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The first gravitational wave (GW) – gamma-ray burst (GRB) association, GW170817/GRB 170817A,
had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time
of the GW signal. We generally discuss the astrophysical origin of the delay time, ∆t, of GW-GRB
associations within the context of compact binary coalescence (CBC) – short GRB (sGRB) associations
and GW burst – long GRB (lGRB) associations. In general, the delay time should include three terms,
the time to launch a clean (relativistic) jet, ∆tjet; the time for the jet to break out from the surrounding
medium, ∆tbo; and the time for the jet to reach the energy dissipation and GRB emission site, ∆tGRB.
For CBC-sGRB associations, ∆tjet and ∆tbo are correlated, and the final delay can be from 10 ms to
a few seconds. For GWB-lGRB associations, ∆tjet and ∆tbo are independent. The latter is at least
∼10 s, so that ∆t of these associations is at least this long. For certain jet launching mechanisms of
lGRBs, ∆t can be minutes or even hours long due to the extended engine waiting time to launch a
jet. We discuss the cases of GW170817/GRB 170817A and GW150914/GW150914-GBM within this
theoretical framework and suggest that the delay times of future GW/GRB associations will shed light
into the jet launching mechanisms of GRBs.
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1 Introduction

The first neutron star – neutron star (NS-NS) merger
gravitational wave source GW170817 [1] was followed by a
short gamma-ray burst (GRB) 170817A [2–4]. The short
GRB (sGRB) triggered the Fermi GBM at ∆t ∼ 1.7 s

*arXiv: 1905.00781v1.

after the merger and lasted for ∼ 2 s. It consists of two
pulses [3, 4], each lasting for ∼ 1 s. Earlier, a controversial
γ-ray signal, GW150914-GBM, was claimed by the Fermi
GBM team to follow the first black hole - black hole (BH-
BH) merger GW event, GW150914, with a delay of ∼ 0.4
s [5–7].

The LIGO/Virgo third observational run (O3) started
on April 1, 2019 and will last for one year. It is highly ex-
pected that more GW-GRB associations will be detected.
At least NS-NS mergers and NS-BH mergers with a mass
ratio q ≡ m1/m2 < 5 (m1 > m2) are expected to produce
sGRBs1) . If some BH-BH mergers can make GRBs, more
robust cases than GW150914/GW150914-GBM should be
identified. Finally, under certain conditions, core collapse
events that make long GRBs (lGRBs) may have a strong
enough GW signal to be detected as a GW burst (GWB)
by LIGO/Virgo GW detectors (e.g., [9]). It is possible that
GWB-lGRB associations may be detected in the future.

The delay time of a GRB with respect to the GW sig-
nal cannot only be used to constrain fundamental physics
(e.g., [10, 11]), but also carries important information
about GRB physics, including jet launching mechanism,
jet breakout from the surrounding medium, jet dissipa-
tion, and GRB radiation mechanism. All these are closely

1)NS-BH mergers with q > 5 would not produce a GRB since the
NS would not be tidally disrupted before being swallowed by the
BH as a whole (e.g., [8]).
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related to the unknown composition of the GRB jet,
which is subject to intense debate in the field of GRBs
([12] for a comprehensive discussion). The origin of the
∼ 1.7 s delay in GW170817/GRB 170817A has been
discussed in the literature (e.g., [4, 11, 13–16]). In this
mini-review, we systematically investigate several phys-
ical processes that contribute to the observed time de-
lay ∆t (Section 2). This is discussed within the context
of compact binary coalescence (CBC)-sGRB associations
and GWB-lGRB associations (Section 3). The case stud-
ies for GW170817/GRB 170817A and GW150914/GRB
150914-GBM are presented in Section 4. The results are
summarized in Section 5 with some discussion.

2 Delay time of GW-GRB associations

2.1 General consideration

We assume that both GWs and photons travel with speed
of light and only discuss the astrophysical origin of ∆t.
For discussions on how to use ∆t to constrain physics be-
yond the standard model, see Refs. [10, 11] and references
therein.

In general, the observed delay time due to an astrophys-
ical origin should consist of three terms (Fig. 1), i.e.,

∆t = (∆tjet +∆tbo +∆tGRB)(1 + z), (1)

where ∆tjet is the time for the engine to launch a relativis-
tic jet, ∆tbo is the time for the jet to penetrate through

and break out from the surrounding medium (the ejecta
in the CBC scenario and the stellar envelope in the core
collapse scenario), and ∆tGRB is the time after breakout
for the jet to reach the energy dissipation radius where the
observed γ-rays are emitted. The (1+ z) factor is the cos-
mological time dilation factor, which we will ignore in the
rest of the discussion. All three time intervals are mea-
sured in the rest frame of the Earth observer (with the
(1+z) correction). Since the engine is at rest with respect
to the observer (ignoring proper motion of both the source
and Earth) and since the jet is propagating with a non-
relativistic speed in the surrounding medium, ∆tjet and
∆tbo are also essentially the times ∆t̂jet and ∆t̂bo mea-
sured in the rest frame of the central engine, which we
call the “lab frame”.

2.2 ∆tjet

The jet launching time ∆tjet depends on the type of
the central engine and the jet launching mechanism of
GRBs. In the literature, a GRB jet can be launched ei-
ther through accretion (onto a BH or a NS) or a mag-
netic mechanism. The latter applies to an NS (magnetar)
engine. A relativistic jet is launched either as magnetic
bubbles generated from differential rotation of the NS or
through magnetic dipole spindown of a rapidly spinning
magnetar.

For an accreting central engine, ∆tjet can be decom-
posed into three terms:
∆tjet,acc = ∆twait +∆tacc +∆tclean, (2)

Fig. 1 A cartoon picture of a generic GW-GRB association. There are four steps: (1) A CBC or a core collapse event makes
a bright GW signal, either in the form of a “chirp” or a “GWB”. This marks the zero time point T0. The event produces a
hyper-accreting BH or a rapidly spinning magnetar; (2) After ∆tjet, a clean jet is launched from the central engine; (3) After
another time interval ∆tbo, the jet breaks out from the surrounding medium; (4) After another time interval ∆tGRB, the jet
reaches the GRB radius where γ-rays are emitted. Depending on the jet composition, there could be three possible sites: Rph,
RIS, and RICMART, which correspond to three different durations of ∆tGRB.
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where ∆twait is the waiting time for a specific accretion
model to operate; ∆tacc is the timescale to form the ac-
cretion disk and to start accretion; and ∆tclean is the
timescale to launch a relativistic jet since accretion starts,
which requires that mass loading is low enough, i.e., the
mass loading parameter

µ0 ≡ ηΓ0(1 + σ0) ≡ Ljet(t)/Ṁjet(t)c
2 ≫ 1, (3)

where η is the dimensionless enthalpy of the jet at the cen-
tral engine, Γ0 ∼ 1 is the initial Lorentz factor of the jet,
and σ0 is the ratio between the magnetic energy density
and matter energy density (including internal energy) at
the central engine. Here Ljet(t) is the time-dependent jet
luminosity, and Ṁjet(t) is the time-dependent mass load-
ing rate in the jet.

For the magnetic engine model, the jet launching time
can be decomposed as

∆tjet,mag = ∆twait +∆tB +∆tclean, (4)

where ∆twait is again the waiting time for a specific mag-
netic model to operate, ∆tB is the timescale to establish
a strong magnetic field through differential rotation, and
∆tclean is again the timescale for the environment to be-
come clean enough to launch a relativistic jet.

A few more words about ∆twait: Since the GRB jet
launching mechanism is not identified, different jet launch-
ing models make different assumptions. When we discuss
a particular model, ∆twait is defined as the waiting time
when the conditions for that mechanism to operate are sat-
isfied. For example, for a model invoking a hyper-accreting
BH to launch a jet, ∆twait is the waiting time for a BH
to form, which is the lifetime of a hypermassive neutron
star (HMNS) or a supramassive neutron star (SMNS) be-
fore collapsing. Within this model, no jet is launched if the
central object is an NS. On the other hand, under the same
physical condition but for the jet launching model invok-
ing a differentially rotating NS, a jet is directly launched
during the HMNS phase, so that ∆twait = 0. For an-
other example, in the magnetar model, if the jet launch-
ing mechanism is through magnetic spindown, the early
brief accretion phase may be regarded as ∆twait. On the
other hand, in the model invoking a hyper-accreting NS,
∆twait = 0 for the same physical condition. See Section 3
for a detailed discussion on different jet-launching models.

Several timescales are related to the dynamical
timescale of the system

tdyn = 2π

(
R3

GM

)1/2

≃ 1.8 ms R
3/2
6.5

(
M

3M⊙

)−1/2

, (5)

where M and R are the mass (normalized to 3M⊙, where
M⊙ is the solar mass) and radius of the central engine
(convention Qn = Q/10n in cgs units adopted throughout
the paper). In the accretion model, the disk forms within
tdyn, and the accretion starts within the viscous timescale

∼ α−1tdyn = 10α−1
−1tdyn, where α ∼ 0.1 is the dimen-

sionless viscosity constant. As a result, ∆tacc ∼ ntdyn,
where n ∼ 10. Similarly, in the magnetar model, mag-
netic amplification also takes a few dynamical timescales,
i.e., ∆tB ∼ ntdyn, where n ∼ a few.

In both models, the timescale for the jet to become
clean, ∆tclean is defined by the degree of mass loading. For
a new born, hot central engine (either the hot accretion
disk or the central magnetar), the dominant mass-loading
mechanism is through the neutrino wind, with the mass-
loading rate of an unmagnetized flow defined by [17]

Ṁν=(2.5×10−5 M⊙/s)L5/3
ν,52

( ϵν
10 MeV

)10/3
R

5/3
6

(
M

3M⊙

)−2

,

(6)
where Lν is the ν/ν̄ luminosity, and ϵν is the typical energy
of ν/ν̄. A magnetized engine will suppress mass loading
by limiting entry of protons into the jet [18]. A detailed
treatment of mass loading for the black hole and magnetar
central engines have been carried out by Lei et al. [18] and
Metzger et al. [19], respectively.

2.3 ∆tbo

After a clean jet with µ0 ≫ 1 is launched, it has to prop-
agate through the dense medium surrounding the engine.
For the case of CBC-sGRB associations, the surround-
ing medium is mostly the ejecta launched right before the
merger. For the case of GWB-lGRB associations, the sur-
rounding medium is the in-falling stellar envelope of the
progenitor star.

In order to launch a successful jet, a critical value of the
jet energy needs to be reached (e.g., [20]). In the follow-
ing, we assume that such a condition is satisfied, which is
justified by the observations of GRB 170817A that show
evidence of a successful jet [21, 22]. Very generally, the jet
breakout timescale can be written as

∆tbo =
Rout −Rin

(βjet,h − βout)c
, (7)

where Rout and βout are the radius and dimensionless ve-
locity (in the rest frame of the central engine) of the outer
boundary of the surrounding medium, Rin is the radius
of the central engine where the jet is launched, and βjet,h
is the dimensionless speed of the jet head propagating in-
side the medium. Notice that βjet,h is much smaller than
the termination dimensionless speed of the jet, βjet, due
to the high density of the surrounding medium. Whereas
βjet ∼ 1 for a relativistic jet, βjet,h = 0.1βjet,h,−1 is typi-
cally non-relativistic.

For the case of CBC-sGRB associations, the dynam-
ical ejecta moves outward with a dimensionless speed
βout = βej = 0.1βej,−1. The outer boundary of the ejecta2)

2)Note that the ejecta has a velocity profile, with the outer boundary
defined by the fastest layer in the ejecta. For an order-of-magnitude
treatment, we adopt the average speed of the ejecta.
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is defined as Rout = Rej = βejc(∆tjet + ∆ttidal), where
∆ttidal is the time interval between the epoch when the
neutron star is tidally disrupted (i.e., the dynamical ejecta
is launched) and the epoch of coalescence. This is typically
of the order of milliseconds [23].

In order to break out the ejecta, the jet head needs to
propagate faster than the ejecta. Let the jet head advance
with a dimensionless speed β′

jet,h in the ejecta frame. Its
lab-frame dimensionless speed reads

βjet,h =
β′

jet,h + βej

1 + β′
jet,hβej

. (8)

Equation (7) can be then written as

∆tbo(CBC/sGRB) ≃ βej(∆tjet +∆ttidal)−Rin/c

βjet,h − βej
, (9)

When ∆tjet ≫ ∆ttidal, one has Rout ≫ Rin, so that
∆tbo ≃ βej

βjet,h−βej
∆tjet ≃ (βej/β

′
jet,h)∆tjet ∝ ∆tjet (see also

Geng et al. [24]). In this case, the first two terms of Eq. (1)
are correlated with each other. Since different bursts likely
have different βej and β′

jet,h, the positive correlation be-
tween ∆tjet and ∆tbo should have a broad scatter.

For the case of GWB-lGRB associations, Rout is the
outer boundary of the stellar envelope, R∗, which may be
regarded as a constant during jet propagation, even if it
is slowly shrinking due to fallback. Since R∗ ≫ Rin, the
breakout time in this case is

∆tbo(GWB/lGRB) ≃ R∗

βjet,hc
. (10)

2.4 ∆tGRB

Since the jet travels with a relativistic speed after break-
ing out the surrounding medium (the brief acceleration
phase ignored), the observer-frame time ∆tGRB = (1 −
β cos θ)∆t̂GRB, where ∆t̂GRB is the lab-frame duration
for the jet to travel to the GRB emission radius, β is the
Lorentz factor and dimensionless speed of the relativistic
jet, and θ is the angle between the jet direction and the
line of sight. Since ∆t̂GRB ≃ RGRB/c, one has

∆tGRB ≃ (1− β cos θ)RGRB
c

≃ RGRB
Γ2c

. (11)

The last approximation is valid when θ ∼ (0–1/Γ) with
Γ being the Lorentz factor along the line of sight, which
is relevant for a relativistically moving outflow with the
1/Γ cone covering the line-of-sight. For GW170817/GRB
170817A, simple arguments have ruled out the scenario
invoking a top-hat jet beaming away from the line of sight
(e.g., [4, 13, 25]).

The GRB emission radius is not identified. In the litera-
ture, there are at least three sites that have been suggested
to emit γ-rays, which are

• The photosphere radius (e.g., [26–28])

Rph ≃ (6× 1012 cm)Lw,52Γ
−3
2 , (12)

where Lw is the isotropic-equivalent “wind” lumi-
nosity in the line-of-sight direction. Here the low-
enthalpy-regime (η < η∗ in the notation of Mészáros
& Rees [26]) has been adopted, which is relevant for
weak GRBs associated with CBCs at a large viewing
angle, such as GW170817/GRB 170817A.

• The internal shock radius [29, 30]

RIS = Γ2cδt ≃ (3× 1012 cm)Γ2
2δt−2, (13)

where δt is the variability timescale in the lightcurve,
which is typically 10s of milliseconds.

• The internal collision-induced magnetic reconnection
and turbulence (ICMART) radius [31, 32]

RICMART = Γ2ctpulse ≃ (3× 1014 cm)Γ2
2tpulse, (14)

where tpulse is the duration of the broad pulses in the
GRB lightcurve, which is typically seconds.

Which radius is relevant for GRB emission depends on the
composition of the jet. For a matter dominated fireball, a
quasi-thermal emission from the photosphere and a syn-
chrotron emission component from the internal shock are
expected [26, 33–35]. For a Poynting flux dominated out-
flow, both the photosphere and internal shock emission
components are suppressed, and the GRB emission site is
at a large radius RICMART [31].

Putting three cases together, one has

∆tGRB=


(200 s)(1−β cos θ)Lw,52Γ

−3
2 , RGRB=Rph

(1−β cos θ)Γ2δt, RGRB=RIS

(1−β cos θ)Γ2tpulse, RGRB=RICMART

≃


(20 ms)Lw,52Γ

−5
2 , RGRB=Rph,

δt, RGRB=RIS,

tpulse, RGRB=RICMART,

(15)

where the second part of the equation makes the assump-
tion that there is relativistic moving materials along the
line of sight.

2.5 Burst duration Tburst

It is relevant to discuss the true duration, Tburst, of a GRB
here. Note that observationally defined duration T90 is the
lower limit of Tburst, since it is limited by the detector’s
sensitivity.

GRBs usually show highly variable lightcurves, some-
times displaying multiple broad “pulses” with rapidly
varying spikes superposed on top [36]. Some GRBs only
have one or two broad pulses. For GRBs with multiple
pulses, the total duration Tburst is defined by the duration
of the central engine activity. The duration of a broad
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pulse, tpulse, has two different interpretations. For models
that invoke a small emission radius (Rph or RIS), one has
RGRB/(Γ

2c) ≪ tpulse, so tpulse has to be interpreted as the
duration of one episode of the central engine activity. The
broad pulses may be attributed to the modulation at the
central engine, e.g., the interaction between the jet and
the stellar envelope in the long GRB model (e.g., [37]).
The hard-to-soft evolution of the peak energy Ep across
broad pulses posed a challenge to such an interpretation
[38]. Within the ICMART model [31] or the large-radius
internal shock model [39], tpulse is interpreted as emission
duration of one fluid shell as it expands in space, with the
peak time defined as either the time when the shell reaches
the maximum dissipation, or when the synchrotron spec-
tral peak sweeps across the observational band [32, 40].
For bursts with one single broad pulse, the burst duration
is defined by

Tburst = tpulse ≃ RGRB
Γ2c

, (16)

which is the same expression as ∆tGRB (Eq. (11)).

3 Different GW-GRB association models

With the above preparation, in the following we discuss
the delay times for different GW-GRB association systems
in different models. The results are summarized in Table
1.

3.1 CBC-sGRB associations

BH-NS mergers with a moderate mass ratio (q < 5, [8])
are expected to be associated with sGRBs. The central
engine is a BH, and the jet launching mechanism is ac-
cretion. One has ∆twait = 0 s. The dynamical timescale
(Eq. (5)) is ∼ ms, so ∆tacc is ∼ 10 ms. A hyper-accreting
black hole engine is considered clean, especially if energy

is tapped via a global magnetic field [18]. One can take
∆tclean ∼ 0 s. Overall, one would expect ∆tjet ∼10 ms.
Assuming β′

jet,h ∼ 0.1, βej ∼ 0.1, and Rin ∼ 3 times of
the Schwarzschild radius, one gets ∆tbo ∼ ∆tjet +∆ttidal,
which is also ∼ 10 ms. Finally, ∆tGRB depends on jet
composition and dissipation mechanism (Eq. (15)). For
a νν̄-annihilation driven fireball, ∆tGRB is usually very
short (< ms) (unless Γ is extremely low) thanks to the
small emission radius. For a Poynting-flux-dominated jet,
∆tGRB ∼ tpulse can be up to the duration of the sGRB
itself.

NS-NS mergers are more complicated. Depending on the
equation of state and the total mass in the merger, there
could be four different outcomes (e.g., [41]): a promptly
formed BH, a differential-rotation-supported hypermas-
sivs NS (HMNS) followed by collapse, a uniform-rotation-
supported supramassive NS (SMNS) followed by collapse,
or a stable NS (SNS). The prompt BH case is similar
to the BH-NS merger case. For the HMNS case (which
forms a BH within ∼ (0.1–1) s after the merger) and the
SMNS/SNS case (which forms a long-lived NS), we con-
sider both an accretion-powered jet and a magnetically
powered jet, respectively.

The HMNS/BH accretion model assumes that the jet
is launched when the BH is formed. This model intro-
duces a waiting time ∆twait ∼ ∆tHMNS ∼ (0.1–1) s, where
∆tHMNS is the lifetime of the HMNS. The jet launching
time ∆tjet is dominated by ∆twait, and the jet breakout
time ∆tbo scales up with ∆tjet proportionally. The third
time ∆tGRB again can be from shorter than ms (fireball
photosphere emission) to the duration of the burst itself
(Poynting jet).

The HMNS/BH magnetic model assumes that a jet can
be launched during the HMNS phase, so that ∆twait = 0
s. The magnetic field amplification time ∆tB is again sev-
eral times of tdyn, i.e., ∼ 10 ms. The “clean” time tclean
is quite uncertain. Rosswog et al. [42] performed magne-
tohydrodynamic (MHD) simulations of NS-NS mergers in

Table 1 ∆t in different GW-GRB association scenarios.

System Engine Jet mechanism ∆tjet ∆tbo ∆tGRB ∆t

∆twait ∆tacc/∆tB ∆tclean

BH-NS BH accretion ∼ 0 s ∼ 10 ms ∼ 0 s (10–100) ms < ms to ∼ s (0.01–few) s
NS-NS BH accretion ∼ 0 s ∼ 10 ms ∼ 0 s (10–100) ms < ms to ∼ s (0.01–few) s
NS-NS HMNS/BH accretion (0.1–1) s ∼ 10 ms ∼ 0 s (0.1–1) s < ms to ∼ s (0.1–few) s
NS-NS HMNS/BH magnetic ∼ 0 s ∼ 10 ms (0–1) s (0.01–1) s < ms to ∼ s (0.01–few) s
NS-NS SMNS/SNS accretion ∼ 0 s ∼ 10 ms (0–0.1) s (10–100) ms < ms to ∼ s (0.01–few) s
NS-NS SMNS/SNS magnetic ∼ 0 s ∼ 10 ms (0–10) s (0.01–10) s < ms to ∼ s (0.01–10) s

Type I collapsar BH accretion (0–several) s ∼ 10 ms ∼ 0 s (10–50) s < ms to ∼ s (10–50) s
Type II collapsar BH accretion (102–104) s ∼ 10 ms ∼ 0 s (10–50) s < ms to ∼ s (102–104) s
core collapse magnetar accretion ∼ 0 s ∼ 10 ms (0–10) s (10–50) s < ms to ∼ s (10–50) s
core collapse magnetar magnetic ∼ 0 s ∼ 10 ms (0–10) s (10–50) s < ms to ∼ s (10–50) s
core collapse magnetar spindown (1–103) s N/A ∼ 10 s (10–50) s < ms to ∼ s (10–103) s
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the HMNS phase and claimed that magnetic fields can be
amplified to several times of 1017 G within ∆tB ∼ 10 ms.
They suggested that a relativistic short GRB jet can be
launched along the axis of the binary orbit during this pe-
riod of time, even though their numerical simulations were
not able to resolve the baryon loading process. Within this
scenario, ∆tclean may be as short as 0 s, so that ∆tjet is
of the order of ∆tB ∼ 10 ms. The breakout time ∆tbo is
correspondingly short. On the other hand, a recent nu-
merical simulation [43] suggested that no relativistic jet is
launched before 100 ms due to strong baryon loading. If
this is the case, ∆tclean may be at least ∼ 0.1 s for this
model. Both ∆tjet and ∆tbo are increased correspondingly.
Again ∆tGRB is negligible in the fireball model and can
be of the order of the burst duration in the Poynting jet
model.

Finally, the SMNS/SNS models assume that such sys-
tems can power sGRBs [44–46]. The observational evi-
dence of this class of models is the so-called “internal X-
ray plateau” (a lightcurve plateau followed by a sharp drop
of flux which can be only interpreted as “internal” dissipa-
tion of a central engine outflow) observed following a good
fraction of sGRBs [47–49]. The plateau is best interpreted
as internal dissipation of a post-merger massive magnetar
wind [50–53] during the magnetic spindown phase [54].
The sGRB needs to be produced by the massive NS, likely
shortly after the merger.

The SMNS/SNS accretion model assumes that a rela-
tivistic sGRB jet can be launched from a magnetar via
hyper-accretion [46, 55]. Within this scenario, ∆twait = 0
s, and accretion starts after ∆tacc ∼ 10 ms. Baryon loading
in this model has not been well-studied, and it is assumed
that ∆tclean is short, e.g., 0–100 ms. As a result, both
∆tjet and ∆tbo are tens of ms. ∆tGRB is again from < ms
(fireball) to ∼ 1 s (Poynting jet).

The SMNS/SNS magnetic model is similar to the
HMNS/BH magnetic model, except that ∆tclean can be
longer (no longer limited by ∆tHMNS). Within the most
optimistic model suggested by Rosswog et al. [42], ∆tclean
can be as short as ∼ 0 s. On the other hand, according
to the calculation of Metzger et al. [19], baryon mass loss
rate in a proto-NS could be initially very high, e.g., σ0 < 1
before ∼ 2 s and σ0 < 100 before ∼ 10 s. Within this sce-
nario, the outflow is initially non-relativistic, and a clean
jet capable of producing a sGRB is launched only after
∆tclean ∼ (1–10) s. A longer ∆tclean leads to longer ∆tjet
and ∆tbo, which can exceed ∆tGRB even for the Poynting
jet case. The total delay time ∆t could be dominated by
∆tclean.

3.2 GWB-lGRB associations

Within the core collapse model of long GRBs, the vio-
lent collapsing process may leave behind a central object
with a significant quadruple moment to generate a GW
burst (e.g., [9]). For these systems, unlike CBCs, it is not

straightforward to define the epoch of significant GW ra-
diation (i.e., the peak of GW burst signal). The strongest
GW radiation is likely produced during the core collapse
phase (e.g., [56]). The rapidly proto-NS (magnetar) may
carry a significant quadruple moment and radiate GW
emission as well [54, 57, 58]. Finally, after the NS collapses
to a BH, the neutrino-dominated accretion flow (NDAF)
into the BH may also radiate GW, even if with a lower
amplitude (e.g., [59]). In the following discussion, we as-
sume that the GWB emission peaks at the core collapse
time.

One can consider two general categories of models: core
collapse events leading to a BH engine (which is usually
called the “collapsar” model), and core collapse events
leading to a magnetar engine (which we call the “magne-
tar” model). The progenitor of both types of engines can
be either an isolated single star or a binary system whose
merger induces the core collapse of the merged star.

Two types of collapsars have been discussed in the lit-
erature: Type I collapsar model [60, 61] invokes the col-
lapse of the iron core of a rapidly rotating helium star,
forming a short-lived NS that subsequently collapses in a
few seconds. Type II collapsar model [62], on the other
hand, invokes a long-lived NS, which continues to ac-
crete fall-back materials for an extended period of time
before collapsing to a BH minutes or even hours later.
The progenitor stars of Type II collapsars are more com-
mon, so that these events may have a higher rate than
Type I collapsars [62]. For either case, since a BH is
required to launch a GRB jet, there is a waiting time
∆twait that marks the duration of the proto-NS phase,
ranging from several seconds (Type I collapsar) to hours
(Type II collapsar). This term is likely the dominating
term in ∆tjet. Unlike CBC-sGRB associations, the jet
breakout time ∆tbo is independent of ∆tjet when ∆tjet
is smaller than the free-fall timescale of a massive star
tff = [3π/(32Gρ̄)]1/2 ∼ 180 s (ρ̄/100 g · cm−3)−1/2 (ρ̄ is
the mean density of the stellar envelope), and is set by the
size of the progenitor and the jet head speed. The widely
accepted progenitor system of lGRBs is Wolf–Rayet stars
[63]. Taking R∗ ∼ 1011 cm and βjet,h ∼ 0.1, one gives
∆tbo ∼ (10–50) s based on Eq. (10), which is longer than
∆tGRB. The final ∆t is ∼ tens of seconds for Type I col-
lapsar and ∼ (102–104) s for Type II collapsar.

For the magnetar model, a long GRB may be produced
via one of the following three mechanisms: accretion, mag-
netic due to differential rotation, and magnetic due to
spindown. The three mechanisms differ mainly in ∆tjet.
For the accretion mechanism (e.g., [55]) and magnetic
mechanism (e.g., [64–66]), ∆twait ∼ 0 s. The jet launch-
ing time ∆tjet is mostly controlled by ∆tclean, which may
range from milliseconds (for most optimistic scenarios,
e.g., [64, 66]) to ∼ 10 s [19]. In any case, ∆tbo would
contribute significantly to the total ∆t. For the spin-
down model [57, 67], the assumption is that a GRB jet
is launched as the magnetar spins down. This would be
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after the early accretion phase. As a result, one should
introduce an early ∆twait for the duration of the accretion
phase, which would be typically 1–103 s. This is based on
the observed duration of long GRBs (which are interpreted
as the accretion time for most models) and an estimate of
the free-fall timescale of a massive star tff ∼ 180 s, which
is the minimum timescale for accretion. As a result, this
model would have a longer ∆t ∼ (10–103) s than other
magnetar models, with the delay mostly contributed from
∆twait.

4 Case studies

4.1 GW170817/GRB 170817A association

This is the only robust GW-GRB association case. The
GRB trigger time is delayed by ∼ 1.7 s with respect to the
binary NS merger time [2]. The duration of GRB 170817A
is ∼ 2 s, with two pulses each lasting ∼ 1 s [3, 4]. Since
this was a relatively weak burst, the true duration of each
component (tpulse) could be longer than 1 s.

According to the theory discussed above, there are two
possible interpretations to the ∼ 1.7 s delay.

The first scenario invokes a matter/radiation-dominated
fireball. Within this scenario, the sGRB is most likely
emission from the photosphere. Using Eq. (15) and noticing
L∼1047 erg·s−1 for GRB 170817A [3, 4], one has∆tGRB∼
(20 ms) L47Γ

−5
1 . Forcing ∆tGRB ∼ 2 s, one requires

very low Lorentz factor Γ ∼ 4. This was the suggested
“cocoon breakout model” (or mildly relativistic, wide
angle outflow model) of GRB 170817A shortly after the
discovery of the event (e.g., [68, 69]), which was later
disfavored by the discovery of superluminal motion of
the radio afterglow of the source [21, 22]. Modeling of
radio afterglow of the source suggests that the outflow
Lorentz factor decays with time as Γ ∼ 4(t/10 day)−0.29

[70], which means that at t < 10 d, one has Γ≫ 4. This
suggests that within this scenario, one has ∆tGRB ≪ ∆t,
and the delay should be attributed to ∆tjet and ∆tbo.
One way to make a long ∆tjet is to introduce a long
∆twait ∼ 1 s, which is regarded as the duration of the
HMNS phase. Such a waiting time was indeed introduced
in some of the numerical simulations (e.g., [71, 72]), and
was suggested from kilonova modeling as well [73, 74].
A long waiting time is also the necessary condition
to make a significant cocoon emission component [24].
This scenario has to assume that no relativistic jet is
launched during the HMNS phase [75, 76], in contrast
to some previous sGRB models (e.g., [42]). The issue of
this scenario is that one has to interpret the delay time
∆t ∼ 1.7 s and the duration of the burst T90 ∼ 2 s using
two different mechanisms: while ∆t is mostly controlled
by ∆twait, T90 has to be defined by the duration of the
central engine (accretion timescale). The similar values of
the two timescales have to be explained as a coincidence.

The second scenario, as advocated by Zhang et al. [4],

attributes ∆t mostly to ∆tGRB. This is motivated by the
intriguing fact that ∆t ∼ 1.7 s and T90 ∼ 2 s are compa-
rable. Based on Eq. (15), for a Poynting-flux-dominated
outflow, ∆tGRB ∼ tpulse. If one takes the first pulse only
and considers the weak nature of GRB 170817A (the true
pulse duration should be longer than what is observed),
one has ∆tGRB > 1 s, which occupies most of the observed
∆t. Within this scenario, both ∆tjet and ∆tbo are short
(say, ≪ 0.5 s), which suggests a negligible ∆twait. Within
this scenario, there is no need to introduce an HMNS. The
engine could be a BH, an HMNS with a lifetime shorter
than 100 ms, an SMNS or even an SNS. One prediction of
such a scenario is that ∆t should be correlated with the
burst duration (if the bursts have 1–2 simple pulses like
GRB 170817A). For example, if the next NS-NS-merger-
associated sGRB has a shorter duration (e.g., 0.5 s), the
delay time ∆t should be also correspondingly shorter. A
smaller ∆twait also suggests a less significant cocoon emis-
sion, even though the outflow is still a structured jet [24].

4.2 GW150914/GW150914-GBM association

Since observationally the case is not robust, this associa-
tion may not be physical. On the other hand, if the asso-
ciation is real, the delay timescale ∆t ∼ 0.4 s places great
constraints on the proposed models.

Most proposed models to interpret GW150914-GBM in-
voke substantial matter around the merging site. Loeb [77]
invoked two BHs formed during the collapse of a massive
star. Accretion after the merger powers the putative GRB.
Putting aside other criticisms to the model (e.g., [78, 79]),
∆t in such core collapse model should be at least ∆tbo,
which is 10s of seconds. The observed ∆t ∼ 0.4 s there-
fore essentially rules out the model, unless a contrived
jet launching time is introduced [80]. The same applies to
other models that invoke a massive star as the progenitor
of the putative GRB (e.g., [81]). The reactivated accretion
disk model [82] is not subject to this constraint. However,
it is likely that the reactivation happens way before the
merger itself [83].

The charged BH merger model (Zhang [84], see [85])
for a more general discussion of charged CBC signals and
Dai [86] for related signals) does not invoke a matter en-
velope surrounding the merger system. Within the frame-
work discussed in this paper, both ∆tjet and ∆tbo are ∼ 0
s, and ∆t is dominated by ∆tGRB (see [84] for detailed
discussion). The difficulty of this model is the origin of
the enormous charge needed to account for the GRB.

5 Summary and discussion

We have discussed various physical processes that may
cause a time delay ∆t of a GRB associated with a GW
event. The conclusions can be summarized as follows:

• In general, there are three timescales, i.e., ∆tjet, ∆tbo
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and ∆tGRB, that will contribute to the observed ∆t.
Since the GRB jet launching mechanism is poorly un-
derstood, different scenarios make different assump-
tions. The assumptions introduced in different sce-
narios are sometimes contradictory (e.g., regarding
whether a BH is needed to launch a GRB jet). The re-
sults are summarized in Table 1. With the GW infor-
mation (which sets the fiducial time), one can in prin-
ciple test these scenarios with a sample of GW/GRB
associations in the future.

• We considered both CBC-sGRB associations and
GWB-lGRB associations. For the former, different
models point towards a similar range of ∆t: from 10
ms to a few seconds. The 1.7 s delay of GW170817/
GRB 170817A falls into this range, so this duration
alone cannot be used to diagnose the jet launching
mechanism. On the other hand, a statistical sample
of GW/GRB associations can be in principle used to
test the two scenarios with and without a significant
intrinsic central engine waiting time: If ∆t of different
events are independent of the duration of the sGRB
and especially the duration of the GRB pulses tpulse,
then it would be likely controlled by ∆tjet, in partic-
ular, ∆twait of the central engine. Such a ∆twait may
be attributed to the lifetime of an HMNS, and a BH
engine is needed to power a sGRB. If, on the other
hand, ∆t is always roughly proportional to tpulse, as
is the case of GW170817/GRB 170817A association,
then ∆t is likely dominated by ∆tGRB, with negligi-
ble ∆tjet and ∆tbo. The jet composition in this case
is likely Poynting-flux-dominated, and the launch of
a GRB jet may not necessarily require the formation
of a BH.

• The GWB-lGRB associations all should have a longer
delay, with ∆t at least defined by the jet propagation
and breakout time ∆tbo, which is at least ∼ 10 s.
In some models, such as the Type II collapsar model
and the magnetar spindown model, there could be an
additional waiting time ∆twait before the presumed
jet launching mechanism starts to operate. In these
cases, the delay can be as long as minutes to even
hours. Detecting GWB-lGRB associations with such
a long delay (e.g., ≫ 100 s) would point towards these
specific jet launching mechanisms or a progenitor star
much larger in size than a Wolf–Rayet star.

Acknowledgements I thank Wei-Hua Lei, Robert Mochkovitch,
and Bin-Bin Zhang for discussion on the origin of ∆t of
GW170817/GRB170817A association.
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