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Quantum teleportation is of significant meaning in quantum information. In this paper, we study
the probabilistic teleportation of a two-qubit entangled state via a partially entangled Greenberger-
Horne-Zeilinger (GHZ) state when the quantum channel information is only available to the sender. We
formulate it as an unambiguous state discrimination problem and derive exact optimal positive-operator
valued measure (POVM) operators for maximizing the probability of unambiguous discrimination.
Only one three-qubit POVM for the sender, one two-qubit unitary operation for the receiver, and two
cbits for outcome notification are required in this scheme. The unitary operation is given in the form
of a concise formula, and the fidelity is calculated. The scheme is further extended to more general
case for transmitting a two-qubit entangled state prepared in arbitrary form. We show this scheme is
flexible and applicable in the hop-by-hop teleportation situation.
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1 Introduction

Quantum teleportation [1] is the process of transmit-
ting unknown quantum states via a pre-shared quantum
channel between distant network nodes with the help of
classical information. Since it was proposed by Bennett
et al. [2], it has been at the heart of quantum informa-
tion theory and also represents a fundamental step in
the development of many quantum technologies, includ-
ing quantum networks [3, 4], quantum cryptography [5],
measurement-based quantum computing [6], quantum
repeater [7], etc. Due to quantum teleportation’s po-
tential applications in the realm of quantum communi-
cation [8], a growing amount of theoretical and experi-
mental progress [9, 10] has been made in this domain.

The transmission of quantum states relies on the quan-
tum channel [11] that is composed of entangled states.
Due to the fragility of entanglement [12, 13] itself and in-
evitable environmental noise, partially entangled states
are utilized for teleporting quantum state probabilisti-
cally. Multi-qubit teleportation is not only useful for
quantum communication but also for quantum comput-

ing and quantum search [14]. Probabilistic teleportation
was introduced by Li et al. [15] and followed by addi-
tional studies [16–18] using different types of entangle-
ment to teleport different unknown quantum states. In
most schemes, the sender makes a standard measurement
(e.g., Bell-state measurement), and then the receiver in-
troduces an auxiliary particle and makes a corresponding
unitary transformation to reconstruct the original state
with the aid of full information of the shared partially
entangled state. When only the sender has the coeffi-
cients of quantum channel, these probabilistic teleporta-
tion schemes are not applicable in this situation.

Upon analysis of its process, it is easy to discover
that quantum teleportation takes advantage of the one-
to-one correspondence between the quantum state mea-
surement result and the state after measurement. The
correct measurement result guides the receiver to recon-
struct the original state exactly. As one of the key is-
sues in quantum communication and quantum cryptog-
raphy, considerable studies have been conducted on the
discrimination of quantum states in various situations. In
the quantum state discrimination problem, two settings
have been commonly investigated. Minimum-error dis-
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crimination (MED) [19] aims to minimize the probability
of making an error in distinguishing states and accepting
erroneous results. However, unlike MED, unambiguous
state discrimination (USD) identifies the states unam-
biguously without error at the expense of allowing an
inconclusive result to indicate “I don’t know”. An unam-
biguous measurement that maximizes the average correct
probability is called optimal, and a closed-form analyti-
cal expression has been obtained for some cases [20, 21].
Chefles et al. [22] showed that a necessary and suffi-
cient condition for the existence of unambiguous mea-
surements for distinguishing between m quantum states
is that the states are linearly independent. They also
proposed equal-probability measurement (EPM) for un-
ambiguous discrimination. Eldar et al. [23] developped
a general framework for unambiguous state discrimina-
tion that can be applied to any number of states with
arbitrary prior probabilities and showed that the EPM
is optimal when a certain constraint is satisfied in several
state sets. Nakahira et al. [24] found optimal quantum
measurement for the generalized quantum state discrim-
ination problem. Some of the discriminators have been
experimentally demonstrated [25, 26]. Most of the exist-
ing measurements are designed to identify one-qubit or
two-qubit states; few measurements are conducted on the
three-qubit state which is the main focus in this paper.

In this paper, we study the probabilistic teleportation
of two-qubit entangled states via a partially entangled
GHZ state and try to relate teleportation with quantum
state discrimination. We show that to distinguishdistin-
guishing states unambiguously is crucial for successful
teleportation. To realize the teleportation, the exact op-
timal POVM operator set is given and performed on
three qubits on the sender side, the unitary operation
for recoverying on the receiver side is provided in the
form of a concise formula, and the average fidelity is cal-
culated. The scheme is extended to the more general
case where the quantum state that needs to be trans-
mitted is prepared in arbitrary forms of two-qubit en-
tangled states. Methods are provided for constructing
POVM and conveniently obtaining correct unitary op-
eration conveniently in that situation. Based on these
manipulations, our scheme is proved demonstrated to be
applicable to the situation where only the sender has full
knowledge about the coefficients of the quantum channel.

The rest of paper is organized as follows: The scheme
for teleporting two-qubit entangled states is proposed in
Section 2. We construct the optimal POVM after formu-
lating the problem as unambiguous state discrimination.
Unitary operation is given in concise formula and av-
erage fidelity is calculated. In Section 3, we extend the
scheme to more general case, convenient and efficient
methods are provided avoiding repeated and tedious de-
duction. Finally, in Section 4, we make some discussion

and conclude the full paper.

2 Scheme for two-qubit entangled state
teleportation

Suppose two nodes, conveniently called Alice and Bob,
are connected with shared entangled states as quantum
channel. Through this channel, Alice wishes to send an
unknown two-qubit entangled state to Bob, which is de-
scribed as

|χ⟩ = α|00⟩+ β|11⟩, (1)

where α and β are complex numbers normalized so that
|α|2 + |β|2 = 1. The quantum channel shared between
these two nodes is pure partially entangled GHZ state of
the form say,

|GHZ⟩ = a|000⟩+ b|111⟩, (2)

where |a|2 + |b|2 = 1. Without loss of generality, we as-
sume a and b to be real with |a| ≥ |b|. Note that only
Alice has the full knowledge of these two coefficients in
our assumption. For the convenience of description, we
numbered all the particles involved and located them ei-
ther at Alice or Bob as shown in Fig. 1.

The combined five-qubit system state could be written
as

|Ψsys⟩ = |χ⟩12 ⊗ |GHZ⟩345. (3)

Expanding the above equation, the system state could
be expressed as

|Ψsys⟩ = (α|00⟩+ β|11⟩)12 ⊗ (a|000⟩+ b|111⟩)345

=
1

2
(a|000⟩+ b|111⟩)123 ⊗ (α|00⟩+ β|11⟩)45

+
1

2
(a|000⟩ − b|111⟩)123 ⊗ (α|00⟩ − β|11⟩)45

+
1

2
(b|001⟩+ a|110⟩)123 ⊗ (α|11⟩+ β|00⟩)45

+
1

2
(b|001⟩ − a|110⟩)123 ⊗ (α|11⟩ − β|00⟩)45.

(4)

In order to realize teleportation, in our scheme, Alice
needs to make a measurement on particles (1, 2, 3)
jointly so that the state on particles (4, 5) would collapse
into one of the four possible states. We observe that in
Eq. (4) there exists correspondence relationship between
the states on Alice’s and Bob’s side. The correct dis-
crimination of the quantum states on particles (1, 2, 3)
will indicate corresponding state on particles (4, 5) pre-
cisely, and then lead to proper unitary operations at Bob
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Fig. 1 System model for teleporting unknown two-qubit
entangled state. The particle 1 and 2 are in the possession
of Alice, particle 3 from partially entangled GHZ state is
with Alice while Bob has the particle 4 and 5. The classical
communication channel, wired or wireless, is also equipped
between Alice and Bob.

for successful original state recovery. It has been known
that only when the state belongs to a known orthogonal
set that it can be infallibly determined by a standard Von
Neumann measurement. When confronted with the prob-
lem of trying to discriminate between non-orthogonal
states, we must accept that no strategy will correctly
reveal the state of the system with unit probability. The
states to be discriminated in this paper is extracted from
the system state from Eq. (4) in the form of vectors as
follows,

|ϕ1⟩=[a, 0, 0, 0, 0, 0, 0, b]T, |ϕ2⟩=[a, 0, 0, 0, 0, 0, 0,−b]T,
|ϕ3⟩=[0, b, 0, 0, 0, 0, a, 0]T, |ϕ4⟩=[0, b, 0, 0, 0, 0,−a, 0]T.

(5)

These four states are non-orthogonal and linearly inde-
pendent pure states. Therefore, our task now is to spec-
ify the kind of POVM that Alice should perform on her
three qubits to discriminate state probabilistically. Since
the state discrimination here is crucial for the whole tele-
portation process, the measurement performed must dis-
tinguish the states unambiguously without error. We ac-
cept the failure of the teleportation with inclusive result
other than recovering the state with erroneous informa-
tion. Thus, we formulate this as a typical unambiguous
state discrimination problem, and then describe the pro-
cedure of obtaining the exact optimal measurements.

2.1 Unambiguous state discrimination formulation

Assume that the possible state of particles (1, 2, 3) would
be drawn from a collection of non-orthogonal pure states
|ϕi⟩ with priori probabilities ηi in r-dimensional complex
Hilbert space H. We have 1 ≤ i ≤ m, r ≤ m where m
is the number of states in the collection, and the states
span a subspace U of H. The m states are linearly in-
dependent and the occurrence probabilities ηi are non-
zero that satisfy

∑m
i=1 ηi = 1. A measurement is de-

scribed by a positive operator-valued measure (POVM),

and constructed comprising m + 1 measurement opera-
tors {Πi, 0 ≤ i ≤ m} that

m∑
i=0

Πi = Ir. (6)

Based on these measurement operators, either the state
is correctly detected or the measurement returns an in-
conclusive result. Thus, each of the operators Πi corre-
sponds to the detection of the state |ϕi⟩, 1 ≤ i ≤ m, and
Π0 corresponds to an inclusive result. Given that the ac-
tual quantum state is |ϕi⟩, the probability of obtaining
outcome k is ⟨ϕi|Πk|ϕi⟩. Therefore, to ensure the result
obtained is either error-free or inclusive, we must have

⟨ϕi|Πk|ϕi⟩ = piδik, 1 ≤ i, k ≤ m (7)

for some 0 ≤ pi ≤ 1. We could get Π0 = Ir −
∑m

i=1 Πi

from Eq. (6). Given that the state is |ϕi⟩, the state is
correctly detected with probability pi so that an incon-
clusive result is returned with probability 1− pi. There-
fore, the total probability of correctly detecting the state
and obtaining conclusive result is

Pcon =
m∑
i=1

ηi⟨ϕi|Πi|ϕi⟩ =
m∑
i=1

ηipi. (8)

We need to choose the measurement operators Πi and
the probabilities pi ≥ 0 to maximize Pcon subject to the
constraint in Eq. (6). It can be formulated as a convex op-
timization problem that several solution algorithms have
been proposed [27]. We may choose

Πi = pi|ϕ̃i⟩⟨ϕ̃i| (9)

as the measurement operator, where |ϕ̃i⟩ ∈ U are the
reciprocal state associated with the states |ϕi⟩. To obtain
the optimal measurement operators Πi, the exact form of
|ϕ̃i⟩ needs to be worked out. We consider the structure
described in [23] and construct the matrices Φ and Φ̃

with |ϕi⟩ and |ϕ̃i⟩ as columns, respectively, so that we
have

Φ̃ = Φ(Φ∗Φ)−1. (10)

Then the exact |ϕ̃i⟩ could be obtained through

|ϕ̃i⟩ = |ϕi⟩(Φ∗Φ)−1. (11)

Afterwards, we can construct the measurement operators
by which Alice could measure particles (1, 2, 3) conclu-
sively and lay good foundation for the following original
state recovery at Bob.
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130320-3



Research article

2.2 Optimal POVM construction

For the case in our scheme, the states to be discriminated
|ϕi⟩ have been exacted as Eq. (5) with equal priori prob-
ability ηi = 1/4 for 1 ≤ i ≤ 4. We construct matrix Φ
and calculate the reciprocal states accordingly. Through
Eq. (10), we give |ϕ̃i⟩ directly as follows:

|ϕ̃1⟩=
1

2a
|000⟩+ 1

2b
|111⟩, |ϕ̃2⟩=

1

2a
|000⟩ − 1

2b
|111⟩,

|ϕ̃3⟩=
1

2a
|001⟩+ 1

2b
|110⟩, |ϕ̃4⟩=

1

2a
|001⟩ − 1

2b
|110⟩.

(12)

In this case, the state |ϕi⟩ and the prior probabilities
ηi satisfy the sufficient conditions for equal-probability
measurement [22] to maximize the total probability of
correct detection Pcon so that the EPM is optimal [23].
For optimal EPM, equal measurement probabilities pi =
p for all 1 ≤ i ≤ 4 such that p is equal to the inverse of
maximum eigenvalue of the corresponding frame opera-
tor S defined as

S =

4∑
i=i

|ϕ̃i⟩⟨ϕ̃i|. (13)

Thus, we get p = 2|b|2 and specify the optimal POVM
for detecting the four states unambiguously as

Πi = 2|b|2|ϕ̃i⟩⟨ϕ̃i|, for 1 ≤ i ≤ 4,

Π0 = Ir −
4∑

i=1

Πi. (14)

The POVM operators are related with the coefficients of
quantum channel which is available when preparing en-
tangled states. The total probability of correctly detect-
ing the state is Pcon =

∑4
i=1 ηipi = 4×1/4×2|b|2 = 2|b|2.

Ignoring the error may arise with following unitary oper-
ation, it is also the probability of successful teleportation
with fidelity one. Note that for |b| = 1/

√
2, which corre-

sponds to maximally entangled state, the teleportation
is always successful with certainty.

2.3 Original state reconstruction

After optimal POVM on particles (1, 2, 3), Alice obtains
corresponding measurement outcome. For convenience,
the outcomes of Πi (1 ≤ i ≤ 4) are expressed as classical
bit strings m1m2 and the correspondence relationship is
defined as

Π1 → 00, Π2 → 01, Π3 → 10, Π4 → 11. (15)

Alice sends this 2cbit information m1m2 to Bob through
classical communication channel. If the inclusive result is
obtained, Alice sends nothing to Bob and starts another

teleportation. For Bob, if getting the classical informa-
tion, he performs the unitary operation on particles (4, 5)
to reconstruct the original state according to the classical
information received as

T = (Xm1)4 ⊗ (Zm2Xm1)5, (16)

where X =
[
0
1
1
0

]
and Z =

[
1
0

0
−1

]
are Pauli matrices.

Through this operation, Bob yields the original state
successfully. Otherwise, if Bob do not receive any infor-
mation concerning the teleportation after a fixed time
period, he would know that Alice obtained an inclu-
sive result that the teleportation failed. With the help of
unambiguous state discrimination and optimal POVM,
the total success probability of teleportation is 2|b|2 and
when |b| = 1/

√
2 it reaches up to 1.

We summarize the whole teleportation process sim-
ply and quantum circuit is presented in Fig. 2. When
Alice wishes to send an unknown two-qubit entangled
state to Bob through the shared partially entangled GHZ
state, she should construct the optimal POVM operators
firstly. By formulating unambiguous state discrimination
problem, the measurement operators could be specified
accordingly. Alice makes this three-qubit optimal POVM
on particles (1, 2, 3) and sends the two cbit classical in-
formation of measurement outcome obtained to Bob.
Upon receiving the information, Bob makes proper uni-
tary operation on particles (4, 5), in the light of Eq. (16),
to reconstruct the unknown original state exactly. This
scheme is applicable in the situation where only Alice
has the full knowledge of the coefficients of the quan-
tum channel since Bob needs to perform operation only
consists of standard Pauli matrices.

2.4 Average fidelity

Although the original state to be teleported is unknown,
it is necessary to study how much information is trans-
ferred from the sender to the receiver efficiently. The
density operator ρk of the teleported pure state relies on
the outcome k, and the average fidelity is defined as

Fig. 2 Quantum circuit for the whole scheme. The solid
line represents the quantum path at each node while the
double solid line denotes the classical information path. The
dashed line connects the entangled particles.
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F ≡ 1

V

∫
dΩ

∑
k

pk(Ω)fk(Ω), (17)

where k denotes the outcome at the sender, fk(Ω) =
⟨ψ(Ω)|ρk|ψ(Ω)⟩ and an unknown pure state ψ(Ω) is pa-
rameterized by a real vector Ω in the parameter space
of volume V [28]. We separate the average fidelity into
two parts, conclusive events and inclusive event, for easy
calculation as follows:

F=Fcon + Finc

=
1

V

∫
dΩ

[
4∑

k=1

pconk (Ω)f conk (Ω)+pinc0 (Ω)f inc0 (Ω)

]
,

(18)

where Fcon indicates the average fidelity conclusive
events with f conk = 1 while Finc denotes the average
fidelity of inconclusive events with f inck = 2/3. We then
have the average fidelity

F =
4∑

k=1

(
1

4
× 2|b|2 × 1

)
+(1−2|b|2)× 2

3
=

2

3
(1+|b|2).

(19)

For |b| = 1/
√
2, F will equal to one which would change

to a faithful teleportation. If |b| = 0, it implies that Bob
cannot reconstruct the original state.

3 Other forms of two-qubit entangled state
transmission

In the above section, we present a scheme for teleporta-
tion of one specific form of unknown two-qubit entangled
state. However, the two-qubit entngled state to be trans-
mitted may be prepared in other forms. In this section,
we extend our scheme to more general cases. Suppose the
unknown two-qubit entangled state is given in another
form of

|χ′⟩ = α|01⟩+ β|10⟩, (20)

which is different from |χ⟩ we have discussed above. Ac-
cordingly, the system state should be expanded as

|Ψ′
sys⟩ = (α|01⟩+ β|10⟩)12 ⊗ (a|000⟩+ b|111⟩)345

=
1

2
(a|010⟩+ b|101⟩)123 ⊗ (α|00⟩+ β|11⟩)45

+
1

2
(a|010⟩ − b|101⟩)123 ⊗ (α|00⟩ − β|11⟩)45

+
1

2
(b|011⟩+ a|100⟩)123 ⊗ (α|11⟩+ β|00⟩)45

+
1

2
(b|011⟩ − a|100⟩)123 ⊗ (α|11⟩ − β|00⟩)45.

(21)

Obviously, in the language of unambiguous state discrim-
ination, the non-orthogonal state set that needs to be
distinguished changes, turning into

|ϕ′1⟩=[0, 0, a, 0, 0, b, 0, 0]T, |ϕ′2⟩=[0, 0, a, 0, 0,−b, 0, 0]T,
|ϕ′3⟩=[0, 0, 0, b, a, 0, 0, 0]T, |ϕ′4⟩=[0, 0, 0, b,−a, 0, 0, 0]T.

(22)

The existing POVM operators Πi in Eq. (14) are un-
able to distinguish these four states |ϕ′i⟩ (1 ≤ i ≤ 4)
unambiguously. That’s because the constrains imposed
on unambiguous state discrimination in Eq. (7) cannot
be satisfied as

⟨ϕ′i|Πk|ϕ′i⟩ ̸= piδik, 1 ≤ i, k ≤ m. (23)

It is not a difficult task to construct new optimal POVM
Π′

i accordingly but the derivation and calculation are te-
dious and redundant for all the other forms of two-qubit
entangled state. We notice that there exists transforma-
tion relationship among these two two-qubit entangled
states that

|χ′⟩ = (I ⊗X) · (α|00⟩+ β|11⟩) = (I ⊗X)|χ⟩. (24)

Besides we have mentioned, the two-qubit entangled
state has other two basic forms that we generalize them
into one expression as

|χst⟩ = α|0, t⟩+ (−1)sβ|1, 1− t⟩
= (I ⊗ ZsXt)|χ00⟩, (25)

where s, t = 0, 1 and |χ00⟩ = α|00⟩ + β|11⟩. We could
express arbitrary two-qubit entangled state in the form
that transformed from state |χ00⟩ as |χst⟩ = Ust|χ00⟩,
which is similar with Bell state even though they are
non-maximal. The general operation Ust = I ⊗ ZsXt

is a 4 × 4 unitary matrix which may change according
to the form of quantum state transmitted. One intuitive
method is to perform corresponding unitary operation
Ust on these two qubits to transform them into the state
|χ00⟩, then follow our scheme to construct the POVM.
But extra unitary operation may increase the probability
of error occurrence. Thus, we try to find out whether
this relationship will benefit further POVM construction.
Eq. (21) is rewritten as

|Ψ′
sys⟩ = |χst⟩12 ⊗ |GHZ⟩345 = U |χ00⟩12 ⊗ |GHZ⟩345

=
1

2
(Ust ⊗ I)|ϕ1⟩123 ⊗ (α|00⟩+ β|11⟩)45

+
1

2
(Ust ⊗ I)|ϕ2⟩123 ⊗ (α|00⟩ − β|11⟩)45

+
1

2
(Ust ⊗ I)|ϕ3⟩123 ⊗ (α|11⟩+ β|00⟩)45

+
1

2
(Ust ⊗ I)|ϕ4⟩123 ⊗ (α|11⟩ − β|00⟩)45. (26)
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Using U ′ to represent Ust ⊗ I, we have the relationship
between the new states set |ϕ′i⟩ to be discriminated and
the set we have discussed |ϕi⟩ as |ϕ′i⟩ = U ′|ϕi⟩. The ma-
trix Φ′ can be constructed with |ϕ′i⟩ as columns and we
also have Φ′ = U ′Φ. The matrix Φ̃′ with new POVM op-
erators |ϕ̃′i⟩ as columns can be obtained through Eq. (10)
that

Φ̃′ = Φ′(Φ′∗Φ′)−1

= U ′Φ((U ′Φ)∗(U ′Φ))−1

= U ′Φ(Φ∗U ′∗U ′Φ)−1

= U ′Φ(Φ∗Φ)−1. (27)

Obviously, we have the relationship between new POVM
operators and the existing POVM operators that

|ϕ̃′i⟩ = U ′|ϕ̃i⟩. (28)

After derivation and calculation case by case, we have the
conclusion that equal-probability measurement is also
optimal in unambiguous state discrimination for sending
two-qubit entangled state of arbitrary form. The equal
probability is p = 2|b|2 and the specific new optimal
POVM Π′

i can be constructed with Eq. (14) accordingly.
Thus, when other forms of two-qubit entangled state are
prepared to be transmitted, the existing POVM Πi can
be used as starting point for constructing the new opti-
mal POVM.

On the receiver side, the expression of unitary oper-
ation performed by Bob should change accordingly as

T ′ = UstT = (Xm1)4 ⊗ (Zm2+sXm1+t)5, (29)

where s, t indicate the form of two-qubit entangled state
transmitted. However, Bob does not know the specific
form of two-qubit entangled state transmitted so that
Alice would have to send additional 2cbit type code st
to Bob together with the 2cbit measurement outcome,
that is 4cbit classical information in total. We still want
to reduce the classical communication cost as much as
possible.

Suppose that if we let Bob believe that the two-qubit
entangled state transmitted is always in the form of |χ00⟩
so that the default unitary operation formula should be
Eq. (16). In that case, the classical information that Alice
sends to Bob should indicate the correct unitary opera-
tion required when being substituted into the formula
even if the information is not the original measurement
outcome but processed result. Based on this considera-
tion, Alice could map the information to proper form by
defining the mapped result as m1mzmx where m1 = m1,
mz=m2 ⊕ s and mx=m1 ⊕ t. The Eq. (16) changes to

T = (Xm1)4 ⊗ (ZmzXmx)5. (30)

Alice applies the mapping and sends the mapped result
to Bob, Bob substitutes the mapped result into Eq. (30)
directly to get the proper unitary operation to perform.
Obviously, the classical communication cost required is
only 3cbits other than 4cbits by using this method.

In summary, when the two-qubit entangled state to be
transmitted is not prepared in the form |χ00⟩, Alice can
still construct and perform the optimal POVM through
Eq. (28), and then send Bob the mapped 3cibt classi-
cal information m1mzmx. Bob substitutes the received
classical information into Eq. (30) and performs the uni-
tary operation obtained to recover the original state. By
our method, we can get the corresponding POVM oper-
ator and proper unitary operation accurately and conve-
niently, avoiding repeated and cumbersome derivation.

4 Discussion and conclusions

Our scheme utilizes unambiguous state discrimination
to obtain conclusive measurement result, that is similar
with the conclusive teleportation presented in Refs. [29–
31]. However, compared with these schemes, we use dif-
ferent type of quantum channel for teleportation and in-
troduce no auxiliary particle which brings ours higher
efficiency. Novel optimal POVM operator set is given
for maximizing probability of correct discrimination in
our scheme. In the meanwhile, we utilize three-qubit
partially entangled GHZ state for teleporting two-qbuit
entangled state via optimal POVM, that is different from
existing schemes to the best of our knowledge.

In the future quantum network, quantum states would
be sent between nodes that not directly connected by en-
tangled state. They could utilize the intermediate nodes
which was connected with both of them forming a chain
of nodes as shown in Fig. 3. Information could be trans-
mitted in a simple way by hop-by-hop teleportation, from
sender Alice to next hop Bob, then Bob transmits to
Candy, finally to the receiver David. Not all nodes are
aware of the coefficients of entangled state shared be-

Fig. 3 Nodes chain for teleportation hop-by-hop. Nodes
share non-maxinally entangled GHZ state with adjacent
nodes to form a chain (channel) from the sender to the re-
ceiver. All nodes are connected by classical communication
channel for information transmission.
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tween so that the node which initiates the transmission
to next hop should choose scheme between our scheme
and typical scheme. Assume that at least one of the two
nodes connected by entangled state has the knowledge
of the quantum channel. The node which initiates the
transmission to next hop would make a decision based
on the fact whether he gets the information or not. If
yes, utilize our scheme and make an optimal POVM,
otherwise, make a standard Bell-state measurement and
follow the typical scheme. In principle, any POVM can
be implemented by adding an ancilla in a known state,
and performing a standard measurement in the enlarged
Hilbert space [32] and is experimentally demonstrated in
Ref. [33]. Our scheme is flexible and implementable.

In this paper, one novel scheme is proposed for prob-
abilistic teleportation of two-qubit entangled state via
partially entangled GHZ state. We relate the quantum
teleportation with quantum state discrimination, and
thereby, derive optimal POVM operators for maximiz-
ing the total probability of correct detection. To real-
ize the teleportation, Alice makes the derived optimal
POVM and Bob performs unitary operation according
to the classical information sent from Alice to yield orig-
inal state. No auxiliary particle is required and the uni-
tary operation for recovering is provided in the form of
concise formula. A simple and generalized method is pre-
sented for constructing the optimal POVM and obtain-
ing correct unitary operation when the two-qubit state is
prepared in arbitrary form, avoiding cumbersome deriva-
tion and extra classical communication cost. Our scheme
is especially applicable to the situation where only Alice
knows the coefficients of quantum channel. We also show
that it makes important part of hop-by-hop teleportation
and compose a complete solution together with typical
schemes.
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