 cos(2r) + 10 cos(4r)− cos(6r) + 38],

λ
(5)
κIζIδI

=
1

128
[− cos(2r)− 18 cos(4r) + cos(6r) + 18],

λ
(6,7)
κIζIδI

=
1

128
[− cos(2r)− 6 cos(4r) + cos(6r) + 6],

λ
(8)
κIζIδI

= −1

8
sin4 r[cos(2r)− 7]. (28)

Their von Neumann entropies are shown in panel (c) of
Fig. 6. The solid blue, dot-dashed grey, dotted green and
dashed red lines represent the von Neumann entropies for
the cases without any accelerated observer, with one, two
and three accelerated observers, respectively.

4 Discussions and concluding remarks

In this work we first computed the negativity of the en-
tangled W-Class tetrapartite state. We have noticed that
there exists disentanglement, i.e. entanglement of sudden
death, for 1–1 tangle case when r > 0.472473 only when
four observers are accelerated at the same time. Other
cases for 1–1 tangle and those for 1–3 tangle, however, are
always entangled. On the other hand, we have reverified
the fact that entanglement is an observer-dependent quan-
tity in noninertial frame. When we compare the whole en-
tanglement measures such as the arithmetic average π4
and geometric average value Π4, it is seen that for the
cases when the system has one or two accelerated qubits
there is a significant difference, that is, the arithmetic av-
erage value π4 is greater than the geometric average value
Π4. However, when the system depends on three and four
accelerated qubits, we find that their difference is almost
zero. This implies that we might make use of either π4 or
Π4 to describe this entangled system.

For the von Neumann entropy we have observed that
the entropy increases as the number of accelerated qubits
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increases in the system. Moreover, we have noticed that
the von Neumann entropies for both bipartite and tripar-
tite subsystems SκIξI and SκIζIδI are measured, we can
see that they arrive to a maximum entropy and then be-
gin to decrease. This implies that the subsystems ρκIξI

and ρκIζIδI are first more disorder and then the disorder
is reduced with the increasing acceleration. In addition,
we note that the von Neumann entropies are calculated
as Sκξδη = 0, Sκζδ = 0.811278 and Sκξ = 1, which cor-
respond to the tetrapartite, tripartite and bipartite cases
without any accelerated observer. This implies that the
system with more observers which are in stationary case
is more stable. Before ending this work, we give a use-
ful remark on the acceleration limit value r. As we know,
there exists the disentanglement phenomenon after the ac-
celeration r ≈ 0.472473 only when the 1–1 tangle of the
W-Class tetrapartite includes two accelerated observers.
This value is different from that of GHZ tetrapartite sys-
tem, in which this value was given by r ≈ 0.417. This
implies that the present W-Class tetrapartite system is
more robust than that of the GHZ tetrapartite system
since rW-Class ≈ 0.472473 > rGHZ ≈ 0.417. Finally, it
should be mentioned that we are going to see whether
or how the present study extends to the thermodynamic
properties as treated in Refs. [64, 65].
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