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We review our recent works on the quantum transport, mainly in topological semimetals and also in
topological insulators, organized according to the strength of the magnetic field. At weak magnetic
fields, we explain the negative magnetoresistance in topological semimetals and topological insulators
by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that
the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we
establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals.
We propose a new mechanism of 3D quantum Hall effect, via the “wormhole” tunneling through the
Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum
limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can
be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields,
longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.
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1 Introduction

In the previous article, we have reviewed our recent works
on quantum transport phenomena in topological Weyl and
Dirac semimetals under magnetic fields [1], which covers
weak (anti-)localization [2, 3], negative magnetoresistance
in Weyl/Dirac semimetals [4], and magnetotransport in
the quantum limit [5, 6]. In this review, we summarize our
recent works that were not addressed in Ref. [1], specifi-
cally, on the 3D quantum Hall effect [7], quantum oscilla-
tions in Weyl/Dirac [8] and nodal-line semimetals [9], and
negative magnetoresistance in topological insulators [10],
Weyl-node annihilation, [11] and vanishing backscattering
[12] in the quantum limit. Following the structure in the
previous review, these phenomena are organized depend-
ing on the strength of the magnetic field. There are several
recent review papers on topological semimetals [13–16].

The structure of this review is as the following. In Sec-
tion 2, we introduce the models we used for describing
Weyl, Dirac, nodel-line semimetals, and topological insu-
lators. In Section 3, we survey the negative magnetore-
sistance without chiral anomaly in topological insulators
[10]. In Section 4, we discuss quantum oscillations with
the anomalous phase shift in topological semimetals [8].
In Section 5, we present the rules for phase shifts of quan-
tum oscillations in topological nodal-line semimetals [9].
In Section 6, we predict a 3D quantum Hall effect of
Fermi arcs in topological semimetals [7]. In Section 7, we
present the theory for the Weyl fermion annihilation in
the quantum limit. The signature is recently observed as
a sharp reversal in the Hall resistance of the topological
Weyl semimetal TaP at extremely strong magnetic fields
[11]. In Section 8, we propose that resistance dips in the
quantum limit can serve as a signature for topological in-
sulators because of forbidden backscattering [12]. Finally,
we remark on future works in Section 9.

2 Models for topological semimetals and
insulators

In this section, we introduce the models we used for de-
scribing Weyl, Dirac, nodel-line semimetals, and topolog-
ical insulators.

2.1 Topological Weyl semimetal

The topological Weyl and Dirac semimetal are 3D topo-
logical states of matter [17–28]. Their energy bands touch
at the Weyl nodes which host monopoles. The Weyl
nodes have been verified in the Dirac semimetals Na3Bi

[24, 29, 30] and Cd3As2 [4, 26, 31–36], and the Weyl
semimetal TaAs family [37–43, 43–52], TaIrTe4 [53] and
YbMnBi2 [54]. Also, Weyl semimetals can be induced from
half-Heusler compounds by applying magnetic fields [55–
57].

According to Section 2.1 of Ref. [1], a Weyl semimetal
can be described by a two-node Hamiltonian [58–60]

H = A(kxσx + kyσy) +M(k2w − k2)σz, (1)

where (σx, σy, σz) are the Pauli matrices, k = (kx, ky, kz)
is the wave vector, A, M , and kw are model parame-
ters. The eigen energies of the Hamiltonian are Ek

± =

±[M2(k2w−k2)2+A2(k2x+k
2
y)]

1/2, with + for the conduc-
tion band and − for the valence band. The two Weyl nodes
are at (0, 0,±kw), and it has been demonstrated that the
model is of all the topological semimetal properties [60],
in particular, the Fermi arcs [6], different from the k · σ
model [2, 61, 62]. This model has the topological proper-
ties because of the σz term [63]. For the 3D quantum Hall
effect in Section 6, the above model is added with two
trivial D terms [58–60]

H = D1k
2
y+D2(k

2
x+k

2
z)+A(kxσx+kyσy)+M(k2w−k2)σz.

(2)

2.2 Topological Dirac semimetal

A Dirac semimetal can be regarded as a Weyl semimetal
and its time-reversal partner. Dirac semimetals can be
studied by using the Hamiltonian [24, 26, 64]

H = ε0(k) +


M(k) Ak+ 0 0

Ak− −M(k) 0 0

0 0 M(k) −Ak−
0 0 −Ak+ −M(k)


+
µB

2
(σ ·B)⊗

(
gs 0

0 gp

)
, (3)

where gs is the g factor for the s band, gp is the g factor for
the p band [64], k± = kx±iky, ε0(k) = C0+C1k

2
z+C2(k

2
x+

k2y), and M(k) = M0 +M1k
2
z +M2(k

2
x + k2y). The x, y,

and z axes in the Hamiltonian are defined along the [100],
[010], and [001] crystallographic directions, respectively.

2.3 Topological nodal-line semimetal

Nodal-line semimetals [65–68], in which the cross sections
of conduction and valence bands are closed rings [Fig. 3(a)]
in momentum space [69–72], have the drumhead surface
states, of which the direct evidence is still missing [73].
Recently, a new type of surface state called the float-
ing band was discovered in the nodal-line semimetal Zr-
SiSe [74]. Besides, when the symmetries are broken, the
nodal-line semimetals may develop into Dirac semimet-
als, topological insulators, and surface Chern insula-
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tors [75]. The nodal lines are predicted in many ma-
terials, such as HgCr2Se4 [20], graphene networks [76],
Cu3(Pd/Zn)N [77, 78], SrIrO3 [79, 80], TlTaSe2 [81],
Ca3P2 [82, 83], CaTe [84], compressed black phosphorus
[85], CaAg(P/As) [86], CaP3 family [87], PdS monolayer
[88], Zintl compounds [89], BaMX3 (M = V, Nb and Ta,
X = S, Se) [90], rare earth monopnictides [91], alkaline-
earth compounds [92–94], other carbon-based materials
[69, 95], and metallic rutile oxides XO2 (X = Ir, Os, Rd)
[96]. So far, the nodal lines have been verified in ZrSiS
[97–99], PbTaSe2 [100, 101], InBi [102] and PtSn4 [103]
by ARPES.

The Hamiltonian of nodal-line semimetals can be de-
scribed as [81, 100]

H =
{[
ℏ2(k2x + k2y)/(2m)− u

]
τ3 + λkzτ1

}
⊗ σ0, (4)

where k = (kx, ky, kz) is the wave vector, τ , σ are
the Pauli matrices, λ, m, and u are model parameters
[81, 100]. The eigen energies of the Hamiltonian are E± =

±
√

[ℏ2(k2x + k2y)/(2m)− u]2 + λ2k2z . When u is positive,
two bands intersect at zero energy as k2x + k2y = 2mu/ℏ2,
which describes the nodal-line ring. The radius of the
nodal ring is

√
2mu/ℏ [Fig. 3(a)]. When EF < u, the dis-

persions result in a torus Fermi surface [Fig. 3(a)]. When
EF > u, the Fermi surface evolves into a drum-like struc-
ture [Fig. 3(a)]. Because of the low carrier density of the
samples in experiments [97, 98], we focus on the case that
EF < u. Moreover, the model in Eq. (4) is of the mirror
reflection symmetry [81, 100]. Nodal lines can also be pro-
tected by other symmetries [67, 70, 78, 104], for example,
two-fold screw rotation [79, 80], four-fold rotation, inver-
sion [67] and non-symmorphic symmetry through a glide
plane [97, 98], etc.

2.4 Topological insulator

3D topological insulators can be described by the k · p
Hamiltonian [58, 105, 106]

H0 = Ck +


Mk 0 iVnkz −iV⊥k−
0 Mk iV⊥k+ iVnkz

−iVnkz −iV⊥k− −Mk 0

iV⊥k+ −iVnkz 0 −Mk

 ,

(5)

where Mk = M0 + M⊥(k
2
x + k2y) + Mzk

2
z , Ck = C0 +

C⊥(k
2
x+k

2
y)+Czk

2
z , Ci, Mi and Vi are model parameters.

The model depicts a 3D strong topological insulator as
M0M⊥ < 0 and M0Mz < 0 [58]. There are four energy
bands εn(k) near the Γ point, two conduction bands and
two valence bands (see Fig. 2 in Ref. [10]). The model
has been shown effective to give proper descriptions for
the topological surface states [63, 107, 108] and explain
the negative magnetoresistance in topological insulators
[10, 109–112].

In the presence of the magnetic field, the Zeeman Hamil-
tonian reads

HZ =
µB

2


gvzBz gvpB− 0 0

gvpB+ −gvzBz 0 0

0 0 gczBz gcpB−

0 0 gcpB+ −gczBz

 , (6)

where gv/c,z/p are Landé g-factors for valence/conduction
bands along the z direction and in the x–y plane and µB

is the Bohr magneton.

3 Weak field: Negative magnetoresistance in
topological insulators

Recently discovered topological semimetals can host the
chiral anomaly, namely, the violation of the conserva-
tion of chiral current [113–115], which is widely be-
lieved to be the cause of the negative magnetoresistance
[4, 35, 36, 45, 46, 116–123]. Nevertheless, in topological
insulators, where the chiral anomaly is not well defined in
the momentum space, a negative magnetoresistance can
also be observed. This results in great confusion [109–
112, 124–126] on the explanation of the negative magne-
toresistance. Lately, it is found that the chiral anomaly in
real space can be defined in a quantum spin Hall insula-
tor [127]. In Ref. [10], we use the semiclassical Boltzmann
formalism with the Berry curvature and orbital moment,
to explain the negative magnetoresistance in topological
insulators, and show a quantitative agreement with the
experiments (see Fig. 1).

3.1 Anomalous velocity

The Berry curvature and orbital moment will induce the
anomalous velocity, which may lead to the negative mag-
netoresistance. In experiments, the negative magnetoresis-
tance exists above T = 100 K [111], thus quantum inter-
ference mechanisms can be excluded. In addition, due to
the poor mobility in the topological insulators Bi2Te3 and
Bi2Se3 [129], when the magnetic field is up to 6 Tesla, the
Landau levels cannot be well-formed. In the semiclassical
regime, the electronic transport can be described by the
equations of motion [130]

ṙ =
1

ℏ
∇kε̃k − k̇ ×Ωk, k̇ = − e

ℏ
(E + ṙ ×B), (7)

where both the position r and wave vector k appear si-
multaneously, ṙ and k̇ are their time derivatives, −e is the
electron charge, E and B are external electric and mag-
netic fields, respectively. ε̃k = εk −m ·B, εk is the band
dispersion, m is the orbital moment induced by the semi-
classical self-rotation of the Bloch wave packet, and Ωk

is the Berry curvature [131]. In the linear-response limit
(E = 0), Eq. (7) yields an effective velocity
ṙ = [ṽk + (e/ℏ)B(ṽk ·Ωk)]/Dk, (8)
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Fig. 1 The comparison between the calculated negative
magnetoresistance [10] and the experiments [109–111]. The
Fermi energy EF is measured from the conduction band bot-
tom. EF falls in a reasonable range. x, y, z in the model (5)
correspond to [100], [010], and [001] crystallographic directions,
respectively. The numerically calculated magnetoresistance
along the z axis is used to approach the experimental magne-
toresistance along the [114̄] direction by He et al.. Other model
parameters are from the k·p calculations [106] and experiments
[128], M0 = −0.169 eV, Mz = 3.351 eV·Å2, M⊥ = 29.36 eV·Å2,
V⊥ = 2.512 eV·Å, Vn = 1.853 eV·Å, C0 = 0.048 eV, Cz = 1.409

eV·Å2, C⊥ = 13.9 eV·Å2, the g-factors gvz = gcz = 30 and
gvp = gcp = −20. Reproduced from Ref. [10].

where D−1
k is the correction to the density of states, and

ṽk = vk − 1

ℏ
∇k(mk ·B), Dk = 1 +

e

ℏ
B ·Ωk. (9)

Due to the Berry curvature, the velocity develops an
anomalous term, which is proportional to B. Note that
the conductivity is the current–current (velocity–velocity)

correlation [132], thus the presence of the anomalous ve-
locity is expected to generate an extra conductivity, which
grows with the magnetic field, namely, a negative magne-
toresistance. It has been implied that the negative mag-
netoresistance in topological semimetals is related to the
Berry curvature [1, 133, 134]. In our previous review [1],
we have shown that the Berry curvature [130] can lead to
a conductivity correction that grows with magnetic field
B,

δσ(B) ∝ B2

k2F
∝ B2

n2/3
, (10)

where kF is the Fermi wave vector and the carrier density
n is directly proportional to k3F . This is an alternative
understanding to the negative magnetoresistance induced
by the chiral anomaly. Ref. [10] shows that this mechanism
is large enough in topological insulators as those observed
in the experiments, where the relative magnetoresistance
can exceed −1% in a parallel magnetic field of several
Tesla [109–112, 124–126].

3.2 Magnetoresistance formula

In our calculation, the relative magnetoresistance is de-
fined as MRµ(Bµ) = [1/σµµ(Bµ) − 1/σµµ(0)]/[1/σµµ(0)].
In the semiclassical Boltzmann formalism, the longitudi-
nal conductivity σµµ is contributed by all the bands cross-
ing the Fermi energy, and for band n [134]

σµµ =

∫ d3k

(2π)3
e2τ

Dk

(
ṽµk +

e

ℏ
BµṽνkΩ

ν
k

)2(
−∂f̃0
∂ε̃

)
, (11)

where n is suppressed for simplicity, Dk and ṽµk are given
by Eq. (9), f̃0 is the Fermi distribution in equilibrium, the
transport time τ is assumed to be a constant in the semi-
classical limit [135]. For the n-th band of the Hamiltonian
H, the ξ component of the Berry curvature vector can be
found as Ωξ

nk = Ωµν
nkεµνξ, where ξ, µ, ν stand for x, y, z,

and εµνξ is the Levi-Civita anti-symmetric tensor, and

Ωµν
nk = −2

∑
n′ ̸=n

Im⟨n|∂H/∂kµ|n′⟩⟨n′|∂H/∂kν |n⟩
(εn − ε′n)

2
, (12)

where H = H0+HZ . The orbital moment m can be found
as

mµν
nk = − e

ℏ
∑
n′ ̸=n

Im⟨n|∂H/∂kµ|n′⟩⟨n′|∂H/∂kν |n⟩
εn − ε′n

. (13)

The Zeeman energy can induce a finite distribution of Ω
and m [10].

3.3 Comparison with negative magnetoresistance in
experiments

Figure 1 shows that the numerically calculated relative
magnetoresistance in parallel magnetic fields are negative
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and decrease monotonically with the magnetic field. They
can be fitted by −B2 at small magnetic fields and conform
to the Onsager reciprocity MR(B)=MR(−B). We also use
a tight-binding model [136] to justify the calculation. Fig-
ure 1 shows a good agreement on the negative magne-
toresistance between the experiments and our numerical
calculations. The current direction and temperature are
from the experiments and the model parameters are from
the k · p calculations [106] and experiments [128]. In the
experiment by Wang et al. [109], the temperature is 1.8
K, so the original data (orange triangles) has a positive
magnetoresistance near zero field due to the weak anti-
localization [137–140]. The weak anti-localization induces
a positive magnetoresistance [2], which is subtracted be-
fore the comparison. In the experiments by Wiedmann et
al. [111] and He et al. [110], the temperatures are 29 K and
300 K, there is no weak anti-localization effect. The neg-
ative magnetoresistance does not change much with tem-
perature [10], consistent with the experiments and show-
ing the semi-classical nature of the negative magnetoresis-
tance. The negative magnetoresistance becomes enhanced
as the Fermi level approaches the band bottom [10], in-
dicating the role of the Berry curvature. Ref. [10] also
shows that the signs of g-factors in the Zeeman coupling
determine the signs of magnetoresistance qualitatively. In
the experiment, the techniques used for topological insu-
lators, for example, electron spin resonance and quantum
oscillations, cannot determine the signs of g-factors but
only their absolute values [128, 141]. Transport measure-
ments can determine the sign of the g-factor only in spe-
cific setups [142]. The orbital moment has been neglected
in most of the literature studying the magneto-transport
using the semiclassical formalism [133, 134]. As shown in
Refs. [143, 144], the orbital moment is essential for the
magnetoresistance anisotropy in a Weyl semimetal. More-
over, the correction m ·B to ε(k) can enhance the band
separation and the negative magnetoresistance. The or-
bital moment effectively enhances the MRx a few times
larger. MRz can be even positive without m.

3.4 Discussions

The conventional equations of motion in the low-field
semiclassical regime (ωτ ≪ 1) are only accurate to the lin-
ear order in the external fields (E and B), thus for study-
ing magnetoconductivity which is an intrinsically nonlin-
ear coefficient, the obtained results would not be com-
plete. Based on a recently developed semiclassical theory
with second-order accuracy [145, 146], a complete the-
ory of magnetoconductivity for general 3D nonmagnetic
metals was formulated within the Boltzmann framework
with the relaxation time approximation [144]. The work
shows several surprising results. First, there is an impor-
tant previously unknown Fermi surface contribution δσint

to the magnetoconductivity, termed as the intrinsic mag-
netoconductivity, because the ratio δσint/σ0 is indepen-
dent of the relaxation time. Here σ0 is the conductivity

at B = 0. Second, a pronounced δσint term can lead to
the violation of Kohler’s rule. Previously, any deviation
from Kohler’s rule is usually interpreted as from factors
beyond the semiclassical description or from the presence
of multiple types of carriers or multiple scattering times.
The result here reveals a new mechanism for the break-
down of Kohler’s rule. Third, δσint can lead to a positive
longitudinal magnetoconductivity (or negative longitudi-
nal magneto-resistivity). The effect is independent of chi-
ral anomaly effect for the Weyl/Dirac fermions, and it can
occur for a generic doped semiconductor without any band
crossings. This indicates that positive longitudinal magne-
toconductivity measured in the semiclassical regime alone
cannot be regarded as smoking-gun evidence for the exis-
tence of topological band crossings. The intrinsic contri-
bution generally exists in 3D metals with nontrivial Berry
curvatures, and should be taken into account when in-
terpreting experimental results. It may already play an
important role behind the puzzling magnetotransport sig-
nals observed in recent experiments on TaAs2 and related
materials.

In the quantum limit where only the lowest Landau
band is occupied, magnetoresistance depends subtly on
scattering mechanisms [5, 6, 147], rather than the Berry
curvature and orbital moment. The current-jetting effect
is usually induced by inhomogeneous currents when at-
taching point contact electrodes to a large bulk crystal and
may also hamper the interpretation of the negative mag-
netoresistance data [148]. A recent work also has pointed
out that the negative magnetoresistance may exist with-
out the chiral anomaly [149]. In (Bi1−xInx)2Se3, it is pro-
posed that the in-plane negative magnetoresistance is due
to the topological phase transition enhanced intersurface
coupling near the topological critical point [126]. In addi-
tion, it is also found that the magnetoresistance is robust
against the deviation from the ideal Weyl Hamiltonian,
such as the shifted Fermi energy, nonlinear dispersions,
and the Weyl node annihilation [150].

4 Strong field: Quantum oscillation in Weyl
and Dirac semimetals

When applying a magnetic field in the z-direction, the
energy spectrum evolves into a series of 1D Landau bands
[6, 60] (see Figs. 1(b) and (c) of [8]), which result in the
Shubnikov-de Haas (SdH) oscillation of resistance. The
oscillation of the resistivity ρ can be demonstrated by the
Lifshitz–Kosevich formula [151]

ρ ∼ cos[2π(F/B + ϕ)], (14)

where ϕ is the phase shift, F is the oscillation frequency
and B is the magnitude of magnetic field. F and ϕ can re-
veal valuable details on the Fermi surface of the material.

The phase shift of each frequency component can be
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argued as the following:

ϕ = −1/2 + ϕB/(2π) + ϕ3D, (15)

where ϕ3D = ∓1/8 is a correction, which emerges only in
3D, and ϕB is the Berry phase [131, 152]. The curvature
of the Fermi surface along the direction of the magnetic
field determines the sign of ϕ3D [153–156]. When the cross
section is maximum, for electron carriers ϕ3D = −1/8 and
for hole carriers ϕ3D = 1/8; when the cross section is min-
imum, for electron carriers ϕ3D = 1/8 and for hole carriers
ϕ3D = −1/8. For the sphere Fermi surface, there is only a
maximum, thus for electron carriers ϕ3D = −1/8 and for
hole carriers ϕ3D = 1/8. For a parabolic energy band, it
does not have Berry phase, thus the phase shift is ±1/2
and ±5/8 in 2D and 3D, respectively. However, a linear
energy band (for example, Weyl and Dirac semimetals [17–
20, 157]) has an extra π Berry phase [152], thus the phase
shift is 0 [158] and ±1/8 [159] in 2D and 3D, respectively.
In a nodal-line semimetal [65–68], an electron can collect
a nontrivial π Berry phase around the loop encircling the
nodal line [79]. The phase shifts of 2D and 3D bands with
linear and parabolic dispersions are summarized in Table
1.

Topological Weyl/Dirac semimetals and nodal-line
semimetals provide a novel platform to explore the non-
trivial Berry phase [3, 119, 122, 159–175]. In Ref. [8],
we show that, near the Lifshitz point, the phase shift of
the quantum oscillation can go beyond recognized values
of ±1/8 or ±5/8 and nonmonotonically move toward a
wide range between ±7/8 and ±9/8. However, these val-
ues in experiments may be misunderstood as ±1/8. For
Dirac semimetals, the total phase shift adopts the dis-
crete values of ±1/8 or ±5/8. In recent experiments of
electron carriers, the positive phase shifts are observed
and may be explained by our findings. In addition, a new
beating pattern, resulting from the topological band inver-
sion, is found. Up to now, quantum oscillations have been
inspected experimentally in HfSiS [176], ZrSiS [177–182],
ZrSi(Se/Te) [183] and ZrGe(S/Se/Te) [184], but the phase
shifts have been concluded different. In Ref. [9], the phase
shifts and frequencies (Table 5) of nodal-line semimetals

Table 1 Phase shifts ϕ in Eq. (14) for systems with different
dispersions (linear or parabolic) and dimensionalities (2D or
3D). Bz and B// are the magnetic fields out of and in the
nodal-line plane. α, β, γ, and δ correspond to the cross sections
of the torus Fermi surface in Fig. 3. Reproduced from Ref. [9].

System Electron carrier Hole carrier

2D parabolic −1/2 1/2
3D parabolic −5/8 5/8
2D linear 0 0
3D linear −1/8 1/8

Nodal-line in Bz −5/8 (α), 5/8 (β) 5/8 (α), −5/8 (β)

Nodal-line in B// −5/8 (γ), 1/8 (δ) 5/8 (γ), −1/8 (δ)

are extracted from analytic results of the calculated resis-
tivity. We also summarize the generic rules for phase shifts
in random cases (Table 4). The generic rules assist us to
handle several materials, for example, ZrSiS and Cu3PdN
[177–182].

4.1 Quantum oscillation in linear and parabolic limits of
a Weyl semimetal

The resistivity is calculated in two direction configura-
tions according to linear response theory [185–188]. For
the longitudinal configuration, the resistivity ρzz is exam-
ined along z direction. For the transverse configuration,
the resistivity ρxx is examined along x direction. The mag-
netoresistivity in the linear dispersion limit and parabolic
dispersion limit takes the form of Eq. (14). In Table 2,
we list the analytic expressions for the phase shift ϕ and
frequency F in these two limits.

4.2 Resistivity peaks and integer Landau indices

In the experiment, the peak positions or valley positions,
that are on the B axis, are given the integer Landau
indices n, then the phase shift ϕ and frequency F can
be extracted from a plot of n and 1/B [see inset of
Fig. 1(d) of [8]]. Nevertheless, it is still in debate that
whether the peaks [122, 159, 160, 162–165] or valleys
[167, 168, 171, 189] should be given the Landau indices.
Our results explicitly reveal that the resistivity peaks of
ρzz and ρxx emerge near the Landau band edges and are
in correspondence with the integer Landau indices. We
evaluate the resistivity components theoretically from the
conductivity components [190, 191]. For the longitudinal
configuration, the resistivity ρzz=1/σzz, where the con-
ductivity σzz is along z direction. Near band edges, the
conductivity σzz shows valleys due to vanishing velocities,
thus ρzz shows peaks. For the transverse configuration,
ρxx = σyy/(σ

2
yy + σ2

xy), and the longitudinal Hall conduc-
tivity and field-induced Hall conductivity are as follows:

σyy =
σ0(1 + δ)

1 + (µB)2
, σyx =

µBσ0
1 + (µB)2

[
1− δ

(µB)2

]
,

(16)

where δ ≪ 1 is the oscillation part and σ0 represents the
zero-field conductivity. In σyx, the δ term, which comes

Table 2 The analytical expressions for the frequency F
and phase shift ϕ in the resistivity formula Eq. (14) in the
linear and parabolic dispersion limits for electron carriers in
a Weyl semimetal. We define E′

F ≡ EF + Mk2
w. Reproduced

from Ref. [8].

Longitudinal ρzz Transverse ρxx

Parabolic Linear Parabolic Linear
F ℏE′

F /(2eM) ℏE2
F /(2eA2) ℏE′

F /(2eM) ℏE2
F /(2eA2)

ϕ −5/8 −1/8 −5/8 −1/8
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from the disorder scattering, was rarely considered before.
A consequence of the δ term is that ρxx ≈ (1+δ)/σ0, up to
the first order of δ. As ρxx and σyy are both proportional
to 1+δ, their peaks are lined up for the random ratio of σyx
to σyy (but when σyx ≪ σyy, the oscillation is so weak that
it is hard to be observed). This new finding comes from the
disorder scattering term δ in the Hall conductance. At the
same time, the σzz valleys are lined up with the σyy peaks,
since σzz, which comes from diffusion, is in proportion
to the scattering times. However, σyy, which arises from
hopping is inversely in proportion to the scattering times
[60, 186, 192]. To sum up, the peak positions follow the
relation ρzz ∼ σ−1

zz ∼ σyy ∼ ρxx, thus ρzz and ρxx present
peaks near Landau band edges and their phase shifts are
the same.

4.3 Anomalous phase shift near the Lifshitz point of
Weyl and Dirac semimetals

Figure 2 shows the results of the frequency F and the
phase shift ϕ calculated numerically for the model in
Eq. (1). In Fig. 2(c), the numerical results are in agree-
ment with the analytical prediction ϕ = −1/8 for the
linear limit (EF → 0) and −5/8 for the parabolic limit
(EF → ∞). We define EA = Akw and EM = Mk2w.
For EM ̸= EA, the ϕ–EF curves break as the beating
patterns emerge. In Fig. 2(c), for EA < EM , the phase
shift drops below −5/8 rather than shift monotonically
from −1/8 to −5/8 around the Lifshitz transition point
(namely, EF = EM ). This is because there is no simple k2z
dependence [8]. At the Lifshitz point, we can analytically
show that the phase shift is −9/8, which is in agreement
with that in Fig. 2(c). It is equivalent to −1/8, which is
usually considered to originate from the π Berry phase as
the Fermi sphere encircles the single Weyl node. Never-
theless, the Fermi sphere encircles two Weyl nodes when
the Fermi energy is at the Lifshitz point. For EA > EM ,
there is no nonmonotonicity in ϕ− EF .

A Weyl semimetal combine with its time-reversal coun-
terpart can compose a Dirac semimetal. The model of a
Dirac semimetal can be made by H(k) in Eq. (1), inte-
grated with its time-reversal counterpart H∗(−k), where
the asterisk indicates complex conjugate. This model can
be treated as a building block for Weyl semimetals, which
respect time-reversal symmetry and meanwhile break in-
version symmetry [37–39, 42–48]. Here, for the Dirac
semimetal, the total phase shift may take two values, −1/8
for α ∈ [0, 1/4] and [3/4, 1] or −5/8 for α ∈ [1/4, 3/4].
Around the Lifshitz point, the total phase shift may
change between the two values.

The electron carriers is supposed to yield negative phase
shifts and the hole carriers is supposed to yield positive
phase shifts [159]. Nevertheless, in experiments of the
Dirac semimetal Cd3As2, the phase shift for electron car-
riers takes positive values [160, 162, 167]. One explanation
may be that, for the phase shift 1/8 to 3/8 in the exper-
iments, their actual values are around −7/8 to −5/8 due

Fig. 2 For the Weyl semimetal described by Eq. (1). (a) The
frequency F obtained numerically (scatters) and analytically
(solid curves) vs. the Fermi energy EF for (a) different A at
a fixed M ; and (b) for different M at a fixed A. (c) The
phase shift ϕ vs. EF for different EA = Akw and a fixed EM =
Mk2

w = 0.05 eV. The curves break because F and ϕ cannot
be fitted when beating patterns form. The insets indicate the
location of Fermi energy. The vertical dashed lines mark the
Lifshitz point. kw = 0.1 nm−1. Reproduced from Ref. [8].

Table 3 The phase shift ϕexp extracted from the exper-
iments on Cd3As2. According to the theory in this work, if
peaks from two Weyl components can be distinguished, the
phase shift should be ϕWeyl = ϕexp − 1; otherwise, the phase
shift should be ϕDirac = −5/8. Reproduced from Ref. [8].

Ref. ϕexp ϕWeyl ϕDirac

[160] 0.06–0.08 −0.94–−0.92 −5/8

[162] 0.11–0.38 −0.89–−0.62 −5/8

[167] 0.041) −0.96 −5/8

1)Read from Fig. 2(d) of Ref. [167].

to the 2π periodicity. Our numerical results show that the
total phase shift adopts these values from around the Lif-
shitz point to higher Fermi energies, which is also consis-
tent with the carrier density in the experiments. In Table
3, we propose the counterparts for the experimental val-
ues of the phase shift. In Ref. [8], we also demonstrate
that beating patterns will emerge because of the band
inversion, that is different from orbital quantum interfer-
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ence [193], the Zeeman splitting [165, 166, 194] and nested
Fermi surfaces [162].

5 Strong field: Quantum oscillation in
nodal-line semimetals

5.1 Phase shifts of nodal-line semimetals

The frequencies F and phase shifts ϕ can be analyzed from
the Fermi surface described by Eq. (4). From the Onsager
relation, we have F = [ℏ/(2πe)]A, where A is the area
of the extremal cross section on the Fermi surface per-
pendicular to the magnetic field [195]. When the nodal-
line plane is perpendicular to a magnetic field, specifi-
cally Bz here, there are two extremal cross sections at the
kz = 0 plane [Fig. 3(b)]. Combining this dispersion with
the Onsager relation, we find that the high frequency is
Fα = m(u + EF )/(ℏe) for the outside circle and the low
frequency is Fβ = m(u − EF )/(ℏe) for the inside circle.
These two frequencies may lead to a beating pattern [196].

Phase shifts are more complicated in the nodal-line
semimetals. First of all, whether the magnetic fields are
in-plane or out-of-plane, the torus Fermi surface has both
maximum cross section and minimum cross section. Sec-
ondly, the Berry phase is 0 along the circle parallel to the
nodal line and is π along the circle enclosing the nodal
line. Therefore, depending on direction of the magnetic

Fig. 3 (a) The nodal line (dashed ring), torus, and drum
Fermi surfaces for a generic model of a nodal-line semimetal
in Eq. (19). EF is the Fermi energy. u is a model parameter.
(b) The maximum (α) and minimum (β) cross sections in the
nodal-line plane of the torus Fermi surface. (c) The maximum
(γ) and minimum (δ) cross sections out of the nodal-line plane
of the torus Fermi surface. Reproduced from Ref. [9].

field, the quantum oscillation allows different phase shifts,
which is summarized in Table 1. When the nodal-line
plane is perpendicular to a magnetic field, there are two
cross sections α and β, shown in Fig. 3. Along loops of the
cross sections α and β, the Berry phase is 0, thus phase
shifts take values 5/8 or −5/8. For the electron carriers,
(see Table 4), the phase shifts of the maximum cross sec-
tionα are ϕ3D = −1/8 and ϕ = −1/2 + 0 − 1/8 = −5/8.
The phase shifts of the minimum cross section β are
ϕ3D = 1/8 and ϕ = −1/2 + 0 + 1/8 = −3/8, that is
equivalent to 5/8 since the oscillation has 2π periodicity.

5.2 Magnetoresistivity of nodal-line semimetals

To testify the above conclusion, we calculate the resistiv-
ities along the z (ρzz, out of the nodel-line plane) and x
(ρxx, in the nodel-line plane) directions, respectively, ac-
cording to ρzz = 1/σzz and ρxx = σyy/(σ

2
yy + σ2

xy). The
calculations show that for both ρxx and ρzz, there are two
terms in the magnetoresistivities,

(ρ− ρ0)/ρ0 = Cα exp(−λD) cos[2π(Fα/B + ϕα)]

+ Cβ exp(−λD) cos[2π(Fβ/B + ϕβ)], (17)

where ϕα,β is the phase shifts and Fα,β are the oscillation
frequencies. Their analytic expressions are listed in Ta-
ble 5. We show that the resistivity calculations and the
Fermi surface analysis are equivalent for the phase shifts
of the quantum oscillation in the nodal-line semimetal.
The phase shifts, in a magnetic field parallel to the nodal-
line plane [Fig. 3(c)], can also be found in a similar way,
as listed in Table 4.

5.3 Discussions

For nodal-line semimetals, most of the quantum oscillation
experiments have been done for the ZrSiS family materials
[176–184], in which there are both electron and hole pock-
ets at the Fermi energy [97, 98, 177, 182]. ZrSiS (see Fig. 3
in Ref. [9]) has the diamond-shaped electron pockets en-
circling the nodal line and the quasi-2D tubular-shaped

Table 4 The phase shift ϕ of the nodal-line semimetal in
Fig. 3, obtained by using the relation ϕ = −1/2 + ϕB/(2π) +
ϕ3D, where ϕB is the Berry phase and ϕ3D is the dimension
correction. α, β, γ, δ are the extremal cross sections in Fig. 3.
Max. or Min. indicates whether the cross section is maximum
or minimum. For electron carriers, ϕ3D is −1/8 for maximum
cross section and 1/8 for minimum cross section. The phase
shifts of hole carriers are opposite to those of electrons. Repro-
duced from Ref. [9].

Berry phase Min./max. Electron Hole

α 0 Max. −1/2 + 0− 1/8 = −5/8 +5/8

β 0 Min. −1/2 + 0 + 1/8 = −3/8 ↔ 5/8 −5/8

γ 0 Max. −1/2 + 0− 1/8 = −5/8 +5/8

δ π Min. −1/2 + π/2π + 1/8 = 1/8 −1/8
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Table 5 The analytic expressions for the frequencies Fα,β

and phase shifts ϕα,β in the resistivity formula Eq. (17) for
electron carriers. Hole carriers have an extra minus sign in all
cases compared to electron carriers. Reproduced from Ref. [9].

Longitudinal ρzz Transverse ρxx

α β α β

F m
ℏe (u+ EF ) m

ℏe (u− EF ) m
ℏe (u+ EF ) m

ℏe (u− EF )

ϕ −5/8 +5/8 −5/8 +5/8

hole pockets at the X points [182]. When the magnetic
field is normal to the diamond-shaped Fermi surface, there
are three extremal cross sections, the outer (α) and inner
(β) cross sections of the diamond-shaped electron pocket,
and the tubular-shaped hole pockets (γ). The α and β
cross sections of the diamond-shaped Fermi surface take
phase shifts of 5/8 and −5/8, respectively. However, the
frequencies of the α and β pockets are so large (about 104
T) that it is hard to be extracted from the experiments.
In contrast, the γ nodal-line hole pockets have been iden-
tified as the origin of the high frequency (about 210 T)
component [182]. This pocket encircles a nodal line, thus
it has a π Berry phase. In addition, it has ϕ3D = 0 due
to its quasi-2D nature. From Eq. (15), we find that the
γ pocket has a phase shift of ϕ = −1/2 + π/2π + 0 = 0,
which is in agreement with the results obtained by Ali et
al. [178]. In Ref. [9], we also analyzes the phase shifts for
Cu3PdN [77, 78].

When the symmetry protecting the nodal line is broken,
there is a finite gap ∆ that separates the conduction and
valence bands. The Berry phase becomes

ϕB = ±π
(
1− ∆

2EF

)
. (18)

The nodal-line semimetals may also be distinguished
from their weak localization behaviors that cross between
2D weak anti-localization and 3D weak localization [197].

6 Strong field: 3D quantum Hall effect

The discovery of the quantum Hall effect in 2D opens the
door to the field of topological phases of matter [198, 199].
In 3D electron gases, the extra dimension along the mag-
netic field direction prevents the quantization of the Hall
conductance. Thus, the quantum Hall effect is normally
observed in 2D systems [158, 198, 200–202]. In Ref. [7], we
show a 3D quantum Hall effect in a topological semimetal.
The topological semimetal can be considered as a 2D
topological insulator for momenta (kz here) between the
Weyl nodes, resulting in the topologically protected sur-
face states [in Fig. 4(c)] at the surfaces parallel to the
Weyl node separation direction. The topologically pro-
tected states form the Fermi arcs [24, 26, 26, 29–34, 37–
39, 42, 44, 203, 204] on the Fermi surface [red curves in

Fig. 4 (a) The energy dispersions for the Fermi arc (at
y = L/2) and bulk states in a topological Weyl semimetal.
k// stands for (kx, ky) for the bulk and kx for the arc, respec-
tively. (b) The Fermi arc at y = L/2 and EF = Ew on the
kz–kx plane. The shadow defines the “constraint” region where
the Fermi arcs can exist. (c) A slab of topological semimetal
of thickness L and width W . (d) The Fermi arcs at EF = Ew

(solid) and constraints (shadow) at the y = L/2 (red) and
−L/2 (blue) surfaces of the slab. [(e–g)] The wave function
distributions at kz = 0 along the y axis, at the blue (bottom
arc, kx < 0), black (Weyl nodes), and red (top arc, kx > 0)
dots in (d). (h) Landau levels of the Fermi arcs at B = 5 T
vs. the guiding center z0. (i) The wave function distributions
along the y axis for the edge states of the Fermi arcs marked
by the green and orange dots in (h). L = 100 nm, W = 200
nm, and other parameters can be found in Fig. 5. Reproduced
from Ref. [7].

Figs. 4 (a) and (b)]. The transport signature of the Fermi
arcs is an intriguing topic [205–209].

6.1 Wormhole tunneling via Fermi arcs and Weyl nodes

The topological nature requires that only a region be-
tween the Weyl nodes can be occupied by the states of
Fermi arcs [6] [Fig. 4(b)]. At one surface, a closed Fermi
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loop, which is essential to the quantum Hall effect, can-
not be formed by the Fermi arcs. However, in a topo-
logical semimetal slab, the Fermi arcs from opposite sur-
faces [Fig. 4(c)] can form the required closed Fermi loop
[Fig. 4(d)]. Thus electrons can tunnel between the Fermi
arcs at opposite surfaces via the Weyl nodes [Figs. 4(e)–
(g)]. The Fermi loop formed by the Fermi arcs at oppo-
site surfaces via the Weyl nodes can support a 3D quan-
tum Hall effect. To be specific, the Weyl nodes act like
“wormholes” that connect the top and bottom surfaces,
and an electron can complete the cyclotron motion. Since
the Weyl nodes are singularities in momentum, the worm-
hole tunneling can be infinite in real space, according to
the uncertainty principle. The time scale of the “worm-
hole” tunneling is 0 as the Weyl node on the top surface
and the Weyl node on the bottom surface are the same
one and are described by the one coherence wavefunction.
In experimental materials, the tunneling distance is lim-
ited by the mean free path, which can be comparable to or
longer than 100 nm in high-mobility topological semimet-
als [43, 45, 46, 119, 160, 162, 167, 210, 211], even up to 1
µm [212], thus the thickness in the calculation is chosen
to be 100 nm. The wormhole effect has been addressed
in different situations in topological insulators [213]. The
quantum Hall effect solely from the Fermi arcs requires the
bulk carriers to be depleted by tuning the Fermi energy to
the Weyl nodes [214]. Compared to the novel quantum os-
cillations [212, 215], the quantum Hall effect of the Fermi
arcs contributes a quantized complement to the Fermi
arc dominant electronic transports. The Weyl semimet-
als TaAs family [37–39, 42–46, 49–52, 210] and the Dirac
semimetals Cd3As2 and Na3Bi have extremely high mo-
bilities [119, 160, 162, 167, 211] required by the quantum
Hall effect. Low carrier densities [4, 35, 36] and gating [36]
have also been achieved. The 3D quantum Hall effect of
the Fermi arcs is expected in slabs of the TaAs family [37–
39, 42–46, 210, 214], [110] or [11̄0] Cd3As2 [35, 216–219],
and [100] or [010] Na3Bi.

6.2 Quantized Hall conductance

We can calculate the Hall conductivity from the Kubo
formula [7, 199, 220–224]. Figure 5(b) presents the sheet
Hall conductivity σs

H for the topological semimetal slab.
When the Fermi energy is far away from the Weyl nodes,
the sheet Hall conductivity obeys the usual 1/B depen-
dence. The closer the Fermi energy moves towards the
Weyl nodes, the smaller the slope becomes, which in-
dicates that the carrier density is decreasing. Moreover,
when the Fermi energy moves towards the Weyl nodes,
the quantized plateaus of σs

H begin to arise. Note that a
100-nm slab is still a 3D object.

6.3 3D distribution of the edge states

Figures 4(h) and (i) show that the edge states of the Fermi
arcs have a unique 3D spatial distribution. Specifically,

Fig. 5 (a) In a topological semimetal slab, the numeri-
cally calculated energy spectrum (pink) for the bulk states and
Fermi arcs at kx = 0 (left) and kx = ±0.1 nm−1 (right). The
blue curves are the Fermi arc bands plotted using Harc and
H ′

arc. (b) The sheet Hall conductivity when the Fermi energy
EF crosses the bulk states for Γ → 0. Γ is the disorder-induced
level broadening. Recent experiments show that gating can
tune carriers from n- to p-type in 100-nm-thick devices of topo-
logical semimetal [36]. (c) The sheet Hall conductivity σs

H at
EF = Ew, where the Fermi energy crosses only arc I. The right
inset shows the analytic Hall conductance σH. In the presence
of a residual detuning from the Weyl nodes, the bulk states
also contribute to σs

H. Unlike that from the Fermi arcs, the
contribution from the bulk states may change with the slab
thickness. The left inset shows the width of the Hall plateaus
in the clean limit as a function of D1 for different kw. The
dots and lines are the numerical and analytic results, respec-
tively. The parameters are M = 5 eV·nm2, A = 0.5 eV·nm,
and D2 = 3 eV·nm2, D1 = 2 eV·nm2, kw = 0.3 nm−1, and
L = 100 nm. Reproduced from Ref. [7].

the top edge states propagate to the left (green arrow)
and the bottom edge states to the right (orange arrow).
This unique 3D distribution of the edge states of the Fermi
arcs can be probed by scanning tunneling microscopy [225]
or microwave impedance microscopy [226]. Different from
topological insulators [201, 202], the Fermi-arc quantum
Hall effect requires the collaboration of the two surfaces.

6.4 Topological Dirac semimetals

A single surface of the Dirac semimetal can form a com-
plete Fermi loop needed by the quantum Hall effect due to
the time-reversal symmetry. However, the single surface
Fermi arc loop is not that robust and may be distorted
[227]. Therefore, it may present different characteristics
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compared to the two-surface Fermi arc loop. For the [112]
and [110] Cd3As2 and [010] Na3Bi [30] slabs, the param-
eters from Ref. [228] yield the 3D quantum Hall effect,
which may exhibit a fourfold degeneracy.

7 Extremely strong field: Weyl fermion
annihilation

The topological properties of the Weyl nodes can be re-
vealed by studying the high-field transport properties of a
Weyl semimetal. The lowest Landau bands of the Weyl
cones remain at zero energy unless a strong magnetic
field couples the Weyl fermions of opposite chirality. The
coupled Weyl fermions lost their chiralities and acquire
masses, two of the most characteristic features of the Weyl
fermion. In this sense, the Weyl fermions are annihilated.
In the Weyl semimetal TaP, we achieve such a magnetic
coupling [11]. Their lowest Landau bands move above
chemical potential, leading to a sharp sign reversal in the
Hall resistivity at a specific magnetic field corresponding
to the W1 Weyl node separation. In the following, we use
a model calculation to show the physics.

7.1 Calculation of Landau bands with magnetic fields in
the x–z plane

In Section 2.1 of Ref. [1] and Eq. (1), we have given a
minimal model for a Weyl semimetal

H = A(kxσx + kyσy) +Mkσz, (19)

where σ are the Pauli matrices, Mk =M0−M1(k
2
x+k

2
y+

k2z), k = (kx, ky, kz) is the wave vector, and A, M0/1 are
model parameters. When M0M1 > 0, the intersections of
the two bands are at (0, 0,±kw) where kw ≡

√
M0/M1

(see Fig. 1 of [1]), leading to the topological semimetal
phase.

In Section 2.6 of Ref. [1], we have given the Landau
bands in a magnetic field along the z direction. Now we
generalize the case to an arbitrary field applied normal to
the y direction B = B(sinϕ, 0, cosϕ), where ϕ is the an-
gle between the z and field directions. The Landau gauge
can be chosen as A = (−Bz, 0, Bx)y. Under the Pierls
replacement

k → (kx − y cosϕ/ℓ2B ,−i∂y, kz + y sinϕ/ℓB), (20)

the Hamiltonian becomes h(k) →(
jMB

k A(kx − y cosϕ/ℓ2B − ∂y)

A(kx − y cosϕ/ℓ2B + ∂y) −MB
k

)
,

(21)

where ℓ2B ≡ ℏ/e|B| and MB
k = M1[k

2
c − (kx −

y cosϕ/ℓ2B)2 + ∂2y − (kz + y sinϕ/ℓ2B)2]. Define the guid-
ing center

y0 = ℓ2B(kx cosϕ− kz sinϕ), (22)

and the ladder operators [229]

a = − 1√
2

(
y − y0
ℓB

+ ℓB∂y

)
,

a† = − 1√
2

(
y − y0
ℓB

− ℓB∂y

)
, (23)

the Hamiltonian becomes

ha =

(
Ma A−

a

A+
a −Ma

)
, (24)

where

Ma =M1

[
k2c − k2// −

2

ℓ2B

(
a†a+

1

2

)]
,

A±
a = A

(
k// sinϕ+

cosϕ∓ 1√
2ℓB

a+
cosϕ± 1√

2ℓB
a†
)
. (25)

We have defined k// = kx sinϕ+kz cosϕ, which is the sum-
mation of the projections of kx and kz along the direction
of the magnetic field and can serve as a good quantum
number.

7.2 Landau bands in the z-direction magnetic field

At ϕ = 0, i.e., the magnetic field is applied along the z
direction, the Hamiltonian reduces to

ha =

(
Ma ηa
ηa† −Ma

)
, (26)

where Ma =M0−M1k
2
z−ω(a†a+1/2), η =

√
2A/ℓB , ω =

2M1/ℓ
2
B . With the trial wave functions (c1|ν − 1⟩, c2|ν⟩)T

for ν = 1, 2, . . . (later denoted as ν ≥ 1) and (0, |0⟩)T for
ν = 0, where ν indexes the Hermite polynomials, the eigen
energies E can be found from the secular equation

det
(
Mν + ω/2− E η

√
ν

η
√
ν −Mν + ω/2− E

)
= 0 (27)

for ν ≥ 1, and −Mν + ω/2 − E = 0 for ν = 0, where
Mν =M0 −M1k

2
z − ων. The eigen energies are found as

Eν±
kz

= ω/2±
√
M2

ν + νη2, ν ≥ 1

E0
kz

= ω/2−M0 +M1k
2
z , ν = 0. (28)

They represent a set of Landau energy bands (ν as band
index) dispersing with kz. The eigen states for ν ≥ 1 are

|ν ≥ 1, kx, kz,+⟩ =

 cos
θνkz

2
|ν − 1⟩

sin
θνkz

2
|ν⟩

 |kx, kz⟩,

|ν ≥ 1, kx, kz,−⟩ =

 sin
θνkz

2
|ν − 1⟩

− cos
θνkz

2
|ν⟩

 |kx, kz⟩, (29)

and for ν = 0 is

|ν = 0, kx, kz⟩ =
[

0
|0⟩

]
|kx, kz⟩,
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where cos θ = Mν/
√

M2
ν + νη2, and the wave functions

ψν,kz,kx(r) = ⟨r|ν, kx, kz⟩ are found as

ψν,kz,kx
(r) =

Cν√
LxLzℓB

eikzzeikxxe
− (y−y0)2

2ℓ2
B Hν

(
y − y0
ℓB

)
,

(30)

where Cν ≡ 1/
√
ν!2ν

√
π, LxLz is the area of the sam-

ple, the guiding center y0 = kxℓ
2
B , Hν are the Hermite

polynomials. As the dispersions are not explicit functions
of kx, the number of different kx represents the Landau
degeneracy NL = 1/(2πℓ2B) = eB/h in a unit area in the
x–y plane.

7.3 Landau bands in the x-direction magnetic field

If ϕ ̸= 0, the Hamiltonian can be solved numerically. We
can write Eq. (24) as

ha = h(0)a + h′a,

h(0)a =

(
Ma Ak// sinϕ

Ak// sinϕ −Ma

)
,

h′a =


0 η

(
cosϕ+ 1

2
a+

cosϕ− 1

2
a†
)

η

(
cosϕ− 1

2
a+

cosϕ+ 1

2
a†
)

0

 , (31)

where k// = kx sinϕ + kz cosϕ, Ma = M1[k
2
c − k2// −

2
ℓ2B

(a†a+ 1
2 )] and η =

√
2A/ℓB . H(0)

a can be readily diag-
onalized to give the band spectrum

Eν±
k = ±

√
M2

ν + (Ak// sinϕ)2, (32)

where Mν ≡M1[k
2
c−k2//−

2
ℓ2B

(ν+ 1
2 )]. The wave functions

for the conduction and valence bands are

|ν,+, k//⟩(0) =


cos

Θν
k//

2

sin
Θν

k//

2

 ,

|ν,−, k//⟩(0) =


sin

Θν
k//

2

− cos
Θν

k//

2

 , (33)

with cosΘν
k//

≡ Mν/E
ν+
k//

, sinΘν
k//

≡ Ak// sin θ/Eν+
kx

. De-
note

Aµ,ν =A

(
cosϕ+ 1√

2ℓB

√
νδµ,ν−1+

cosϕ− 1√
2ℓB

√
ν + 1δµ,ν+1

)
,

A†
µ,ν =A

(
cosϕ− 1√

2ℓB

√
νδµ,ν−1+

cosϕ+ 1√
2ℓB

√
ν + 1δµ,ν+1

)
,

(34)
we can calculate the off-diagonal matrix elements in the
basis of |ν,±, k//⟩(0) as
⟨µ,+, k//|H ′

a|ν,+, k//⟩

= Aµ,ν cos
Θµ

k//

2
sin

Θν
k//

2
+A†

µ,ν sin
Θµ

k//

2
cos

Θν
k//

2
,

⟨µ,−, k//|H ′
a|ν,−, k//⟩

= −Aµ,ν sin
Θµ

k//

2
cos

Θν
k//

2
−A†

µ,ν cos
Θµ

k//

2
sin

Θν
k//

2
,

⟨µ,+, k//|H ′
a|ν,−, k//⟩

= −Aµ,ν cos
Θµ

k//

2
cos

Θν
k//

2
+A†

µ,ν sin
Θµ

k//

2
sin

Θν
k//

2
,

⟨µ,−, k//|H ′
a|ν,+, k//⟩

= Aµ,ν sin
Θµ

k//

2
sin

Θν
k//

2
−A†

µ,ν cos
Θµ

k//

2
cos

Θν
k//

2
.

(35)

Then the energy spectrum along arbitrary directions in
the x–z plane can be solved numerically.

Figure 6 shows the Landau bands of the Weyl
semimetal. When the magnetic field is along the z direc-
tion (θ = 0), the lowest Landau band (red) crosses the
Fermi energy (dashed line). As the magnetic field is ro-

Fig. 6 For the two-node model for Weyl semimetals
[Eq. (19)], the energy spectrum of the Landau bands in a mag-
netic field B applied normal to the y direction, as functions of
the wave vector k// ≡ kx sinϕ+kz cosϕ that is parallel to B. ϕ
is defined by tanϕ = Bx/Bz. The red curve is the 0th Landau
bands. The dashed line is the Fermi energy. The parameters
kw = 0.2 nm−1, M1 = 1 eV·nm2, A = 1 eV·nm, and B = 10
T. The number of the Landau bands used in the numerical
diagonalization is 401.
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tated from the z direction to the x direction (θ = π/2),
the lowest Landau band is shifted and evolving. When
the magnetic field is along the x direction, the spectrum
of the Landau bands is particle-hole symmetric and there
is a gap due to the coupling between the Weyl fermions
at the opposite Weyl nodes. This gap is why there is a
sharp sign reversal in the Hall resistivity in the strong-field
quantum limit of the Weyl semimetal TaP [11]. Because
of the gap, the Weyl fermions acquire masses and lose
their chiralities. Since having chirality and no mass are
two features of the Weyl fermion, the Hall signal therefore
indicates that the Weyl fermions are annihilated.

8 Extremely strong field: Forbidden
backscattering and resistance dip in the
quantum limit

The discovery of 3D topological insulators [58, 230, 231],
whose characteristics is of topologically protected 2D sur-
face states, shines light on the exploring of exotic topolog-
ical phases [232–237]. Therefore, distinguishing the bulk-
state transport to identify topological insulators is an in-
triguring topic.

In strong magnetic fields, 1D Landau bands are formed
from the quantization of the bulk states of a 3D topo-
logical insulator. In 2D, lowest Landau levels cross each
other, which servers as a signature for the quantum spin
Hall phase [238, 239]. In 2D, other approaches can be
deployed to probe the quantum spin Hall phase, for ex-
ample, interference effects [240]. However, in 3D, it is
seldom addressed that whether the lowest Landau band
could be used to identify a topological insulator. In Ref.
[12], we study the resistance of a 3D topological insula-
tor in the strong-field quantum limit, namely, only the
lowest Landau band is occupied [Fig. 7(b)]. We find that
the backscattering can be totally suppressed in the quan-
tum limit at a critical magnetic field, which can be used
to identify the topological insulator phases. Besides, this
forbidden backscattering is absent in topological semimet-
als [5, 6, 147]. This theory is consistent with the recent
experiment [Figs. 7(c) and (d)]. Moreover, this mecha-
nism will be practical for those materials with small gap,
for example, the ZrTe5 [241, 242] families and the Ag2Te
[243].

8.1 Forbidden backscattering in the quantum limit

In a strong magnetic field B along the z direction, the
energy spectrum quantizes into a series of 1D Landau
bands [Figs. 7(a) and (b)]. The energies of the lowest
two Landau bands, denoted as 0+ and 0−, are E0± =
C0 + Czk

2
z + C⊥/ℓ

2
B ±

√
m2 + V 2

n k
2
z , where the magnetic

length ℓB ≡
√

ℏ/eB, the electron charge −e, and the mass
term
m =M0 +Mzk

2
z +M⊥/ℓ

2
B . (36)

Fig. 7 In the quantum limit of a 3D topological insulator,
the backscattering between the only two states at the Fermi
energy can be forbidden at a critical magnetic field, leading
to a resistance dip. (a) The zero-field energy spectrum vs. kz
of a 3D topological insulator at kx = ky = 0. (b) In a strong
magnetic field, the lowest Landau energy bands of the 3D topo-
logical insulator vs. kz. The Fermi energy EF crosses only the
0+ Landau band. kF and −kF stand for the only two states at
the Fermi energy. (c) The magnetoresistance of Pb1−xSnxSe
reproduced from Ref. [125]. (d) The calculated magnetore-
sistance. The abbreviation “sos” means spin-orbit scattering.
The parameters are M0 = −0.01 eV, Mz = 0, M̃⊥=18 eV·Å2,
α1 = 100 eV·T, and α2 = 0.0025 eV·T−2. Reproduced from
Ref. [12].

We can determine the gap between the two lowest Landau
bands by m with kz = 0.

Next, we will concentrate on an electron-doped quan-
tum limit, namely, the Fermi energy intersects only with
the 0+ Landau band, of which the eigenstate is

|0,+, kx, kz⟩ =


0

−i sin(θ/2)
0

cos(θ/2)

 |0, kx, kz⟩, (37)

where we have defined

cos θ ≡ −m√
m2 + (Vnkz)2

, (38)

and |0, kx, kz⟩ is the state of a usual zeroth Landau level
multiplying a plane wave function along the z direction
[5].

In solids, the electronic transport is relatively influenced
by the backscattering, which plays a dictating role in the
presence of the 1D Landau band, since there are only two
states at the Fermi energy, as denoted by kF and −kF
in Fig. 7. The backscattering between these two states
is characterized by the scattering matrix element between
them. From the spinor eigenstate in Eq. (37), we find
that the modular square of the scattering matrix element
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between the kF and −kF states is in proportion to the
form factor

IS = cos2 θ
∣∣
kz=kF

. (39)

IS vanishes when m = 0, that is, the backscattering be-
tween state kF and state −kF is forbidden. According
to Eq. (36), m vanishes at a critical magnetic field Bc

evaluated by M0 +Mzk
2
F +M⊥eBc/ℏ = 0, where kz is

equal to the Fermi wave vector kF at the Fermi energy.
For a topological insulator, M0Mz < 0 and M0M⊥ < 0,
thus Bc holds finite solutions, at which the backscattering
is totally suppressed. A rich phase diagram can be found
in Fig. 8. This forbidden backscattering will result in a
dip in the resistance as a function of the magnetic field,
which can be probed in experiments and can serve as a
signature for topological insulator phases. This forbidden
backscattering is an eigenstate property and thus is new
and different from the mechanism of Landau level crossing
[238, 239], which is a spectrum property.

8.2 Conductivity in the quantum limit

Along the direction of the magnetic field, there is no Hall
effect, thus the resistivity is the inverse of the conductivity,
namely, ρzz = 1/σzz. In the quantum limit, only band 0+
contributes to the conductivity. Following the methods in

Fig. 8 The mass term m and form factor IS as functions
of the magnetic field B for M0 < 0 and different M⊥ and
Mz. Red, yellow, and green backgrounds indicate the quantum
limit for a carrier density of 6 × 1016/cm3. Without loss of
generality, we have assumed M0 < 0, so M⊥ > 0 and Mz > 0
means strong a topological insulator, M⊥ ≤ 0 and Mz ≤ 0
means a trivial insulator, M⊥ ≤ 0 and Mz > 0 means a weak
topological insulator (001) and M⊥ > 0 and Mz ≤ 0 means
a weak topological insulator (110). The parameters are M0 =
−0.01 eV, Mz = −27, 0, 27, 820, 1200 eV·Å2 from left to right,
M⊥ = −13.5, 0, 13.5 eV·Å2 from bottom to top. Reproduced
from Ref. [12].

Refs. [5, 6, 244], the resitivitity can be expressed as

ρzz = IS/σ0, (40)

where σ0 is the conductivity independent of the spinor
inner product part and IS is the form factor. For differ-
ent types of scattering potential, σ0 takes different forms.
However, the form factor IS in Eq. (40) indicates that,
for a topological insulator, the resistance always has a dip,
regardless of σ0. Figure 4 in Ref. [12] reveals the resistivity
when the Gaussian and screened Coulomb potentials are
present. They both show clear dips in the resistivity for
some weak topological phases (Mz ≤ 0 and M̃⊥ > 0 in
row 1, columns 1 and 2) and strong topological insulator
phases (Mz ∈ [0,M c

z ] and M̃⊥ > 0 in row 1, column 3).
Furthermore, the positions of the minima on the B axis do
not change for various potentials. The spin-orbit scatter-
ing can improve the above picture and result in a better
fitting to the experiment. Specifically, in Fig. 7(d), the
spin-orbit coupling is included in the screened Coulomb
scattering potential. By choosing proper fitting parame-
ters, we obtain a −40% change at the dip of the resistance,
which is in agreement with the experiment, as shown in
Figs. 7(c) and (d).

9 Remarks and perspective

The theories of the quantum oscillations need to be im-
proved to match the semiclassical argument and full quan-
tum mechanics calculations. Recently, a quantum theory
of intrinsic magnetoresistance for three-dimensional Dirac
fermions in a uniform magnetic field is proposed, which
shows that the relative magneto-resistance is inversely
quartic of the Fermi wave vector and only determined
by carrier density, and a formula for the phase shift in
SdH oscillation is present as a function of the mobility
and the magnetic field [245]. Furthermore, new discover-
ies on quantization rules in oscillations have been found
for graphene, 2D materials, topological metals, topologi-
cal crystalline insulator, and Dirac and Weyl semimetals
[246, 247]. Topological contributions have also been found
in Bloch oscillations [248]. Generalizations of these clas-
sical notions to nodal-line systems will be topics of fun-
damental interests in the future. Whether the rules for
phase shift can be generalized to extremal orbits shared
by electron and hole pockets in type-II Weyl semimet-
als [246, 249] will be an outstanding problem. Quantum
oscillations in type-II Dirac semimetals PdTe2 [250] and
nodal-line systems [251, 252] have also been addressed.

Lately, the quantized Hall resistance plateaus have
been experimentally observed in the topological semimetal
Cd3As2 [217, 218, 253], with thickness ranging from 10
to 80 nm. They cannot be regarded as 2D. Neverthe-
less, several questions still hold. First, Cd3As2 is a Dirac
semimetal, composed of two time-reversed Weyl semimet-
als. At a single surface, there is a complete 2D electron
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gas, formed by two time-reversed half 2D electron gases
of the Fermi-arc surface states. There may be also the
trivial quantum Hall effect on a single surface. Second,
the 3D bulk states quantize into 2D subbands for those
thicknesses. If the 3D bulk states cannot be depleted en-
tirely, they also have the trivial quantum Hall effect. The
two issues may explain the 2-fold and 4-fold degenerate
Hall resistance plateaus observed in the experiments. To
deplete the 3D bulk states, the Fermi energy has to be
placed exactly at the Weyl nodes. How to distinguish
these trivial mechanisms from the 3D quantum Hall effect
will be an interesting direction. Previously, when studying
the geometric phase, the parameter space is usually either
in real space or momentum space [131]. The Weyl orbit
formed by the Fermi arcs and Weyl nodes is a new physics,
because part of the geometric phase is accumulated in real
space and part in momentum space, quite different from
the parameter spaces studied before. In particular, the ge-
ometric phase has a thickness dependence when accumu-
lated along the path as electrons tunnel between the top
and bottom surfaces [215, 254]. Recently, a new experi-
ment uses this thickness-dependent phase shift to demon-
strate the contribution of the Weyl orbit in the observed
quantized Hall resistance [219]. The 3D quantum Hall ef-
fect can also be supported by the CDW mechanism [255],
which has been observed recently in ZrTe5 [256]. More
works will be inspired to verify the mechanism and realize
the 3D quantum Hall effect in the future [257].

In the quantum limit, our theory have shown that up
to two resistance dips may appear if the system is a 3D
strong topological insulator [12]. Surprisingly, recent ex-
periments report up to five oscillations in the quantum
limit [258, 259]. The oscillation as a function of the mag-
netic field follows a logithimic scale invariance law, much
like those in the Efimov bound states of cold atoms. The
Efimov bound state is a three-body bound state arising
from the two-body interactions between atoms. Efimov-
like bound states have been used to understand the un-
expected oscillations [260, 261]. A direct fitting of the
resistance in the experiment have also been demonstrated
[258, 259, 261]. Nevertheless, other mechanisms that may
lead to the scale invariance oscillations will be topics of
broad interest.

In solids, the space group can protect energy nodes with
other degeneracies, such as three-, six- and eight-fold one,
which may lead to massless fermions that have no coun-
terpart particles in high-energy physics [262–265]. Triply-
degenerate nodal-point semimetals have been proposed
with symmorphic space group symmetry of WC type crys-
tal structure, including TaN, ZrTe and MoP, and observed
by angle-resolved photoemission spectroscopy [266, 267].
The unconventional three component fermions in them
are formed by crossing of nondegenerate and double de-
generate bands, protected by both rotational and mir-
ror symmetries. As an intermediate fermion between
Dirac and Weyl fermion, the host semimetal is expected

to have different magnetoresistance [268–270]. More top-
ics will also be of broad interest, including the quantum
transport in magnetic Weyl semimetals [56, 271–279], the
kagome ferromagnet Fe3Sn2 [280], double-Weyl semimet-
als [20, 281], type-II Weyl semimetals [51, 282–291], hopf-
link nodal-line semimetals [292–295], Aharonov-Bohm ef-
fect [296], quasiparticle interference on the surfaces of
Weyl semimetals [297–300] and Fano effect [301], explor-
ing axial-gravitational anomaly through thermoelectrical
transport [302].
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