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In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial
reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states.
This will help us to understand the relationship between the relativity and quantum information
theory. Some states will be changed from entangled states into separable ones around the critical value
F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that
the negativity NABI

(ρTA

ABI
) increases with F but decreases with the variable y, while the variation of

the negativity NBIBII
(ρ

TBI

BIBII
) is opposite to that of the negativity NABI

(ρTA

ABI
). We also study the

von Neumann entropies S(ρABI
) and S(ρBIBII

). We find that the S(ρABI
) increases with variable y

but S(ρBIBII
) is independent of it. However, both S(ρABI

) and S(ρBIBII
) first decreases with F and

then increases with it. The concurrences C(ρABI
) and C(ρBIBII

) are also discussed. We find that the
former decreases with y while the latter increases with y but both of them first increase with F and
then decrease with it.

Keywords negativity, pseudo-pure state, noninertial frame, entanglement, von Neumann entropy,
concurrence

1 Introduction

The study of the entanglements within a noninertial frame
is important in quantum information theory. Recently, a
lot of interesting and significant works have been worked
out in effects of both special and general relativity on
quantum entanglement [1–17]. In the classical work, Als-
ing et al. analyzed the entanglement between two modes
of a free Dirac field as regarded as two relatively acceler-
ated parties [1]. Wang et al. generalized Alsing’s study
to three observers [9], which is revisited in our recent
study [18]. They assume that Alice, Bob and Charlie ini-
tially share a GHZ state, and then let Alice stay sta-
tionary, while Bob and Charlie move with uniform ac-
celeration. Considering the special characteristics for the
GHZ state, i.e., the density matrix can be expressed as
the X form. The corresponding eigenvalues can be ob-
tained easily. Recently, Moradi [19] and Mehri-Dehnavi et
al. [20] have studied the so-called Werner state [21] ρ =
F |Ψ−⟩⟨Ψ−|+(1−F )/3(|Φ+⟩⟨Φ+|+|Φ−⟩⟨Φ−|+|Ψ+⟩⟨Ψ+|)
and pseudo-pure states combined by the Bell states such
as the |ψ⟩ = α(|00⟩+ |11⟩)+β|10⟩ [21], respectively. More-
over, we have restudied Werner state in accelerated frames

[22]. Stimulated by these works we are going to propose
an interesting new pseudo-pure state, which is composed
of four Bell states

|Ψ⟩ =
√
F |Ψ−⟩+

√
1− F

3
(|Φ+⟩+ |Φ−⟩+ |Ψ+⟩), (1)

where F is a parameter such that 0 ≤ F ≤ 1. The |Φ±⟩
and |Ψ±⟩ are usual entangled Bell states

|Φ±⟩AB =
1√
2
(|0A⟩|0B⟩ ± |1A⟩|1B⟩), (2)

|Ψ±⟩AB =
1√
2
(|0A⟩|1B⟩ ± |1A⟩|0B⟩). (3)

Our aim is to study its characteristics of the entangle-
ment in noninertial frames such as the negativity, the
von Neumann entropy, concurrence and also the effects
of the variables F and y on them. We find that this state
(1) has the simplest form |Ψ−⟩ for F = 1, while it is
the combination of three Bell states |Φ±⟩ and |Ψ+⟩ for
F = 0.

This work is organized as follows. In Section 2 we pro-
pose an interesting new pseudo-pure state and present the
density operator. We are going to study the characteristics
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of entanglement of the Dirac field in noninertial reference
frames subject to this state such as the negativity, von
Neumann entropy and the concurrences. Finally, we will
give our summary in Section 4.

2 New pseudo-pure state in noninertial
reference frames

Based on the explicit expressions of the Bell states, we are
able to write out this state as the following modified form:

|Ψ⟩m = α|0A0B⟩+ β+|0A1B⟩+ β−|1A0B⟩, (4)

where

α =

√
2(1− F )

3
, β± =

√
1− F

6
±
√
F

2
. (5)

In order to describe the entanglement of the state as
seen by Alice and Bob, let us expand the Minkowski
states |0⟩M and |1⟩M into Rindler regions I and II particle

and antiparticle states. As shown in Refs. [9, 13], the
Minkowski vacuum and one particle states in terms of
Rindler–Fock states are given by

|0⟩M = cos rb|0⟩I |0⟩II + sin rb|1⟩I |1⟩II , (6)
|1⟩M = |1⟩I |0⟩II , (7)

where tan rb = exp(−πω/a). The parameters a and ω rep-
resent the acceleration of the accelerated observer and the
Minkowski frequency, respectively. In this case one has
rb ∈ [0, π/4] for 0 ≤ a ≤ ∞.

We first assume Alice is in an inertial frame and Bob
is observing the system from accelerated frame. And then
we let Alice stay stationary while Bob moves with uniform
acceleration. Taking Eqs. (6) and (7) into account, this
state can be expressed as the following form:

|Ψ⟩m = α[cos(rb)|0A0BI
0BII

⟩+ sin(rb)|0A1BI
1BII

⟩]
+β+|0A1BI

0BII
⟩+ β−[cos(rb)|1A0BI

0BII
⟩

+ sin(rb)|1A1BI
1BII

⟩]. (8)

The corresponding density matrix will take the form of

ρABIBII
=



α2 cos2 y 0 αβ+ cos y α2 cos y sin y αβ− cos2 y 0 0 αβ− cos y sin y
0 0 0 0 0 0 0 0

αβ+ cos y 0 β2
+ αβ+ sin y β+β− cos y 0 0 β+β− sin y

α2 cos y sin y 0 αβ+ sin y α2 sin2 y αβ− cos y sin y 0 0 αβ− sin2 y

αβ− cos2 y 0 β+β− cos y αβ− cos y sin y β2
− cos2 y 0 0 β2

− cos y sin y
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

αβ− cos y sin y 0 β+β− sin y αβ− sin2 y β2
− cos y sin y 0 0 β2

− sin2 y


, (9)

where y = rb for simplicity and we write the matrix on the basis of |0⟩ = |000⟩, |1⟩ = |001⟩, |2⟩ = |010⟩, |3⟩ = |011⟩,
|4⟩ = |100⟩, |5⟩ = |101⟩, |6⟩ = |110⟩, |7⟩ = |111⟩.

3 Negativity, von Neumann entropy and concurrence

As we know, when Bob moves with uniform acceleration a in Rindler region I, he is causally disconnected from region
II. This means that he has no access to field modes in this region II. Thus, the observer has to trace over this
inaccessible region. By taking the trace over the modes in II, we are able to obtain the following mixed density
between Alice and Bob:

ρABI
= α2 cos2 y |0A0BI

⟩ · ⟨0A0BI
|+ αβ+ cos y |0A1BI

⟩ · ⟨0A0BI
|+ αβ− cos2 y |1A0BI

⟩ · ⟨0A0BI
|

+αβ+ cos y |0A0BI
⟩ · ⟨0A1BI

|+ β2
+ |0A1BI

⟩ · ⟨0A1BI
|+ α2 sin2 y |0A1BI

⟩ · ⟨0A1BI
|

+β+β− cos y |1A0BI
⟩ · ⟨0A1BI

|+ αβ− sin2 y |1A1BI
⟩ · ⟨0A1BI

|+ αβ− cos2 y |0A0BI
⟩ · ⟨1A0BI

|

+β+β− cos y |0A1BI
⟩ · ⟨1A0BI

|+ β2
− cos2 y |1A0BI

⟩ · ⟨1A0BI
|+ αβ− sin2 y |0A1BI

⟩ · ⟨1A1BI
|

+β2
− sin2 y |1A1BI

⟩ · ⟨1A1BI
| . (10)

Its corresponding matrix form is given explicitly by
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ρABI
=


α2 cos2 y αβ+ cos y αβ− cos2 y 0

αβ+ cos y β2
+ + α2 sin2 y β+β− cos y αβ− sin2 y

αβ− cos2 y β+β− cos y β2
− cos2 y 0

0 αβ− sin2 y 0 β2
− sin2 y

 (11)

from which we can obtain partially transpose subsystems A and BI of Eq. (10) as

ρTA

ABI
= ρ

TBI

ABI
= α2 cos2 y |0A0BI

⟩ · ⟨0A0BI
|+ αβ+ cos y |0A1BI

⟩ · ⟨0A0BI
|+ αβ− cos2 y |1A0BI

⟩ · ⟨0A0BI
|

+β+β− cos y |1A1BI
⟩ · ⟨0A0BI

|+ αβ+ cos y |0A0BI
⟩ · ⟨0A1BI

|+ [β2
+ + α2 sin2 y] |0A1BI

⟩ · ⟨0A1BI
|

+αβ− sin2 y |1A1BI
⟩ · ⟨0A1BI

|+ αβ− cos2 y |0A0BI
⟩ · ⟨1A0BI

|+ β2
− cos2 y |1A0BI

⟩ · ⟨1A0BI
|

+β+β− cos y |0A0BI
⟩ · ⟨1A1BI

|+ αβ− sin2 y |0A1BI
⟩ · ⟨1A1BI

|+ β2
− sin2 y |1A1BI

⟩ · ⟨1A1BI
| . (12)

The reason why we take the partial transposed density matrix of a system is to make the entangled quantum system
have at least one negative eigenvalue.

Their matrix forms are given by

ρTA

ABI
= ρ

TBI

ABI
=


α2 cos2 y αβ+ cos y αβ− cos2 y β+β− cos y

αβ+ cos y β2
+ + α2 sin2 y 0 αβ− sin2 y

αβ− cos2 y 0 β2
− cos2 y 0

β+β− cos y αβ− sin2 y 0 β2
− sin2 y

 . (13)

Let us study the so-called two-tangle NAB = ∥ρTA

AB∥−1,
which represents the negativity of the mixed state ρAB ,
while the “one-tangle” is given by NA(BC) = ∥ρTA

ABC∥− 1,
and ∥A∥ = tr(

√
AA†) is the trace norm of matrix A, i.e.,

the sum of the singular values of A [23]. Alternatively,
∥A∥−1 is equal to two times of the sum of absolute values
of negative eigenvalues of A. It should be addressed that
the eigenvalues of the above equation (13) can be obtained
analytically, but their expressions are too complicated to
write down here. In Fig. 1, we show the variation of the
negativity NABI

(ρTA

ABI
) on the acceleration parameter y

and F . We find that the negativity increases with F but
decreases with the acceleration parameter y. In the special

case F = 1, the eigenvalues of above matrix (13) are given
by

λ1ABI
= λ2ABI

=
1

2
, λ3ABI

= −λ4ABI
=

1

2
cos2 y, (14)

from which one has NABI
(ρTA

ABI
) = cos2 y. It is not diffi-

cult to see that λ4ABI
is always negative. Also, we find that

there is only one negative eigenvalue for the case F = 0.
We are now in the position to calculate the von Neu-

mann entropy S(ρABI
) = −

∑4
i=1 λi log2 λi of density

ρABI
. To this end, let us calculate the eigenvalues of the

density ρABI
(11), which are given by

λ1,2 = 0,

λ3,4 =
1

4
{2α2 + 2

(
β2
+ + β2

−
)
∓
√
2[α4 + 2α2

(
2β2

+ + β2
−
)
+ 2β4

+ + β4
− +

(
α2 + β2

−
)2 cos(4y) + 4β2

+β
2
− cos(2y)]1/2},

(15)
from which we have

S(ρABI
) = −

6[ln(
√
2σ + 12) + ln(12−

√
2σ)− 2 ln 24] +

√
2σarccoth

(
6
√
2

σ

)
12 ln 2

, (16)

where the parameter σ is defined as
σ = [(8νF − 8F 2 − 8F − 20ν + 25) cos(4y) + 4(1− 4F )2 cos(2y)− 8F (7F + ν − 5) + 20ν + 43]1/2,

ν =
√
3F (1− F ). (17)

Let us study the concurrence C(ρABI
) of this system. Here we choose the approach ρ(σy ⊗ σy)ρ

†(σy ⊗ σy) to calcu-
late the eigenvalues of the matrix. This approach is different from our recent study [24], in which the density matrix can

21603-3 Qian Dong, et al., Front. Phys. 14(2), 21603 (2019)



Research article

be written as an X form. The (σy ⊗ σy) is given by

(σy ⊗ σy) =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (18)

The matrix ρABI
(σy ⊗ σy)ρ

†
ABI

(σy ⊗ σy) is calculated as
0 2αβ+β

2
− cos3 y 2αβ2

+β− cos2 y −2α2β+β− cos3 y
0 2β2

+β
2
− cos2 y 2β3

+β− cos y −2αβ2
+β− cos2 y

0 2β+β
3
− cos3 y 2β2

+β
2
− cos2 y −2αβ+β

2
− cos3 y

0 0 0 0

 , (19)

from which we have the square roots of the eigenvalues as
λ1 = 2|β+β−| cos y = |(1 − 4F )| cos y/3, λ2,3,4 = 0. The
concurrence is calculated by

C(ρ) = max{0, λ1 −λ2 −λ3 −λ4}, λ1 ≥ λ2 ≥ λ3 ≥ λ4.

(20)

We plot the concurrence of C(ρABI
) in Fig. 3. We find

that C(ρABI
) first decreases with F and then increases

with it, but it decreases with the increasing y. In particu-
lar, we find that C(ρABI

) becomes zero for F = 1/4. This
implies that the entanglement is broken. This means that
C(ρABI

) weakens when the acceleration increases.
Finally, by tracing over the Alice qubit we obtain the

density matrix of Bob in region I and the modes in region
II

ρBIBII
=


(α2 + β2

−) cos2 y 0 αβ+ cos y (α2 + β2
−) cos y sin y

0 0 0 0

αβ+ cos y 0 β2
+ αβ+ sin y

(α2 + β2
−) cos y sin y 0 αβ+ sin y (α2 + β2

−) sin2 y

 . (21)

The partial transposes of ρBIBII
is given by

ρTBI

BIBII
= ρTBII

BIBII
=


(α2 + β2

−) cos2 y 0 αβ+ cos y 0

0 0 (α2 + β2
−) cos y sin y 0

αβ+ cos y (α2 + β2
−) cos y sin y β2

+ αβ+ sin y
0 0 αβ+ sin y (α2 + β2

−) sin2 y

 . (22)

Likewise, we find that the eigenvalues for above ma-
trix (22) are too complicated to write them out explic-
itly. In Fig. 4, we illustrate the variation of the negativity

NBIBII
(ρ

TBI

BIBII
) on the acceleration parameter y and the

F . In comparison with the negativity NABI
(ρTA

ABI
), we find

that the negativity decreases with both the acceleration
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Fig. 3 A plot of C(ρABI ) as function of acceleration param-
eters y and F .

Fig. 4 A plot of NBIBII (ρ
TBI
BIBII

) as function of acceleration
parameters y and F .

parameter y and the F . In the special case F = 1, we find
that the eigenvalues are given by

λ1BIBII
=

1

2
cos2 y,

λ2BIBII
=

1

8

[
2−

√
6− 2 cos(4y)

]
,

λ3BIBII
=

1

8

[
2 +

√
6− 2 cos(4y)

]
,

λ4BIBII
=

1

2
sin2 y. (23)

from which we have NBIBII
(ρ

TBI

BIBII
) = −2λ2BIBII

. We see
that λ2BIBII

≤ 0. In the special case y = 0, i.e. a = 0, there
is no entanglement for this case. Similarly, when F = 0
the analytical eigenvalues are also too complicated to write
out them explicitly, but we find there is no entanglement
for y = 0.

In a similar way, let us calculate the von Neumann
entropy S(ρBIBII

) of density ρBIBII
. The eigenvalues of

Eq. (21) are given by

λ1,2 = 0,

λ3,4 =
1

2
{α2 + β2

+ + β2
−

∓[α4 + 2α2(β2
+ + β2

−) + (β2
+ − β2

−)
2]1/2}, (24)

where the signs “∓” correspond the eigenvalues λ3 and λ4,
respectively. Based on them we get analytical expression
of the von Neumann entropy S(ρBIBII

)

S(ρBIBII
) =

1

ln 64

[
− 3 ln(2τ + 3)− 3 ln(3− 2τ)

−4τarctanh
(
2

3
τ

)
+ ln 46656

]
, (25)

where τ =
√
−4F 2 + 2F + 2. It is interesting to see that

S(ρBIBII
) is independent of the variable y as shown above.

his can be explained well since Bob is moving in Regions
I and II with same acceleration.

Similarly, we study the concurrence C(ρBIBII
). We

obtain the matrix expression of the ρBIBII
(σy ⊗

σy)ρ
†
BIBII

(σy ⊗ σy) as follows:


2(α2 + β2

−)
2 cos2 y sin2 y −2αβ+(α

2 + β2
−) cos2 y sin y 0 2(α2 + β2

−)
2 cos3 y sin y

0 0 0 0

αβ+(α
2 + β2

−) sin y sin 2y −2α2β2
+ cos y sin y 0 2αβ+(α

2 + β2
−) cos2 y sin y

2(α2 + β2
−)

2 cos y sin3 y −2αβ+(α
2 + β2

−) cos y sin2 y 0 2(α2 + β2
−)

2 cos2 y sin2 y

 , (26)

from which we have the square roots of the eigenvalues of
this matrix as

λ1 =
√

(α2 + β2
−)

2 sin y[sin y + sin(3y)], λ2,3,4 = 0.

We plot it in Fig. 6. We find that the C(ρBIBII
) increases

with y and first decreases with the variable F and then
increases with it.

4 Conclusions

In this work we have analyzed the characteristics of the
quantum entanglement of this system by taking a new

pseudo-pure state into account. It is found that this state
is composed by four Bell states and essentially by the com-
bination of the two qubits α|00⟩ + β+|01⟩ + β|10⟩. What
is the advantage of this state is that the Bell states are
orthogonal. The parameter F plays an important role in
deciding whether this system is entangled or not. That
is, some states will be changed from entangled states into
separable ones around the critical value F = 1/4. We have
studied the negativities, von Neumann entropies and also
the concurrences. We find that the negativity NABI

(ρTA

ABI
)

increases with F but decreases with the variable y, while
NBIBII

(ρ
TBI

BIBII
) decreases with F but increases the accel-

eration variable y. We also study the von Neumann en-

21603-5 Qian Dong, et al., Front. Phys. 14(2), 21603 (2019)



Research article

Fig. 5 A plot of S(ρBIBII ) as function of acceleration pa-
rameters y and F .

Fig. 6 A plot of C(ρBIBII ) as function of acceleration pa-
rameters y and F .

tropies S(ρABI
) and S(ρBIBII

). We find that S(ρABI
) in-

creases with variable y but S(ρBIBII
) is independent of y.

However, both S(ρABI
) and S(ρBIBII

) first decreases with
F and then increases with it. The concurrences C(ρABI

)
and C(ρBIBII

) are also discussed. We find that the former
decreases with y while the latter increases with y but both
of them first increase with F and then decrease with it.
Before ending this work, we give a useful remark on the
von Neumann entropy, which is different from the Shan-
non entropy in quantum mechanics problem as shown in
Refs. [25, 26]. On the other hand, we are going to see
whether the concurrence vectors proposed by employing
the fundamental representation of Lie algebra [27] can be
used to study the present case.
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