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Extending the recent work completed by Fan et al. [Front. Phys. 9(1), 74 (2014)] to a two-mode case,
we investigate how a two-mode squeezed vacuum evolves when it undergoes a two-mode amplitude
dissipative channel, with the same decay rate κ, using the continuous-variable entangled state approach.
Our analytical results show that the initial pure-squeezed vacuum state evolves into a definite mixed
state with entanglement and squeezing, decaying over time as a result of amplitude decay. We also
investigate the time evolutions of the photon number distribution, the Wigner function, and the optical
tomogram in this channel. Our results indicate that the evolved photon number distribution is related
to Jacobi polynomials, the Wigner function has a standard Gaussian distribution (corresponding to
the vacuum) at long periods, losing its nonclassicality due to amplitude decay, and a larger squeezing
leads to a longer decay time.
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1 Introduction

Quantum decoherence of a signal (a quantum state of
a system) passing through a quantum channel usually
happens since dissipation or dephasing in this process
will deteriorate the degree of nonclassicality of this state.
In this case, the reduced dynamics of the density matrix
operator of the quantum system is described by a master
equation. Thus in quantum physics, a master equation
of a quantum system is established for a better under-
standing of how decoherence arises and influences uni-
tary feature of the system in a dissipative or/and de-
phasing process. In order to solve master equations, var-
ious quasi-probability representations, for examples, P-
representation, Q-representation, and Wigner functions,
etc. (see Refs. [1–4]) to convert the master equations of
density operators into the corresponding c-number equa-
tions are usually used. Lately, a new approach of treat-
ing master equations [5], namely the continuous-variable
(CV) entangled state approach, is proposed via the ther-

mal field dynamics theory [6], and its basic idea is to turn
operator master equations into the evolution equations
for the state vectors, which can directly obtain the corre-
sponding Kraus operators (that is, the infinitive-sum rep-
resentation of evolved density operators) in most cases.
Also, abundant previous results have fully proved that
the CV entangled state representation provides us with
a new tool for insight about the nature of the dissipa-
tive process [7–12]. For instance, Fan et al. have analyt-
ically studied the evolution of the single-mode squeezed
vacuum in an amplitude dissipative channel (ADC) and
manifestly revealed how the initial squeezed vacuum
evolves into a squeezed chaotic state with decreasing
squeezing and with decoherence [10].

As an extension of the work in Ref. [10], in this paper
we investigate how an initial two-mode squeezed vac-
uum state (TMSVS) evolves in a two-mode amplitude
dissipative channel by deriving analytically some explicit
expressions. We emphasize that this is not a simple ex-
tension of the single-mode case [10] since the presence of
a two-mode squeezing operation causes the distribution
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of entanglement between two modes, which requires us
to adopt completely different entangled state represen-
tations and derivation skills from the single-mode case
to treat the complicated calculations involved, especially
when the density operator of this state evolves undergo-
ing decoherence in the ADC. Besides, the TMSVS as a
Gaussian entangled resource is frequently used to carry
out some certain CV quantum information tasks, such
as quantum teleportation [13], metrology [14] and com-
munications [15], and the dissipative noise from the envi-
ronment always occurs in the process of completing these
tasks. So, the investigation of the influence of amplitude
dissipation on the TMSVS is essential for its practical
applications in the quantum information technologies.
Moreover, we will investigate what kind of mixed states
does the TMSVS develops into and how the photon num-
ber distribution (PND), Wigner function and optical to-
mogram analytically evolve in a ADC. The reduced sys-
tem dynamics in the two-mode ADC is described by the
following master equation [1]:

dρ(t)
dt = (La + Lb)ρ(t), (1)

where Liρ(t) = κ(2iρ(t)i† − i†iρ(t) − ρ(t)i†i), (i = a, b),
ρ(t) is the evolved density operator of the system and κ
is the decay rate. Actually, amplitude dissipation, differ-
ent from pure phase dephasing, represents the transfer
process of energy from the system to a zero-temperature
environment. For simplicity but without loss of general-
ity, the decay rates of the two decay modes are assumed
to be the same. To achieve the above aims, we will make
full use of the CV entangled state representation newly
introduced in Ref. [5].

The work is arranged as follows. In Section 2 by virtue
of the CV entangled state representation we clearly de-
rive the infinitive-sum representation of density operator
as a solution of the master equation (1). In Section 3,
we discuss how an initial TMSVS evolves into a defi-
nite mixed state in the two-mode ADC, and its exact
evolution law is presented. Based on this, in Section 4,
the PND evolution of the mixed output state is obtained
which turns out to be a Jacobi polynomial function re-
lated to the squeezing parameter r and the decay rate κ.
In Sections 5 and 6, we respectively discuss the evolutions
of Wigner function and optical tomogram of TMSVS in
the ADC.

2 Deducing the infinitive-sum representation
of ρ(t)ρ(t)ρ(t)

By noticing that modes a and b are independent of each
other, the specific solutions of master equation (1) can
be considered as the direct product of the solutions of

two independent master equations for a- and b-modes.
For this reason, we first use the CV entangled state rep-
resentation to solve the single-mode (say, a-mode) mas-
ter equation. Recalling that the two-mode CV entangled
state is defined as [5, 16–18]

|ς⟩ = exp
(
−1

2
|ς|2 + ςa† − ς∗ã† + a†ã†

)
|00̃⟩, (2)

where ã† is a fictitious (non-physical) mode accompany-
ing the real mode a†, [ã, a†] = [ã†, a†] = 0. So, the state
|ς⟩ may describe the entanglement between the quantum
system and the heat reservoir. For the entangled state
|ς = 0⟩ ≡ |I⟩, it possesses the well-behaved properties

a|I⟩ = ã†|I⟩, a†|I⟩ = ã|I⟩. (3)

Equation (3) indicates that there exists a non-trivial in-
terchange relation between the real and fictitious modes,
that is a ⇔ ã†, a† ⇔ ã and a†a ⇔ ã†ã, which plays a key
role in obtaining the formal solutions of master equa-
tion (1), with details as follows. Acting the both sides
of the master equation for a-mode on the state |I⟩, and
denoting |ρa(t)⟩ = ρa(t)|I⟩, we have

d|ρa(t)⟩
dt = κ(2aã− a†a− ã†ã)|ρa(t)⟩. (4)

Letting ρa(0) denote the initial density operator, so the
formal solution of Eq. (4) is

|ρa(t)⟩ = exp[κt(2aã− a†a− ã†ã)]|ρa(0)⟩. (5)

Noticing that the operators in Eq. (5) follow the
commutative relation [aã, a†a] = [aã, ã†ã] = ãa and
[a†a + ã†ã, aã] = −2ãa, and using the operator identity
eλ(A+σB) = eλAeσ(1−e−λτ )B/τ which holds for [A,B] =
τB [5], we have

e−2κt
(

a†a+ã†ã
2 −aã

)
= e−κt(a†a+ã†ã)eT aã, (6)

where T = 1 − e−2κt. Then substituting Eq. (6) into
Eq. (5) yields

|ρa(t)⟩ =
∞∑

n=0

T n

n!
e−κta†aanρa(0)a

†ne−κta†a|I⟩. (7)

Getting rid of |I⟩ simultaneously on both sides of Eq. (7),
we obtain the infinitive operator-sum representation of
ρa(t), i.e.,

ρa(t) =
∞∑

n=0

T n

n!
e−κta†aanρa(0)a

†ne−κta†a . (8)

Noting the independence between two modes, thus in
terms of Eq. (8), the infinitive-sum representation of ρ(t)
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as the solutions of master equation (1) can be obtained
as

ρ(t) =
∞∑

m,n=0

Mm,nρ(0)M†
m,n, (9)

where Mm,n is a kind of Kraus operator corresponding
to the density operator ρ(t),

Mm,n ≡
√

T m+n

m!n!
e−κt(a†a+b†b)anbm. (10)

Therefore, the evolution of any given initial state ρ(0)
in the ADC can be readily calculated from Eq. (9). The
CV entangled state representation provides an elegant
approach to solve the master equation (1) and obtain the
infinitive-sum representation of density operator ρ(t).

Further, using the i-mode operator formula

eλi
†iie−λi†i = e−λi, (11)

we can prove the completeness relation of the operator
Mm,n, i.e.,∑

m,n

M†
m,nMm,n

=
∑
m,n

T m+ne2(m+n)κt

m!n!
: a†nanb†mbm : e−2κt(a†a+b†b)

= I, (12)

where the symbol : : denotes normal ordering and I is
the unit identity operator. Equation (12) leads to the op-
erator identity tr ρ(t) = tr(

∑∞
m,n=0 Mm,nρ(0)M†

m,n) =
trρ(0), so ρ(t) in Eq. (9) is qualified to be a density opera-
tor, and Mm,n is a trace-preserving quantum operation.

3 Evolution of two-mode squeezed vacuum for
amplitude decay

In this section, we investigate how the TMSVS as an
initial state evolves when it passes through the ADC.
Supposing that the initial state in Eq. (9) is a realis-
tic two-mode squeezed vacuum [19, 20], which may be
generated by performing the unitary squeezing operator
S(r) = er(a†b†−ab) with the squeezing parameter r on the
vacuum, i.e.,

ρ(0) = sech2rea
†b† tanh r|00⟩⟨00|eab tanh r, (13)

where the vacuum state |00⟩ is annihilated by either a or
b, [a, a†] = [b, b†] = 1. Substituting (13) into (9) yields

ρ(t) = sech2r
∞∑

m,n=0

T n+m

n!m!
e−κt(a†a+b†b)anbmea

†b† tanh r

|00⟩⟨00|eab tanh ra†nb†me−κt(a†a+b†b). (14)

To simplify (14) we firstly use the operator identity

[i, f(i, i†)] =
∂

∂i†
f(i, i†) (15)

to analyze the part

anbmea
†b† tanh r|00⟩ = an(a† tanh r)mea

†b† tanh r|00⟩.
(16)

Equation (16) is the multiple-photon-subtracted TMSVS,
serving as a useful non-Gaussian entangled resource
in quantum information [21, 22]. Using the operator
identity [23]

ana†m = (−i)m+n : Hm,n(ia†, ia) : , (17)

which can be deduced by virtue of the technique of inte-
gration within an ordered product of operators [24], and
where Hm,n(·, ·) is the two-variable Hermite polynomial
[25], thus we can rewrite Eq. (16) as

anbmea
†b† tanh r|00⟩

= tanhm r

min(m,n)∑
l=0

m!n!a†m−lan−l

l!(m−l)!(n−l)!
ea

†b† tanh r|00⟩. (18)

Further, using the operator relation (15), we finally ob-
tain

anbmea
†b† tanh r|00⟩

= (−i)m+n tanhm rHm,n(ia†, ib† tanh r)ea
†b† tanh r|00⟩.

(19)

Comparing the first and last terms in (19) shows that
the multiple-photon-subtracted state anbmea†b† tanh r|00⟩
can be regarded as the two-variable Hermite polynomial
excitation on squeezed vacuum (THPESV) Hm,n(ia†,
ib† tanh r)ea†b† tanh r|00⟩ since Hm,n(ia†, ib† tanh r) is the
two-variable Hermite polynomial operator of orders
(m,n) as a function of the variables (a†, b†), a remarkable
result. This provides us with a new sight for studying
some nonclassical properties and specific applications in-
volving the state anbmea†b† tanh r|00⟩. Some unique and
valuable research results of the THPESV have been pub-
lished recently [25–27].

Substituting Eq. (19) into Eq. (14) and using
the normally ordered form of the vacuum projector
|00⟩⟨00| =: e−a†a−b†b : and the operator identity (11),
we have

ρ(t)=sech2r
∞∑

m,n=0

T n+m tanh2m r

n!m!

×:Hm,n(ia†e−κt, ib†e−κt tanh r)e(a
†b†+ab)e−2κt tanh r

×Hm,n(−iae−κt,−ibe−κt tanh r)e−a†a−b†b : . (20)
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Further, using the generating function of the product of
two two-variable Hermite polynomials

∞∑
m,n=0

tnsm

m!n!
Hm,n(ξ, η)Hm,n(σ, κ)

=
1

1− st
exp

(
sσξ + tηκ− stσκ− stξη

1− st

)
, (21)

we present the compact expression of density operator
ρ(t) as follows

ρ(t) = ß1 : exp[ß2(a†a+ b†b) + ß3(ab+ a†b†)] : , (22)

where we have set

ß1=
A

cosh2 r
, ß2=A(T tanh2 r−1), ß3=Ae−2κt tanh r.

with A = (1 − T 2 tanh2 r)−1. It is worth noting that,
using the normal ordering product of ρ(t) in (22), one can
readily calculate the analytical evolutions of the PND,
Wigner function and optical tomogram as an indicator
of quantifying nonclassicality of ρ(t).

For checking the validity of the above derivation, we
calculate trρ(t) to see if it equals one. In fact, using
the completeness relation of the coherent states |α, β⟩
[28, 29], we have

trρ(t) = ß1
∫ d2αd2β

π2
⟨αβ| : exp{ß2(a†a

+ b†b) + ß3(ab+ a†b†)} : |αβ⟩

=
sech2r

1− T tanh2 r

∫ d2β

π
exp

(
tanh2 r − 1

1− T tanh2 r
|β|2

)
= 1, (23)

as expected, where we have used the identity in the last
step∫ d2z

π
eζ|z|

2+ξz+ηz∗
= −1

ζ
e−

ξη
ζ , Reζ < 0. (24)

Further, using the operator identity eλa†a =: exp[(eλ −
1)a†a] : [30, 31], equation (22) can be rewritten as

ρ(t) = ß1 exp(ß3a†b†) exp[(a†a+ b†b)

× ln(ß2+1)] exp(ß3ab). (25)

Comparing (25) with the initial state expression (13) we
clearly see that, after undergoing the ADC, the squeez-
ing amount tanh r → e−2κt tanh r

1−T 2 tanh2 r
, and the vacuum state

|00⟩⟨00| −→ exp
[
(a†a+ b†b) ln

(
T e−2κt tanh2 r
1−T 2 tanh2 r

)]
, so ρ(t)

becomes an mixed state as a result of amplitude decay,
but is still entangled and squeezed. Due to T = 1−e−2κt,
and T > T 2 tanh2 r, so

e−2κt

1− T 2 tanh2 r
< 1, (26)

which implies the squeezing amount decreases in the pro-
cess of dissipation. Thus we know that, as time evolves,
the squeezing effect decreases whereas decoherence in-
creases.

Particularly, when κt = 0, owing to T = 0, ß1 =
sech2r, ß2 = −1 and ß3 = tanh r, equation (22) just
reduces to the TMSVS shown in Eq. (13). At long times
κt → ∞, noting that T −→ 1, ß1 = −ß2 −→ 1, ß3 −→ 0,
thus the state ρ(t) entirely loses its entanglement and
squeezing, and eventually decays to vacuum, as expected.

4 Photon number distribution

The PND is usually used to acquire quantum statistical
properties of light fields since its oscillations explained in
terms of the phase-space interference effects are regarded
as a qualitative signature of nonclassicality [32]. In this
section we shall study the PND evolution of the TMSVS
and its oscillating behavior.

For the TMSVS, the photon number is given by
p(m,n, t) = tr[ρ(t)|mn⟩⟨mn|]. So, using the normal or-
dering of ρ(t) in (22), and the relation between the unnor-
malized coherent state |αβ⟩ and the number state |mn⟩,
i.e., |mn⟩ = 1√

m!n!
∂m+n

∂αm∂βn |αβ⟩|m=n=0, we obtain

p(m,n, t)

=
ß1

m!n!

∂2(m+n)

∂αm∂βn∂α′∗m∂β′∗n exp{(ß2 + 1)

×(αα′∗ + ββ′∗) + ß3(αβ + α′∗β′∗)}|α,β,α′,β′=0. (27)
Using multiple differential operations and noting the
range of exponentials lead to the form:

p(m,n, t)

=
ß1

n!m!

∂2(m+n)

∂αm∂βn∂α′∗m∂β′∗n

∞∑
l,j,k,p=0

ßj+p
3

× (ß2 + 1)l+k

l!k!j!p!
αl+jβj+k(α′∗)l+p(β′∗)k+p

∣∣∣∣
α,β,α′,β′=0

= ß1
min(m,n)∑

p=0

m!n!(ß2 + 1)m+n−2pß2p3
(p!)2(m− p)!(n− p)!

. (28)

Without loss of generality, supposing m ⩽ n and com-
paring Eq. (28) with the standard expression of Jacobi
polynomials P

(α,β)
m (·), one can put Eq. (28) into the fol-

lowing compact form:
p(m,n, t)=ßn+1

3 T m+ne−2(m−1)κtsech2r

× tanh2m+n−1 rP (0,n−m)
m

(
1+T 2 tanh2 r

1−T 2 tanh2 r

)
,

(29)

where we have used the identity P
(α,β)
m (−x) =

(−1)mP
(β,α)
m (x). Equation (29) shows that the PND evo-
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lution of the TMSVS in the ADC is just related to the
Jacobi polynomials, a new expression. Noting that the
m-dimensional power-series expansion in Eq. (28) is very
convenient to examine the variation of p(m,n, t), so let
us use it to analyze several special cases below. At the
initial time κt = 0(T = 0), Eq. (29) becomes the PND
of the TMSVS, i.e.,
p(m,n, 0)

= sech2r lim
T →0

min(m,n)∑
p=0

m!n!(tanh r)2m+2n−2pT m+n−2p

(p!)2(m− p)!(n− p)!

=

{
sech2r tanh2n r, m = n
0, m ̸= n

, (30)

which shows that the PND is not zero only when m = n,
and the PND decreases with increasing the squeezing pa-
rameter r. However, we also have p(m,n,∞) = 0 when
κt → ∞ (T → 1), which indicates that there is no photon
after a long time interaction with the amplitude dissipa-
tive environment, a reasonable result.

In Fig. 1, the PND of the TMSVS is shown in the Fock
space (m,n) for different values r and κt, from which we
see that the probabilities of finding the smaller (m,n)
numbers of photons in this mixed state are larger for
small squeezing r, but the probabilities gradually become
small and more photons arise in larger number states as
r increases. This result seems understandable because
the coefficient tanhl r of the initial TMSVS as shown in
the equation ea†b† tanh r|00⟩ =

∑∞
l=0 tanhl r|ll⟩ shows a

higher weight to the larger-number photon component.
Also, the probabilities of finding any photon number
(m,n) except for (0, 0) decrease as κt increases. At long
times (κt → ∞), the probability of finding (0, 0) is one
and the others turn to zero resulting from amplitude de-
cay, coinciding with the above analytical result.

5 Wigner function

In quantum optics, the Wigner function is a useful tool
with which to study the nonclassical light fields. In this

section, we investigate the Wigner function evolution of
the TMSVS in the ADC. Noting that the normal or-
dering form of ρ(t) is shown in Eq. (22), and using the
coherent state representation of two-mode Wigner oper-
ator ∆(α, β) [33], thus the Wigner function evolution of
the TMSVS for amplitude decay can be calculated as

W (α, β; t)

= ß1e2(|α|
2+|β|2)

∫
d2γd2ζ

π4
exp[(ß3ζ − 2α∗)γ − B|γ|2

+(ß3ζ∗ + 2α)γ∗ − B|ζ|2 − 2(ζβ∗ − ζ∗β)], (31)

where γ, ζ are the complex amplitudes of two-mode co-
herent states [28, 29], and B = [1 + (1− 2T )T tanh2 r]/
(1 − T 2 tanh2 r). Using the integral formula (24) again,
we directly obtain

W (α, β, t) =
ß1

π2(B2 − ß23)
exp

[
−4|ß3α− Bβ∗|2

B(B2 − ß23)

−2(2− B)|α|2 − 2B|β|2

B

]
. (32)

Obviously, the evolution of Wigner function for
the TMSVS always keeps Gaussian in ampli-
tude decay environment. In particular, when
κt = 0 and κt → ∞, Eq. (32) becomes
W (α, β, 0) = π−2e−2(|α|2+|β|2) cosh 2r+2(βα+β∗α∗) sinh 2r

and W (α, β,∞) → π−2e−2(|α|2+|β|2), which just cor-
respond to Wigner functions for the TMSVS and the
vacuum, respectively.

In Fig. 2 we show the Wigner function evolution of the
TMSVS in the dissipative channel as a function of Reα
and Reβ for different values of r and κt. Apparently, it
is easy to see that, as a signal of the nonclassicality of
this state, squeezing in one of the quadratures is clear.
For larger squeezing r, the peak is further compressed
along the diagonal direction, which means that the larger
squeezing r, the more slowly the nonclassicality is lost. In
other word, the larger r leads to much longer decay time
than that for the smaller one. However, as κt increases,
squeezing properties can deteriorate quickly. For κt →

Fig. 1 Evolution law of photon number distribution of the TMSVS for amplitude decay when (a) r = 0.5, κt = 0.1; (b)
r = 0.9, κt = 0.1; (c) r = 0.9, κt = 3.
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Fig. 2 Wigner function evolution for the TMSVS for amplitude decay when (a) r = 0.5, κt = 0.1; (b) r = 0.9, κt = 0.1;
(c) r = 0.9, κt = 3.

∞, the Wigner function may finally become the standard
Gaussian distribution, corresponding to vacuum, which
is perfectly accordant with the analytical result outlined
in Section 3.

Next, we want to figure out how the marginal distribu-
tions of Wigner function W (α, β, t) evolves in the ADC.
So, introducing the two-mode Wigner operator in the CV
entangled state |η⟩ representation [34], i.e.,

∆(σ, γ) =

∫ d2η

π3
|γ − η⟩⟨γ + η|eησ

∗−η∗σ (33)

and integrating ∆(σ, γ) over all complex values of γ and
σ, thus we have the evolved marginal distributions of the
Wigner function W (σ, γ, t) for the density operator ρ(t)
in σ- and γ-space, i.e.,∫

d2γW (σ, γ, t) = π−1tr[ρ(t)|η⟩⟨η|]η=σ,∫
d2σW (σ, γ, t) = π−1tr[ρ(t)|τ⟩⟨τ |]τ=γ , (34)

where W (σ, γ, t) equals to the form W (α, β, t) since
∆(σ, γ) is rewritten as ∆(α, β) only when σ = α+β∗ and
γ = α − β∗. Here, it is worth noting that this represen-
tation ∆(σ, γ) can help one derive the Wigner functions
for general squeezed states more conveniently since there
exists the squeezing transform for the Wigner operator
∆(σ, γ), i.e., S−1(r)∆(σ, γ)S(r) = ∆(σ/µ, µγ), which
manifestly exhibits the “squeezing” behavior [35, 36].
Also, |η⟩ and |τ⟩ are two mutually conjugate entangled
states [37], which are physically used in the descrip-
tion of the bipartite entangled system with the positions
(X1, X2) and the momenta (P1, P2).

In order to obtain the distributions, we first derive
the anti-normal ordering product of the evolved den-
sity operator ρ(t). Substituting Eq. (22) into the in-
tegration formula converting an operator into its anti-
normal ordering product [38], and using the inner prod-
uct ⟨−α,−β|α, β⟩ = e−2(|α|2+|β|2), we arrive at

ρ(t) = h1

... exp[h2(a
†a+ b†b) + h3(ab+ a†b†)]

..., (35)

where
...

... represents anti-normal ordering whose ordering
rules are adverse to those of normal ordering, and we
have set

h1 = Cß1, h2 = C[(ß2 + 1)ß2 − ß23], h3 = Cß3

with C = [(ß2 + 1)2 − ß23]−1. Substituting Eq. (24) into
Eq. (35) and using the completeness relation of two-mode
coherent states |αβ⟩, we directly obtain the inner prod-
uct as follows:

⟨η|ρ(t)|η⟩

= h1e−|η|2
∫ d2αd2β

π2
exp(η∗α− ηβ + ηα∗ − η∗β∗)

× exp[(h2 − 1)(|α|2 + |β|2) + (h3 + 1)(αβ + α∗β∗)]

= κ(h1, h2, h3)eϱ(h1,h2,h3)|η|2 , (36)

where κ(h1, h2, h3) = h1/[(h2 + h3)(h2 − h3 − 2)] and
ϱ(h1, h2, h3) = (h2 − h3)/(h3 − h2 + 2). Therefore, the
compact form of the evolved marginal distribution of
W (σ, γ, t) in the “σ-direction” is directly obtained as∫

d2γW (σ, γ, t) = π−1κ(h1, h2, h3)eϱ(h1,h2,h3)|σ|2 .

(37)

In a similar way to deriving Eq. (37), we obtain an-
other evolved marginal distribution of W (σ, γ, t) in the
“γ-direction”, i.e.,∫

d2σW (σ, γ, t) = π−1κ(h1, h2,−h3)eϱ(h1,h2,−h3)|γ|2 .

(38)

Equations (37) and (38) represent the measurement
probability evolutions of two entangled particles with to-
tal momentum

√
2Imσ (or relative momentum

√
2Imγ)

and simultaneously relative position
√
2Reσ (or center-

of-mass position
√
2Reγ) in the TMSVS for amplitude

decay [24].

130322-6
Xiang-Guo Meng, et al., Front. Phys. 13(5), 130322 (2018)



Research article

6 Optical tomogram

Optical tomography is connected with the property to be
a standard positive probability distribution function de-
scribing quantum state in the field of quantum statistics
and quantum optics, so it also provides the possibility
of obtaining photon-number statistics distributions and
reconstructing the Wigner functions of photon states.
Here, with the help of the CV entangled state |η, τ1, τ2⟩
representation, we aim to address the optical tomogram
evolution of the TMSVS in the ADC.

For any two-mode quantum system, for tomographic
approach there exists the entangled state |η, τ1, τ2⟩,
and the Radon transform of the Wigner operator
∆(σ, γ) is just the entangled-state density matrices
|η, τ1, τ2⟩⟨η, τ1, τ2|, i.e.,

|η, τ1, τ2⟩⟨η, τ1, τ2| = π

∫∫
d2σd2γδ(η1 − µ1γ1 − ν1σ2)

×δ(η2−ν2γ2−µ2σ1)∆(σ, γ), (39)

where η = η1+ iη2 and τj = |τj |eiθj = µj + iνj (j = 1, 2),
and the entangled state |η, τ1, τ2⟩ in two-mode Fock space
reads [39]

|η, τ1, τ2⟩ = g exp[g1 + g2a
† + g3b

†

+g4a
†b† − g5(a

†2 + b†2)]|00⟩, (40)

where we have set

g =
1√
|τ1τ2|

, g1 = −η21 |τ2|2 + η22 |τ1|2

2|τ1|2|τ2|2
,

g2 =
η1τ

∗
2 + η2τ

∗
1

τ∗1 τ
∗
2

, g3 =
η2τ

∗
1 − η1τ

∗
2

τ∗1 τ
∗
2

,

g4 =
ei2θ1 − ei2θ2

2
, g5 =

ei2θ1 + ei2θ2

4
.

Therefore, the Radon transform of Wigner function
W (σ, γ) for any two-mode quantum state ρ, namely, the
optical tomogram denoted as T (η, τ1, τ2) can be calcu-
lated as

⟨η, τ1, τ2|ρ|η, τ1, τ2⟩ = π

∫∫
d2σd2γδ(η1 − µ1γ1 − ν1σ2)

×δ(η2 − ν2γ2 − µ2σ1)W (σ, γ)

≡ T (η, τ1, τ2), (41)

which indicates that the tomogram T (η, τ1, τ2) of the
state ρ can be considered as the matrix element
⟨η, τ1, τ2|ρ|η, τ1, τ2⟩, a concise expression.

Thus, using Eqs. (35) and (41), the optical tomogram
evolution of the TMSVS in the ADC is expressed as

T (η, τ1, τ2; t) = h1⟨η, τ1, τ2|
... exp[h2(a

†a+ b†b)

+h3(ab+ a†b†)]
...|η, τ1, τ2⟩. (42)

Inserting the completeness relation of the coherent states
|α, β⟩ into Eq. (42) and using the following integration
formula twice∫ d2z

π
eζ|z|

2+ξz+ηz∗+fz2+hz∗2
=

1√
ζ2−4fh

e
−ζξη+ξ2h+η2f

ζ2−4fh ,

(43)

which holds for the conditions Re(ζ ± f ± h) < 0 and
Re

(
ζ2−4fh
ζ±f±h

)
< 0, to carry out the integral over α and β

respectively, we obtain

T (η, τ1, τ2; t)

=
h1g

2√
c1(c22 − 4|c4|2)

exp
[
− (h2 − 1)|g2|2

c1

+2Re
(
c1g1 − g22g

∗
5

c1
+

c23c
∗
4

c22 − 4|c4|2

)
− c2|c3|2

c22 − 4|c4|2

]
,

(44)

where the parameters c1, c2, c3 and c4 are, respectively,

c1 = (h2 − 1)2 − 4|g5|2,

c2 =
(h2 − 1)(c1 − |g4 + h3|2)

c1
,

c3 =
c1g

∗
3 − (g∗4 + h3)[g2(h2 − 1) + 2c1g

∗
2g5]

c1
,

c4 = −c1g
∗
5 + g5(g

∗
4 + h3)

2

c1
.

In particular, for the case of κt = 0, Eq. (44) becomes
the optical tomogram of the TMSVS, whose analytical
expression can be obtained by making use of the substi-
tutions h1 −→ −csch2r, h2 −→ 1, h3 −→ − coth r in
Eq. (44). While for the limited time κt → ∞, equation
(44) reduces to the optical tomogram of vacuum, i.e.,
T (η, τ1, τ2;∞) = g2e2g1 , a highlighted Gaussian distri-
bution.

7 Conclusions

In summary, we have obtained the evolution law of the
TMSVS in a two-mode amplitude dissipative channel via
the CV entangled state approach, which shows mani-
festly that the initial pure state evolves into a definite
mixed state in this process, but it still maintains entan-
gled and squeezed. Moreover, we have investigated the
evolutions of PND, Wigner function and optical tomo-
gram for amplitude decay. It is analytically found that
in this process, the PND evolution turns out to be a
Jocobi polynomial function, the marginal distributions
in Eqs. (37) and (38) give the measurement probability
evolutions of two entangled particles in the TMSVS in
an entangled way, and the optical tomogram evolution is

Xiang-Guo Meng, et al., Front. Phys. 13(5), 130322 (2018)
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just the matrix element ⟨η, τ1, τ2|ρ(t)|η, τ1, τ2⟩. The nu-
merical results show that the larger squeezing can lead
to a longer decay time, and the TMSVS completely loses
its entanglement and squeezing and ultimately decays to
vacuum at long times.
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