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We review our calculation method, Gaussian expansion method (GEM), to solve accurately the
Schrödinger equations for bound, resonant and scattering states of few-body systems. Use is made
of the Rayleigh-Ritz variational method for bound states, the complex-scaling method for resonant
states and the Kohn-type variational principle to S-matrix for scattering states. GEM was proposed
30 years ago and has been applied to a variety of subjects in few-body (3- to 5-body) systems, such
as 1) few-nucleon systems, 2) few-body structure of hypernuclei, 3) clustering structure of light nuclei
and unstable nuclei, 4) exotic atoms/molecules, 5) cold atoms, 6) nuclear astrophysics and 7) structure
of exotic hadrons. Showing examples in our published papers, we explain i) high accuracy of GEM
calculations and its reason, ii) wide applicability of GEM to various few-body systems, iii) success-
ful predictions by GEM calculations before measurements. The total bound-state wave function is
expanded in terms of few-body Gaussian basis functions spanned over all the sets of rearrangement
Jacobi coordinates. Gaussians with ranges in geometric progression work very well both for short-
range and long-range behavior of the few-body wave functions. Use of Gaussians with complex ranges
gives much more accurate solution than in the case of real-range Gaussians, especially, when the wave
function has many nodes (oscillations). These basis functions can well be applied to calculations using
the complex-scaling method for resonances. For the few-body scattering states, the amplitude of the
interaction region is expanded in terms of those few-body Gaussian basis functions.
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1 Introduction

There are many examples of precision numerical calcula-
tions that contributed to the study of fundamental laws
and constants in physics. One of the recent examples may
be a contribution of our calculation method, Gaussian
expansion method (GEM) [1–5] for few-body systems, to
the determination of antiproton mass. In Particle List-
ings 2000 [6], the Particle Data Group provided, for the
first time, the recommended value of antiproton mass
(mp̄), compared with proton mass (mp), in the form of
|mp̄−mp|/mp < 5×10−7, and commented that this could
be used for a test of CPT invariance. This value was de-
rived by a collaboration of experimental and theoretical
studies of highly-excited metastable states in the antipro-
tonic helium atom (He2+ + p̄ + e−), namely, by a high-
resolution laser spectroscopy experiment at CERN [7]
and a precision Coulomb 3-body GEM calculation [8, 9]
with the accuracy of 10 significant figures in the level
energies (cf. Section 3.4).

Many important problems in physics can be addressed
by accurately solving the Schrödinger equations for
bound state, resonances and reaction processes in few-
body (especially, 3- and 4-body) systems. It is of par-
ticular importance to develop various numerical meth-
ods for high-precision calculations of such problems. For
this purpose, the present authors and collaborators pro-
posed and have been developing the Gaussian expansion
method for few-body systems [1–5].

Using the GEM, the present authors and collaborators
have been studying many subjects in various research
fields of physics. Our strategy for such studies is as fol-
lows: As shown in Fig. 1, we have our own calculation
method GEM in the center and have been applying it
to a variety of systems, such as (1) few-nucleon systems,
(2) hypernuclei, (3) clustering nuclei and unstable nuclei,
(4) exotic atoms/molecules, (5) cold atoms, (6) nuclear
astrophysics and (7) exotic hadrons.

As indicated in Fig. 1 by arrows back to the center,
we often obtained useful feedback from the calculation
effort in each field, so that we further developed the GEM
itself. We then applied the so-improved GEM to a new
field where the present authors and collaborators had not
enter before. We have been repeating this research cycle
under this strategy.

The purpose of the present review paper is to explain
i) high accuracy of GEM calculations and its reason,
ii) wide applicability of GEM to various few-body sys-
tems, and iii) predictive power of GEM calculations.

In the case of bound states, the few-body Schrödinger
equation is solved on the basis of the Rayleigh–Ritz vari-
ational principle; the total wave function is expanded
in terms of the L2-integrable basis functions by which
Hamiltonian is diagonalized.

We employ few-body Gaussian basis functions that are
spanned over all the sets of rearrangement Jacobi coor-
dinates (for example, Eq. (2) for 3-body and Eq. (11)
for 4-body). This construction of few-body basis func-
tions using all the Jacobi coordinates makes the function
space significantly larger than that spanned by the basis
functions of single set of Jacobi coordinates.

In the authors’ opinion, a very useful set of basis func-
tions along any Jacobi coordinate r is

e−νnr
2

rlYlm(r̂), rn = ν
1
2
n = r1a

n−1 (n = 1, . . . , N),

where the ranges are taken in geometric progression [1];
and similarly for the other Jacobi coordinates. We refer
to them as Gaussian basis functions.

The geometric progression {rn} is dense at short dis-
tances so that the description of the dynamics mediated
by short range potentials can be properly treated. More-
over, though single Gaussian decays quickly, appropriate
superposition of many Gaussians can decay accurately
(exponentially) up to a sufficiently large distance. We
show many example figures for 2-, 3- and 4-body cases
in this paper (a reason why the “geometric progression”
works well is mentioned in Section 2.2).

Fig. 1 Research strategy for few-body physics with GEM.
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Use of Gaussians with complex ranges [3],

e−ηnr
2

rlYlm(r̂), ηn = (1± iω)νn,

makes the function space much wider than that of Gaus-
sians with real ranges mentioned above since the former
has oscillating part explicitly (cf. Section 2.4). The new
basis functions are especially suitable for describing wave
functions having many oscillating nodes (cf. Figs. A8
and A9 in Appendix).

Therefore, in the study of few-body resonances us-
ing the complex-scaling method (for example, [12] and
cf. Section 5.1), the complex-range Gaussian basis func-
tions are specially useful since the resonance wave func-
tion in the method is highly oscillating when the rotation
angles θ is large in the scaling r → reiθ.

Another important advantage of using real- and
complex-range Gaussians is that calculation of the
Hamiltonian matrix elements among the few-body ba-
sis functions can easily be performed [3]. This advantage
is much more enhanced if one uses the infinitesimally-
shifted Gaussian basis functions [3, 10, 11] introduced
by the R.H.S. of

e−νnr
2

rlYlm(r̂) = lim
ε→0

1

(νnε)l

kmax∑
k=1

Clm,ke−νn(r−εDlm,k)
2

because the tedious angular-momentum algebra (Racah
algebra) does not appear when calculating the few-body
matrix elements (cf. Section 2.5).

In the study of few-body scattering and reaction pro-
cesses, we emply the Kohn-type variational principle to
S-matrix [13]. The wave-function amplitude in the inter-
action region is expanded in terms of the few-body real-
(complex-)range Gaussian basis functions constructed
using all the sets of Jacobi coordinates. We consider
the basis functions are nearly complete in the restricted
region; examples will be discussed in Section 5.2.

As long as the employed interactions among con-
stituent particles (clusters) of the few-body system con-
cerned are all well-established ones, accurate results by
the GEM calculations are so reliable that we can use
them to make a prediction before measurements (if any)
about that system. If some members of such interactions
are ambiguous (or not established), we first try to im-
prove them phenomenologically in order to reproduce the
existing experimental data for all the subsystems (possi-
ble combinations of the constituent members). Then, it
is possible for the GEM calculation to make a prediction
about the full system (cf. a strategy in our study of hy-
pernuclear physics, Fig. 29, in Section 4.6). Examples of
successful predictions by the GEM calculations will be
presented in Section 4.

This article is organized as follows: Outline of the
GEM framework is capitulated in Section 2. Examples

of high-precision GEM calculations are demonstrated in
Section 3. We review, in Section 4, examples of success-
ful GEM predictions before measurements. Extension of
GEM to few-body resonances and few-body reactions are
presented in Section 5. Summary is given in Section 6. In
Appendix, we present several examples of 2-body GEM
calculations in order to show the high accuracy of the
real- and complex-range Gaussian basis functions, tak-
ing visible cases.

2 Gaussian expansion method (GEM) for
few-body systems

GEM has already been applied to various 3-, 4- and 5-
body systems. In this section, we briefly explain the
method taking the case of 3-body bound states for sim-
plicity.

Applications to complex-scaling calculations for 3- and
4-body resonant states are shown in Section 5.1 and those
to reactions are presented in Section 5.2.

2.1 Use of all the Jacobi-coordinate sets

In GEM, solution to the Schrödinger equation for the
bound-state wave function ΨJM with the total angular
momentum J and its z-component M ,

(H − E)ΨJM = 0, (1)

is obtained by diagonalizing the Hamiltonian in a space
spanned by a finite number of L2-integrable 3-body basis
functions which are constructed on all the sets of Jacobi
coordinates (Fig. 2).

The total wave function ΨJM is written as a sum of
component functions of all the 3 rearrangement channels

ΨJM =

αmax∑
α=1

AαΦ
(1)
α (r1,R1) +

βmax∑
β=1

BβΦ
(2)
β (r2,R2)

+

γmax∑
γ=1

CγΦ
(3)
γ (r3,R3), (2)

where spins and isospins are omitted for simplicity. The
3-body basis functions are taken as

Φ(1)
α (r1,R1)=ϕ

(1)
n1l1

(r1)ψ
(1)
N1L1

(R1)
[
Yl1(r̂1)YL1(R̂1)

]
JM

,

Φ
(2)
β (r2,R2)=ϕ

(2)
n2l2

(r2)ψ
(2)
N2L2

(R2)
[
Yl2(r̂2)YL2(R̂2)

]
JM

,

Φ(3)
γ (r3,R3)=ϕ

(3)
n3l3

(r3)ψ
(3)
N3L3

(R3)
[
Yl3(r̂3)YL3(R̂3)

]
JM

,

(3)

where α, β and γ specify
α ≡ {n1, l1, N1, L1}, β ≡ {n2, l2, N2, L2},
γ ≡ {n3, l3, N3, L3}, (4)
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Fig. 2 Three sets of Jacobi coordinates of 3-body system.
All of them are used in GEM calculations

with l, L denoting angular momenta and n,N specifying
radial dependence (namely, Gaussian ranges; see below).
Energies E and wave-function coefficients Aα, Bβ and Cγ

are determined simultaneously by using the Rayleigh-
Ritz variational principle, namely by diagonalizing the
Hamiltonian using the basis functions.

If the three particles are identical particles, Eq. (2) is
to be replaced by

ΨJM =

αmax∑
α=1

Aα

[
Φα(r1,R1)+Φα(r2,R2)+Φα(r3,R3)

]
.

This construction of 3-body basis functions on all the
sets of Jacobi coordinates makes the function space sig-
nificantly larger than the case using the basis func-
tions of single channel alone. Also it makes the non-
orthogonality between the basis functions much less trou-
blesome than in the single-channel case. These types of
3-body basis functions are particularly suitable for de-
scribing compact clustering between two particles along
any rc (c = 1–3) and for a weakly coupling of the
third particle along any Rc. We also emphasize that
the 3-channel basis functions are particularly appropriate
for systems composed of mass-different (distinguishable)
particles.

2.2 Gaussians with ranges in geometric progression

Radial dependence of the basis functions ϕnl(r) and
ψNL(R) is taken as Gaussians (multiplied by rl and RL)
with ranges in geometric progression [1–3]:

ϕnl(r) = Nnlr
le−νnr

2

,

νn = 1/r2n,

rn = r1a
n−1 (n = 1, . . . , nmax), (5)

and

ψNL(R) = NNLR
Le−λNR2

,

λN = 1/R2
N ,

RN = R1A
N−1 (N = 1, . . . , Nmax), (6)

with the normalization constants Nnl and NNL.
The geometric progression is dense at short distances

so that the description of the dynamics mediated by

short range potentials can be properly treated. More-
over, though single Gaussian decays quickly, appropriate
superposition of many Gaussians can decay accurately
(exponentially) up to a sufficiently large distance. Good
examples in 2-body systems are demonstrated in Figs. A5
and A7 in Appendix.

Even for 3- and 4-body systems, the Gaussian basis
functions so chosen can describe accurately both short
range correlations and long range asymptotic behavior
simultaneously. Here, we emphasize that it is not neces-
sary to introduce a priori the Jastrow correlation factor
in the total wave function so as to describe the strong
short-range correlations; it is enough for the purpose to
use the Gaussian basis functions (5) and (6) as will be
shown in successful results of Figs. 10 and 17 in 4-body
systems.

A reason why the Gaussians with ranges in geo-
metric progression work well may be stated as follows
[14]: The norm-overlap matrix elements, Nn,n+k (k =
0, . . . , nmax), between the basis functions is given as

Nn,n+k = ⟨ϕnl|ϕn+kl⟩ =
(

2ak

1 + a2k

)l+3/2

, (7)

which shows that the overlap with the k-th neighbor is
independent of n and decreases gradually with increas-
ing k as illustrated in Fig. 3. We then expect that the
coupling among the whole basis functions take place
smoothly and coherently so as to describe properly both
the short-range structure and long-range asymptotic be-
havior simultaneously.

The Gaussian shape of basis functions makes the cal-
culation of the Hamiltonian matrix elements easy even
between different rearrangement channels. On the other
hand, according to the experience by the authors, eigen-
functions of a harmonic-oscillator potential (namely,
Gaussian times Laguerre polynomials) is not suitable
for describing three- and more-body systems because of
the tediousness in the coordinate transformation and in
the many-dimensional integration when calculating the
matrix elements. Also, it is difficult to describe a very

Nn,n+k =



1 b c d . . . . . .
1 b c d . . . . . .

1 b c d . . . . . .
1 b c d . . . . . .

1 b c . . . . . .
1 b . . . . . .

1 . . . . . .
·

·


1 > b > c > d > . . .

Fig. 3 The norm-overlap matrix (7) in the case where the
Gaussian ranges are given in geometric progression (5).
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weakly bound state that has a long-range tail since the
long-range harmonic-oscillator eigenfunctions inevitably
oscillate many times up to the tail region.

2.3 Easy optimization of nonlinear variational
parameters

The setting of Gaussians with ranges in geometric pro-
gression as in Eqs. (5) and (6) enables us to optimize
the ranges using a small number of free parameters;
we recommend to take the sets {nmax, r1, rnmax} and
{Nmax, R1, RNmax} without using the ratios a and A
which are given by a = (rnmax/r1)

1/(nmax−1) and A =
(RNmax/R1)

1/(Nmax−1).
Since the computation time by the use of the Gaussian

basis functions is very short, we can take rather large
number for nmax and Nmax, even more than enough. It
is therefore satisfactory to optimize the Gaussian ranges
{r1, rnmax , R1, RNmax} using round numbers (cf. the 2-
body examples in Appendix); this is due to the fact that
small change of the ranges does not significantly change
the function space since the space is already sufficiently
wide by taking more-than-enough large numbers for nmax
and Nmax.

In the calculation of the 3-nucleon bound states (3H
and 3He) using a realisticNN potential (AV14), the well-
converged GEM calculation [2] took totally 3600 basis
functions, but only the 3 cases of round-number sets
r1 = 0.05, rnmax = 15.0, R1 = 0.3, RNmax = 9.0 fm,
r1 = 0.1, rnmax = 15.0, R1 = 0.3, RNmax = 9.0 fm,
r1 = 0.1, rnmax = 10.0, R1 = 0.3, RNmax = 6.0 fm

(depending on l, L and spins; cf. Table I of Ref. [2])
were so satisfactory that the binding energy converges
with the 1-keV accuracy of four significant figures; as
will be explained in Fig. 8 in Section 3.2, this conver-
gence with respect to the increasing number of angular-
momentum channels was more rapid than that of the
Faddeev-method calculations of the same problem.

Our method is quite transparent in the sense that all
the nonlinear variational parameter employed can explic-
itly be listed in a small table. Therefore, one can examine
the GEM results by making a check calculation with the
same parameters. For example, even in a well-convered
4-body calculation in the cold-atom physics in Ref. [14]
by the present authors, all the nonlinear variational pa-
rameters for totally 23504 basis functions were listed in
a small table of only 14 lines (Table V of that paper).
This calculation will be introduced in Section 3.5.

Good choice of the Gaussian ranges depends mostly
on size and shape of the interaction and spatial exten-
sion of the system. But, to the authors’ opinion, slight
experience is enough to master how to find such a choice
thanks to the properties of the Gaussian basis functions
mentioned above.

2.4 Complex-range Gaussian basis functions

In spite of many successful examples of the use of the
Gaussian basis functions in the few-body calculations, it
was hard to describe accurately highly-oscillatory wave
functions having more than several nodes since the Gaus-
sians themselves had no radial nodes.

To overcome this difficulty, the present authors pro-
posed [3] new types of basis functions which have radial
oscillations but tractable as easily as Gaussians; namely,
Gaussians with complex ranges ηn and η∗n instead of real
range νn (n = 1, . . . , nmax):

rle−ηnr
2

, ηn = (1 + iω)νn,

rle−η∗
nr

2

, η∗n = (1− iω)νn, (8)

with νn in geometric progression as in (5). They are
equivalent to the set

rle−νnr
2

cosωνnr2 = rl(e−ηnr
2

+ e−η∗
nr

2

)/2,

rle−νnr
2

sinωνnr2 = rl(e−ηnr
2

− e−η∗
nr

2

)/2i. (9)

We refer to these oscillating functions (8) and (9) as
complex-range Gaussians. From our experiences, we rec-
ommend to take simply ω = 1 or π/2 as well as adopting
geometric progression for νn. In order to compare visu-
ally the real-range and complex-range Gaussians, we plot
an example of them in Fig. 4.

In Appendix A.6 for 2-body examples with a harmonic
oscillator potential and a Coulomb potential, we show
that use of the complex-range Gaussian basis functions
makes it possible to represent oscillating functions having
more than 20 radial nodes accurately (cf. Figs. A8 and
A9).

Fig. 4 An example of the l = 0 real-range and complex-
range Gaussian basis functions (multiplied by r) of Eqs. (5)
and (9) with rn = 1/

√
νn = 5 fm and ω = 1.0 and π/2. They

are normalized to unity.
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Hamiltonian matrix elements between the complex-
range Gaussians can be calculated with essentially the
same computation program for the real-range Gaussians
with some real variables replaced by complex ones; this
is another advantage of the complex-range Gaussians.

Since the complex-range Gaussian basis functions
makes the function space of few-body systems much
wider than that with real-range Gaussians, applicabil-
ity of GEM becomes much extended, for example, in
Refs. [14–20] by the authors and collaborators.

2.5 Infinitesimally-shifted Gaussian-lobe (ISGL) basis
functions

When we proceed to 4-body systems, calculation of the
Hamiltonian matrix elements becomes much laborious
especially when treating many spherical harmonic func-
tions Ylm(r̂) in the matrix element calculation. In or-
der to make the 4-body calculation tractable even for
complicated interactions, one of the present authors
(E.H.) proposed the infinitesimally-shifted Gaussian-
lobe (ISGL) basis functions [3, 10, 11]. The Gaussian
function rle−νnr

2

Ylm(r̂) is replaced by a superposition
of infinitesimally-shifted Gaussians as

Nnlr
le−νnr

2

Ylm(r̂) = Nnl lim
ε→0

1

(νnε)l

×
kmax∑
k=1

Clm,ke−νn(r−εDlm,k)
2

. (10)

whose shift parameters {Clm,k,Dlm,k; k = 1− kmax} are
so determined that RHS is equivalent to LHS (see Ap-
pendix A.1 in Ref. [3]).

We make similar replacement of the basis functions in
all the other Jacobian coordinates. Thanks to the ab-
sence of the spherical harmonics, use of the ISGL ba-
sis functions makes the few-body Hamiltonian matrix-
element calculation much easier with no tedious angular-
momentum algebra (Racah algebra). When and how to
take limε→0 is important (see Appendix A.1 in Ref. [3]).
The Gaussian ranges νn can be taken to be complex as
mentioned in the previous Section 2.4.

Owing to this advantage, applicability of GEM be-
comes very wide in various research fields (cf. Fig. 1).
Furthermore, use of ISGL basis functions make it easier
to calculate few-body resonance states (cf. Section 5.1)
with the use of the complex-scaling method (cf. Ref. [12]
for a review) and to calculate few-body scattering states
(cf. 5.2) with the use of the Kohn-type variational prin-
ciple to S-matrix [13].

Here, we note a history about ’Gaussian-lobe basis
functions’ [those not taking limε→0 but using a small
ε in Eq. (10)]. Such basis functions (whose shift param-
eters were different from ours) were advocated in 1960’s

by several authors [21–25] on the basis of their simplicity
to mimic Ylm(r̂) with l > 0. But, the functions have se-
vere weakpoints; namely, computation with very small ε
makes the result easily suffer from heavy round-off error,
whereas use of a not-very-small ε meets an inevitable ad-
mixture of higher-order Yl′m(r̂) with l′ > l. Therefore,
the functions were not utilized in actual research calcu-
lations and seemed soon forgotten when big computers
came to real use.

But, some 30 years after, this difficulty was solved by
one of the authors (E.H.) [3, 10, 11] by introducing the
ISGL basis functions with properly taking limε→0 after
performing the analytical integration of the Hamiltonian
matrix elements (see Appendix A.3 and A.4 of Ref. [3]);
therefore, ε does not appear in the computation program.

3 Accuracy of GEM calculations

3.1 Muonic molecule in muon-catalyzed fusion cycle

The Gaussian expansion method was first proposed [1] in
1988 in the 3-body study of muonic molecule dtµ− that
appears in the cycle of muon-catalyzed d-t fusion (for ex-
ample, see Sections 5 and 8 of Ref. [3] for a short survey,
and Ref. [26] for a precise review). The d+ t+µ− system
is known to be a key to the possible energy production
by the muon-catalyzed fusion (µCF) as shown in Fig. 5
for the essential part of the catalyzed cycle.

When negative muons µ− are injected into the D2/T2

mixture, muonic molecules dtµ− are resonantly formed
in its J = v = 1 state (Fig. 6) which is very loosely bound
below the (tµ)1s + d threshold and is the key to µCF. In
order to analyze the observed data of the dtµ− molecular
formation rate, accuracy of 0.001 eV is required in the
calculated energy of the J = v = 1 state with respect
to the (tµ)1s+ d threshold. Since the threshold energy is
−2711.242 eV from the d+ t+µ 3-body breakup thresh-
old, the accuracy of 7 significant figures is required in
the Coulomb 3-body calculation.

This difficult Coulomb 3-body problem was challenged
during 1980’s by many theoreticians from chemistry,
atomic/molecular physics and nuclear physics. The prob-
lem was finally solved in 1988 with the accuracy of 7
significant figures by three groups from USSR, USA and
Japan giving the same energy of −0.660 eV from the
(tµ)1s + d threshold using different calculation methods;

Fig. 5 Essence of muon-catalyzed fusion cycle in which the
3-body dtµ− molecule (at J = v = 1 state) plays a key role
to cause the fusion reaction d+ t → 4He + n+ 17.4MeV.

132106-6
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Fig. 6 Theoretically predicted energy levels of the dtµ−

molecule. The near-threshold J = v = 1 state (red) is impor-
tant as the doorway to the muon catalyzed fusion (Fig. 5).
Reproduced from Ref. [1].

Fig. 7 Three Jacobi coordinates of the dtµ− molecule in
muon-catalyzed fusion cycle. Use of them all is suitable for
describing the key J = v = 1 state that is very weekly bound
from the (tµ)1s + d threshold [1].

namely using a variational methods, respectively, with
elliptic basis [27], with Slater geminal basis [28] and with
the GEM basis [1] (cf. Fig. 7 and Sections 2.1 and 2.2).

An interesting point is the computation time to solve
the 3-body Schödinger equation for single set of nonlinear
variational parameters. In the two methods [27, 28] from
chemistry and atomic/molecular physics, main difficulty
comes from the severe non-orthogonality between their
basis functions; diagonalization of the energy and overlap
matrices required quadruple-precision computation (∼30
decimal-digit arithmetics) and the computation time of
∼10 hours on the computers at that time.

On the other hand, GEM [1] needed only 3 minutes.
This rapid computation is owing to the use of Gaussian
basis functions, which are spanned over the 3 rearrange-
ment channels and have the ranges in geometrical pro-
gressions. Use of them suffers little from the trouble of
severe non-orthogonality between large-scale (∼ 2000)
basis functions. Therefore the method works entirely in
double-precision (∼14 decimal-digit arithmetics) on su-
percomputers at that time. Another reason was that
the function form of the basis functions is particularly
suitable for using vector-type supercomputers.

3.2 3-nucleon bound states (3H and 3He)

One of the best tests of three-body calculational method
is to solve three-nucleon bound states (3H and 3He) using
a realistic NN force. This test was done for GEM in
Ref. [2] using the AV14 force [29] and in Ref. [30] using
the AV14 force plus the Tucson-Melborne (TM) 3-body
force [31]. We shortly review them here.

In practical calculations, we have to truncate the
angular-momentum space of the basis functions. It is to
be stressed, however, that the interaction is not trun-
cated in the angular-momentum space in the GEM cal-
culations. In the calculation described below we restrict
the orbital angular momenta (l, L) of the spatial part
of the basis functions in Eqs. (5) and (6) to l + L ≤ 6,
which results in 26 types of the LS-coupling configura-
tions. We refer to such configurations as 3-body angular-
momentum channels. The 26 channels employed in our
calculation are listed in Table I of Ref. [2] together with
the Gaussian parameters. It is to be emphasized that all
the nonlinear variational parameters of the GEM calcu-
lation are explicitly listed in such a small table; in princi-
ple, one can examine the calculated results by using the
same parameters.

Convergence of the binding energy of 3H with respect
to the number of the 3-body angular-momentum chan-
nels is illustrated in Fig. 8. The results shown are those
given by GEM in Refs. [2, 30] some ∼30 years ago to-

Fig. 8 Convergence of the binding energies of 3H calcu-
lated by the present method [2, 30] and by the Faddeev
method with respect to the number of the three-body chan-
nels. Interactions used are AV14 (lower lines) and AV14+TM-
3BF (upper lines). Ref. [32] for line c, Ref. [33] for b and e,
and Refs. [34, 35] for a, d, f, g. This figure is reproduced from
Refs. [2, 30], where a similar figure for 3He is given.
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gether with those given by the Faddeev calculations at
that time. The convergence is very rapid in GEM.

We note that one of the reasons for such a rapid con-
vergence in the GEM framework comes from the fact that
the interaction is treated without partial-wave decompo-
sition (namely, no truncation in the angular-momentum
space). This is a difference from the Faddeev-method cal-
culations and is also pointed out in §2.2 of Ref. [36] by
Payne and Gibson.

3.3 Benchmark test calculations of 4-nucleon (4He)
ground and second 0+ states

3.3.1 4He ground state

Calculation of the 4-nucleon bound state (4He) using
realistic NN force is useful for testing methods and
schemes for few-body calculations. In 2001, a very se-
vere benchmark test calculation of the 4-body bound
state was performed in Ref. [37] by 18 authors, including
the present authors, from 7 research groups with the use
of their own efficient calculation methods, namely, the
Faddeev-Yakubovsky equation method (FY), the Gaus-
sian expansion method (GEM), the stochastic varia-
tional method (SVM), the hyperspherical harmonic vari-
ational method (HH), the Green’s function Monte Carlo
(GFMC) method, the no-core shell model (NCSM) and
effective interaction hyperspherical harmonic method
(EIHH). Those different calculation methods were ex-
plained briefly in the paper [37].

They used theNN realistic force, AV8′ interaction [38]
(consisting of central, spin-orbit and tensor forces), and
compared the calculated energy eigenvalues and some
wave function properties of the 4He ground state.

The present authors (GEM) employed 4-body Gaus-
sian basis functions spanned over the full 18 sets of Jacobi
coordinates (composed of the K-type and H-type ones)
as shown in Fig. 9.

In the GEM approach, the most general 4-nucleon
wave function (with J for the total angular momentum

Fig. 9 K-type and H-type Jacobi coordinates for the 4-
nucleon systems. Antisymmetrization of the 4 particles gen-
erates the Jacobi coordinate sets c = 1, . . . , 12 (K-type) and
c = 13, . . . , 18 (H-type). See Fig. 18 of Ref. [3] for explicit
figures of the 18 sets.

and T for the isospin) is written as a sum of the compo-
nent functions in the K- and H-type Jacobi coordinates
employing the LS coupling scheme:

ΨJM,TTz
=

∑
α

C(K)
α Φ(K)

α +
∑
α

C(H)
α Φ(H)

α , (11)

where the antisymmetrized 4-body basis functions Φ
(K)
α

and Φ
(H)
α (whose suffix JM, TTz are dropped for simplic-

ity) are described by

Φ(K)
α = A{[[[ϕ(K)

nl (rK)φ
(K)
νλ (ρK)]Λψ

(K)
NL(RK)]I

×[[χs(12)χ1/2(3)]s′χ1/2(4)]S ]JM

×[[ηt(12)η1/2(3)]t′η1/2(4)]TTz
}, (12)

Φ(H)
α = A{[[[ϕ(H)

nl (rH)φ
(H)
νλ (ρH)]Λψ

(H)
NL(RH)]I

×[χs(12)χs′(34)]S ]JM

×[ηt(12)ηt′(34)]TTz
}, (13)

with α ≡ {nl, νλ,Λ, NL, I, s, s′, S, t, t′}. A is the 4-
nucleon antisymmetrizer. The parity of the wave func-
tion is given by π = (−)l+λ+L. The χ’s and η’s are the
spin and isospin functions, respectively. The spatial ba-
sis functions ϕnl(r), φνλ(ρ) and ψNL(R) are taken to be
Gaussians multiplied by spherical harmonics:

ϕnlm(r) = Nnlr
le−(r/rn)

2

Ylm(r̂),

φνλµ(ρ) = Nνλρ
λe−(ρ/ρν)

2

Yλµ(ρ̂),

ψNLM (R) = NNLR
Le−(R/RN )2YLM (R̂). (14)

It is important to postulate that the Gaussian ranges lie
in geometric progression as in Eqs. (5) and (6).

The work of benchmark test [37] demonstrated that
the Schrödinger equation for the 4-nucleon ground state
can be handled very reliably by the different methods,
leading to very good agreement between them in the cal-
culated results (some examples are shown in Table 1 and
Fig. 10). This fact is quite remarkable in view of the very
different techniques of calculation and the complexity of
the nuclear force chosen.

3.3.2 4He second 0+ state

Soon after the benchmark test, the present authors suc-
ceeded [39], using the same GEM framework, in extend-
ing the 4He ground-state calculation to the second 0+

state that has a very loose spatial distribution compared
with the compact ground state; it can be a severe test for
few-body calculation methods to describe simultaneously
the two 0+ states that have very different properties.

First, in order to reproduce simultaneously the ob-
served binding energies of 3H, 3He and 4He(0+1 ) before

132106-8
Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)



Review article

Table 1 Calculated results for some of 4He properties
(binding energy, r.m.s radius and D-state probability) by
seven methods of calculation. Reproduced from Ref. [37].

Method B.E. (MeV)
√

⟨r2⟩ (fm) D (%)

FY 25.94(9) 1.485(3) 13.91

GEM 25.90 1.482 13.90

SVM 25.92 1.486 13.91

HH 25.90(1) 1.483 13.91

GFMC 25.93(2) 1.490(5) –

NCSM 25.80(20) 1.485 12.98

EIHH 25.944(10) 1.486 13.89(1)

Fig. 10 Correlation functions (two-body density) of 4He,
C(r) = ⟨Ψ|δ(r − r12)|Ψ⟩, in the different calculational
schemes: FY, GEM, SVM, HH, and NCSM (overlapping
curves) and EIHH (dashed-dotted curve), except GFMC. Re-
produced from Ref. [37].

entering the 4He(0+2 ) state, we introduced a phenomeno-
logical 3-body force (Eq. (3.1) of Ref. [39]) in addition
to the AV8′ and Coulomb forces. A good agreement for
the former three states was obtained as shown Table 2
(upper part). At the same time, the calculated binding
energy of the 4He(0+2 ) state was found to reproduce the
observed one well.

The lower part of Table 2 gives calculated probability
percentages of the S, P and D components. Interestingly,
they are almost the same between 3H (3He) and 4He(0+2 ).
This means that the loosely coupled 3H + p (3He + n)
configuration is dominant in the second 0+ state.

As shown in Fig. 11(a), distribution of the calcu-
lated mass densities are quite different between the
0+1 and 0+2 states as expected. The transition density
between the two states in Fig. 11(b) provides, via a
Fourier transformation, the inelastic electron-scattering
form factor of 4He(e, e′)4He(0+2 ). Therefore, comparison
of the form factor with the observed one can be an-
other severe test of the GEM calculation. We repro-

duced, for the first time using realistic NN interac-
tion, the observed 4He(e, e′)4He(0+2 ) data as shown in
Fig. 12.

We note that our results for the second 0+ state can
be used in another new benchmark test calculation (the
results of Table 2 were confirmed by Ref. [40]).

Table 2 Calculated and observed binding energies of 3H,
3He, 4He(0+1 ) and 4He(0+2 ). The 4-body GEM calculation [39]
takes the AV8′ and Coulomb potential plus a phenomenolog-
ical 3-body force. (Lower) Calculated probability percent-
ages of the S, P and D states, which are nearly the same be-
tween 3H (3He) and 4He(0+2 ). This table is reproduced from
Ref. [39].

B.E. (MeV) 3H 3He 4He (0+1 ) 4He (0+2 )

GEM 8.41 7.74 28.44 8.19

EXP 8.48 7.72 28.30 8.09

PS (%) 90.96 90.99 85.54 91.18

PP (%) 0.08 0.08 0.38 0.08

PD (%) 8.97 8.93 14.08 8.74

Fig. 11 Mass densities of the 0+1 and 0+2 states of 4He (a)
and the transition density between them (b). Reproduced
from Ref. [39].

Fig. 12 A GEM 4-body calculation [39] (solid line) of the
electron-scattering form factor for 4He(e, e′)4He(0+2 ), which
is compared with the available experimental data (for refer-
ences, see Ref. [39]) in good agreement. Reproduced from
Ref. [39].

Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)
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3.4 Determination of antiproton mass by GEM

The mass of antiproton has been believed to be the same
as the mass of proton, but there was no precise experi-
mental information on it before 2000. In the 1998 edition
of Particle Listings [41], the Particle Data Group gave no
recommended value of the antiproton mass.

In the Particle Listings 2000 [6], a recommended value
was given for the first time; the relative deviation of the
antiproton mass from the proton mass (|mp̄ −mp|/mp)
is within 5× 10−7.

This value was derived by a collaboration of experi-
mental and theoretical studies of the antiprotonic helium
atom (p̄He+) composed of He2++ p̄+e−, namely, by the
high-resolution laser spectroscopy experiment at CERN
by Torii et al. [7] and the precision 3-body calculations by
Kino, Kudo and one of the authors (M.K.) [8, 9] (summa-
rized in Section 6 of Ref. [3] together with Refs. [42, 43]).

The experiment for the transition between the highly-
excited metastable states with (J, v) = (34, 2) and
(J, v) = (33, 2) gave the wave length λEXP = 470.7220(6)
nm (Fig. 13). But, it is to be noted that this value of
λEXP itself does not directly give any information on the
antiproton mass. In Ref. [9], the data were analyzed so
that the mass of antiproton could be derived.

In the following, we briefly explain the GEM calcula-
tion of the antiprotonic helium atom that is called atom-
cule since it has two different facets, i) atomic picture
of a positive-charge nucleus (He2+) plus two negative-
charge particles and ii) molecular picture of two heavy
particles (He2+ and p̄) plus an electron (Fig. 14).

This complicated system has difficult but important
issues as follows:

1) The two different facets mentioned above should be
well described simultaneously (GEM takes the channels
c = 1 and 2 in Fig. 14).

2) The excited states concerned are not true bound
states but so-called Feshbach resonances (GEM takes the

Fig. 13 Relative difference of the antiproton mass (mp̄)
from the proton mass (mp), ε = |mp̄ − mp|/mp, was deter-
mined by the comparison between the spectroscopic exper-
imental data (λEXP) [7] and the 3-body GEM calculation
(λCAL) [9] on the antiprotonic He atom (p̄He+). This gave
ε = 5× 10−7.

Fig. 14 Three rearrangement channels for the antiprotonic
helium atom (He2+ + e− + p̄). Channels c = 1 and c = 2 are
suitable for describing the atomic picture and the molecular
picture, respectively, of this system. Channel c = 3 is in-
troduced to treat the correlation between the electron and
the antiproton explicitly. The mass-polarization term in the
kinetic-energy operator due to this choice of the coordinates
is exactly treated.

complex-scaling method of Section 5.1).
3) Quantum number of the total angular momentum

concerned is as high as J ∼ 30–40.
4) The inter-nuclear motion between the helium nu-

cleus (Z = +2) and the antiproton (Z = −1) can not be
treated adiabatically when they are close to each other
(GEM is a non-adiabatic method).

5) The correlation between the electron and the an-
tiproton must be accurately taken into account (GEM
takes the channel c = 3 explicitly).

6) Accuracy of 8 significant figures in the transition
energy (10 figures in eigenenergies before subtraction)
is required to compare with the laser experiment of the
transition frequency.

All of the issues 1) through 6) are difficult, but the
GEM calculation in Refs. [8, 9] cleared them all and
made it possible to determine the antiproton mass rec-
ommended in Particle Listings 2000. We explain how to
determine the antiproton mass using the eigenenergies
given by the 3-body GEM calculation.

The authors of Ref. [9] showed that the central value
of λEXP was reproduced by λCAL when taking mp̄ =
mp and that the upper and lower bounds of λEXP were
respectively reproduced by assuming (cf. Fig. 13)

mp̄ = (1∓ ε)mp with ε = 5× 10−7. (15)

Here, the relativistic and QED corrections were taken
into account; the corrections are ∼ 10−5 times smaller
than the non-relativistic result.

The authors of Ref. [9] then considered – even if the
antiproton mass mp̄ is deviated from mp, the calculated
wavelength λCAL using the mp̄ should be within the ex-
perimental error (namely, the experimental error is fully
attributed to the ambiguity of the antiproton mass).
Then, they reached the conclusion

(1− ε)mp < mp̄ < (1 + ε)mp, (16)

namely,
|mp̄ −mp|

mp
< ε = 5× 10−7, (17)
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which was cited in Particle Listings 2000 [6]; it was com-
mented that this can be a test of CPT invariance. GEM
is so accurate as to contribute to such a fundamental
issue. More about the p̄He+ atom and mp̄ is given in
Section 4.1.

3.5 Calculation of 4He-atom tetramer in cold-atom
physics (Efimov physics)

3.5.1 Universality in few-body systems

An essential issue in the cold-atom physics (Efimov
physics) (see, for example, Ref. [44] for a review) may
be stated as that particles with short-range interactions
and a large scattering length have universal low-energy
properties that do not depend on the details of their
structure or their interactions at short distances. Such
an pair-interaction is sometimes called ‘resonant inter-
action’ since the interacting pair has a resonance or a
bound state that is located very closely to the 2-body
breakup threshold. Typical examples are the interaction
between α particles (4He nucleus) and that between 4He
atoms.

The level structure of 4He-atom dimer, trimer and
tetramer is illustrated in Fig. 15; calculation of all of
the levels using the realistic interaction between 4He
atoms [45] was performed for the first time by the present
authors [14] as discussed below. It is interesting to note
that this level structure is very similar to that of the
lowest-lying 0+ states in 2α (8Be), 3α (12C) and 4α (16O)
nuclei though the scale of the two interactions is quite
different to each other; this is due to the universality
mentioned above.

Theoretical study of energies and wave functions of the
3- and 4-body 4He-atom clusters is one of the fundamen-
tal subjects in the cold-atom physics since the realistic

Fig. 15 Level structure of 4He-atom clusters calculated by
the present authors [14] using the realistic interaction be-
tween 4He atoms. Note that this structure is quite resemble
to that of the 2-, 3- and 4-α clusters (8Be, 12C and 16O nuclei)
due to the universality in Efimov physics.

interaction between 4He atoms is a prototype and well-
studied interaction in the Efimov physics. The interac-
tion has an extremely strong short-range repulsive core
due to the Pauli principle between electrons (∼ 106 K
in height) followed by a weak attraction by the van der
Waals potential (∼ −10 K in depth) (see Fig. A6 in Ap-
pendix A.5 for the 4He-atom dimer); the interaction has
a large scattering length (∼ 100 Å) much larger than the
interaction range (∼ 5 Å) and supports a very shallow
bound states (∼ −0.001 K) [45].

3.5.2 Difficulty in calculating 4He-atom tetramer

Until the energy levels of Fig. 15 were reported [14], a
long standing problem in the study of 4He-atom clusters
was the difficulty in performing a reliable 4-body calcu-
lation of the very-weakly-bound excited state (v = 1, 0+2 )
of 4He-tetramer in the presence of extremely strong
short-range repulsive core; one has to describe accurately
both the short-range structure (≲ 5 Å) and the long-
range asymptotic behavior (up to ∼ 1000 Å).

The authors of Ref. [46] (2006), who used the 4-body
Faddeev–Yakubovsky method, said “A direct calculation
of the 4He-tetramer excited state represents nowadays a
hardly realizable task”; instead, they derived the excited-
state binding energy by an extrapolation from a low-
energy atom-trimer scattering S-matrix.

However, this difficult problem was solved by the
present authors [14] (2012) with a 4-body GEM calcula-
tion. We employed the same set of all the 4-body Jacobi-
coordinates of Fig. 9 as used in the 4-nucleon study in
Section 3.3. The energy of the 4He-tetramer excited state
was obtained as E = −0.00093 K with respect to the
atom-trimer threshold (Fig. 15). In this calculation we
took 23504 4-body basis functions whose non-linear pa-
rameters are all listed in a small table of 14 lines (Table V
of Ref. [14]) as pointed out in Section 2.3.

The excited-state wave function exhibits correct
asymptotic behavior up to ∼1000 Åas seen in Fig. 16 for
the overlap function between the tetramer excited state
and the trimer ground state. In Fig. 17, it is interesting
to see that behavior of the extremely-strong short-range
correlations (≲ 5 Å) in the tetramer has almost the same
shape as in the dimer and in the trimer. This justifies
the assumption in some literature calculations that the
Jastrow correlation factor is a priori employed in few-
body wave functions so as to treat the strong repulsive
force between the interacting pair.

3.5.3 Efimov scenario: CAL versus EXP

Here, we do not intend to enter the details of the cold-
atom physics, but our calculations mentioned below are
closely related to the keypoint of the physics as follows:

Surprisingly to nuclear physicists, strength (in other

Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)
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Fig. 16 Good asymptotic behavior, up to ∼ 1000 Å, of the
overlap function Ov(Rk) = ⟨Ψ3,v3=0|Ψ4,v⟩, multiplied by Rk,
between the trimer ground state (v3 = 0) and the tetramer
states (v = 0, 1). Open circles represent the exact asymptotic
behavior. The green dash-dotted line is the same quantity
between trimer excited state and dimer. Reproduced from
Ref. [14].

Fig. 17 Short-range structure of the pair correlation func-
tion C(r) = ⟨Ψ|δ(r − r12)|Ψ⟩ of the 4He tetramer calculated
with the 4-body GEM [14]. The black solid line stands for the
tetramer ground (v = 0) state and the blue dashed line for the
excited (v = 1) state. For the sake of comparison, addition-
ally shown are the red dotted line for the trimer ground state
and the green dash-dotted line for the trimer excited state.
That for dimer nearly overlaps with the green line. The lines
are normalized to the peak value of the black line. It is strik-
ing that the same shape of the short-range correlation (r ≲ 5
Å) appears in all the states. Reproduced from Ref. [14].

word, scattering length) of the interaction between some
ultra-cold atoms, such as 133Cs, 85Rb and 7Li at µK,
can be changed/tuned by a magnetic field from outside
utilizing Feshbach resonances of the atom pair located
near the threshold. Realization of this experimental tech-
nics (at ∼2006) has very much developed the cold-atom
physics (Efimov physics). One can investigate the struc-
ture change (called Efimov scenario) of the atom clusters
(dimer, trimer, tetramer, …) as a function of the scatter-

ing length of the atom-atom interaction.
In Fig. 18, we calculated [16] the Efimov scenario

(essentially, an energy spectrum of E versus scatter-
ing length a) for the first time using realistic atom-
atom potential (here, the 4He-atom potential). Follow-
ing the literature, we have drawn (|E|/EvdW)1/4 versus
(|a|/rvdW)−1/2 so that all the curves are graphically rep-
resented on the same scale. The scattering length a and
the energy E are scaled with the van der Waals length
rvdW (= 5.08a0) and energy EvdW = ℏ2/mr2vdW (=
1.677 K), respectively. The dashed curve shows the dimer
energy.

In Fig. 18, the scattering length a are tuned by chang-
ing the factor λ which is multiplied to the realistic 4He-
4He interaction:T +

A∑
1=i<j

λV (rij)− EA

ΨA = 0, (18)

where T is the kinetic energy and A(= 2, 3, 4) is the
number of 4He-atom clusters concerned.

The vertical dotted line stands for the physical value
λ = 1. The blue circles on the line indicate the en-
ergy levels that are illustrated in Fig. 15 with red lines;
namely, from the top, they are the energies of the dim-
mer, the trimer excited state, the trimer ground state

Fig. 18 Efimov scenario (spectrum) for the 4He-atom clus-
ters calculated in Ref. [16] with the realistic 4He-4He poten-
tials. The thick solid curves represent the tetramer spectrum
that is the scaled tetramer energy E

(v)
4 /EvdW as a function

of the scaled-inverse scattering length (a/rvdW)−1 for the
ground (v = 0) and excited (v = 1) states. The thin solid blue
curves denote the trimer spectrum. The critical scattering
lengths where the tetramer energies E

(0)
4 and E

(1)
4 cross the

4-atom threshold are named as a
(4,0)
− and a

(4,1)
− , respectively;

the corresponding observed values for the 133Cs, 85Rb and 7Li
tetramers are given by red circles, and similarly for trimers
by red boxes (see the text). Reproduced from Ref. [16].
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(overlapping with the circle for the tetramer excited
state) and the tetramer ground state.

The states move to the left as λ decreases (a−1 de-
creases). In the region a−1 < 0, there is no 2-body bound
state, but the blue curves for the trimer show that the
3-body system is bound (this is a general form of the
so-called Borromine states).

The critical scattering lengths where the tetramer en-
ergies E(0)

4 and E(1)
4 (black solid curves) cross the 4-atom

threshold are named as a(4,0)− and a(4,1)− , respectively, and
their values scaled with rvdW are summarized in Table II
in Ref. [16] together with the corresponding observed val-
ues (red circles in Fig. 18 for 133Cs, 85Rb and 6,7Li), and
similarly for the trimers (red boxes for the corresponding
observed values).

It is striking that the GEM calculation [16] of the crit-
ical scattering lengths of the trimer and tetramer using
the realistic potentials of 4He atoms explains consistently
the above-mentioned corresponding observed values that
are the heart of cold-atom (Efimov) physics.

4 Successful predictions by GEM calculations

As mentioned in the previous section, applicability of
GEM to various few-body calculations with high accu-
racy has been much improved. Therefore, it became pos-
sible to make theoretical prediction before measurement
(as long as interactions employed are reliable); some suc-
cessful examples are reviewed below.

4.1 Prediction of energy levels of antiprotonic He atom

As was mentioned in Section 3.4, the precise 3-body
GEM calculation of the antiprotonic helium atom
(p̄He+=He2+ + p̄+ e−) contributed to the first determi-
nation of the antiproton mass in Particle Listings 2000.
Since then, a lot of transitions between excited states
of the atom were observed by CERN’s laser experiment.
But, due to very expensive cost of the precise sub-ppm
laser-scan search of the transition energy ∆E, GEM was
requested to predict ∆E before measurements.

A typical example of the transition frequency (ν) by
the GEM prediction [43] and the experimental result [47]
is listed in Table 3. So accurate is the theoretical predic-
tion using GEM.

On the basis of this comparison, in the same way as in
Section 3.4, a relative deviation of the antiproton mass
from the proton mass |mp̄ − mp|/mp < 6 × 10−8 was
reported in the 2002 edition of Particle Listings [48].

The laser spectroscopy of metastable antiprotonic he-
lium atoms is a pioneering work toward anti-matter sci-
ence. We see that the GEM calculations was providing
suggestive, helpful predictions for anti-matter science in

Table 3 Comparison of the prediction by GEM [43] with
the CERN experiment [47] about the transition frequencies
between some levels of the antiprotonic helium atom (p̄He+).

(J, v)–(J ′, v′) (32, 0)–(31, 0) (33, 1)–(32, 1)
ν (GHz) ν (GHz)

GEM 1 012 445.559 804 633.127(5)
EXP 1 012 445.52(17) 804 633.11(11)

a preliminary stage.

4.2 Prediction of shrinkage of hypernuclei

When a Λ particle is injected into a nucleus, how modi-
fied is structure of the nucleus? There is no Pauli princi-
ple acting between Λ and nucleons in the nucleus. There-
fore, the Λ particle can reach deep inside, and attract the
surrounding nucleons towards the interior of the nucleus
(this is called “gluelike role” of Λ particle). However, how
do we observe the shrinkage of the nuclear size by the Λ
participation? In the work of Ref. [49, 50] based on the
microscopic α+ x+Λ 3-cluster model (x = d, t,3He) for
light p-shell hypernuclei together with the α + x two-
cluster model for the nuclear core, the reduction of the
nuclear size was discussed in relation to the reduction of
the B(E2) strength which is proportional to the fourth
power of the distance between the α and x clusters.

More precisely, in Ref. [51], we explicitly suggested
measurement of B(E2; 5/2+1 → 1/2+1 ) in 7

ΛLi (Fig. 19)
and proposed a prescription to derive hypernuclear size
with the aid of the empirical values of B(E2; 3+1 → 1+1 )
and the size of the ground state of 6Li. We also noted
that another decay branch B(E2; 5/2+1 → 3/2+1 ) is negli-

Fig. 19 E2 transitions in 6Li and in 7
ΛLi that are used to

discuss about the shrinkage of hypernucleus.
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gibly small, measurement of the lifetime of the 7
ΛLi(5/2+1 )

state can give the B(E2; 5/2+1 → 1/2+1 ). Afterwards, the
experiment by Ref. [54] was performed and the result
was compared with our prediction on the size of 7

ΛLi.
We employed a microscopic 5

ΛHe+n+p 3-body model
for 7

ΛLi [51]. It was examined in Ref. [52] that the 5
ΛHe

is a good cluster. The total 3-body wave function is
constructed on the Jacobian coordinates of Fig. 20 in
the same manner as in the 3-body calculations in the
previous sections. Interactions employed are described
in Ref. [51].

The observed energies of the 1/2+1 and 5/2+1 were
well reproduced by the calculations, and the value
B(E2; 5/2+1 → 1/2+1 ) = 2.42e2 fm4 was predicted. This
is much smaller than the observed B(E2; 3+1 → 1+1 ) =
9.3± 2.1e2 fm4 for the 6Li core which is well reproduced
by our 6Li =4 He+n+p 3-body model whose prediction
is 9.26e2 fm4. It should be noted, however, that one can-
not conclude the size-shrinkage from the reduction of the
B(E2) value alone since the B(E2) operator r2Y2µ(θ, ϕ)
includes the angle operator. Furthermore, we should note
that the shrinkage of 7

ΛLi can occur both along the n− p
relative distance and along the distance between the 5

ΛHe
core and the c.m. of the (np) pair.

We show in Fig. 21 the n− p relative density ρ(rn−p)
and the np c.m. density ρ(Rcore−(np)) together with the
corresponding densities in 6Li core. The n − p relative
density exhibits almost the same shape for the ground

Fig. 20 Jacobi coordinates of the core + N1 + N2 system
where the core is hypernucleus 5

ΛHe and N1(N2) is a nucleon.

Fig. 21 (a) The n − p relative density of 7
ΛLi as a func-

tion of rn−p and (b) the (np) c.m. density as a function of
Rcore−(np) together with the corresponding densities in 6Li
core. Reproduced from Ref. [51].

state of 6Li and that of 7
ΛLi, namely, the shrinkage of

the n−p distance due to the Λ participation is negligibly
small. On the other hand, the n − p c.m. density dis-
tribution of 7

ΛLi is remarkably different from that of 6Li,
showing a significant contraction along the Rcore−(np)

coordinate due to the Λ addition. In fact, the r.m.s. dis-
tance R̄core−(np) is estimated to be 2.94 fm for 7

ΛLi(1/2+)
versus 3.85 fm for 6Li(1+).

Thus, we concluded that, by the addition of the Λ
particle to 6Li(1+), contraction of 7

ΛLi occurs between
the c.m. of the (np) pair and the core whereas the n− p
relative motion remains almost unchanged. In this type
change in the wave function, the angle operator in B(E2)
does not significantly affect the magnitude of shrinkage.
We predicted in Ref. [51] that the size of R̄core−(np) in
6Li will shrink by 25% due to the participation of a Λ
particle. In a later calculation [53] based on more precise
4He+n+p+Λ 4-body model, we predicted it to be 22%.

The first observation of the hypernuclear B(E2)
strength was made in the KEK-E419 experiment for
B(E2; 5/2+ → 1/2+) in 7

ΛLi. The observed B(E2) value
was 3.6 ± 0.5+0.5

−0.4 e
2 fm4 [54]. From this, the shrinkage

of R̄core−(np) was estimated to be by 19± 4%, which was
consistent with our prediction. It is to be emphasized
that this interesting finding was realized with the help
of our precision few-body calculations.

Our prediction about shrinkage of the 13
Λ C states was

given in Refs. [55, 56] though experiment on 13
Λ C is not

yet performed.

4.3 Prediction of spin-orbit splitting in hypernuclei

In this subsection, we briefly review that the present
authors and collaborators [56] predicted the spin-orbit
splittings in hypernuclei 9

ΛBe and 13
Λ C and that after-

wards it was confirmed by experiments at BNL [57, 58].
One of the characteristic phenomena in non-strange

nuclear physics is that there is a strong NN spin-orbit in-
teraction which leads to magic number nuclei. How large
is the Y N spin-orbit interaction in comparison with the
NN spin-orbit one? It is known, for instance, that the
antisymmetric spin-orbit (ALS) interactions are qual-
itatively different between one-boson-exchange (OBE)
models [59–62] and quark models [63, 64]. As a typi-
cal difference, the quark models predict that the ALS
component of the ΛN interaction is so strong as to sub-
stantially cancel the LS one, while the OBE models have
(much) smaller ALS and various strength of LS.

Because of no Y N spin-polarized scattering data, how-
ever, we have no information on the strength of the in-
teraction experimentally. Therefore, in order to extract
information on it, careful calculations of hypernuclear
structure should be of great help because Λ spin-orbit
splittings in hypernuclei are related straightforwardly to
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the spin-orbit component of ΛN interactions.
In Λ-hypernuclei, spin-orbit splitting energy due to the

ΛN interaction was first precisely calculated in Ref. [56]
(2000) for the 5/2+1 −3/2+1 doublet states in 9

ΛBe and the
3/2−1 − 1/2−1 states in 13

Λ C (Fig. 22). The GEM calcula-
tion employed the 2α+Λ model for 9

ΛBe and the 3α+Λ
model for 13

Λ C (Figs. 23 and 24). The total wavefunction
was described as a sum of component functions corre-
sponding those channels in the figures, multiplied by the
spin wavefunction.

We note that the core nuclei 8Be and 12C in these two
hypernuclei are well described by the 2α- and 3α-cluster
models, and that the spin-spin part of the ΛN interac-
tion vanishes and tensor term does not work in the Λα
folding potential. Therefore, calculation of the spin-orbit
level splitting in 9

ΛBe and 13
Λ C using the folded Λα spin-

orbit potential will be useful to examine the qualitatively
different two types of potential models, namely, OBE
models [59, 62] and quark models [63, 64] mentioned
above. The calculated spin-orbit splitting energies [56]
are listed in Table 4.

Fig. 22 Successful GEM prediction of the spin-orbit split-
ting ∆E(LS) in the hypernuclei 9

ΛBe and 13
Λ C (see Table 4).

Fig. 23 Jacobi coordinates for the 2α + Λ model of 9
ΛBe.

The two α clusters are to be symmetrized.

Fig. 24 Jacobi coordinates for the 3α + Λ model of 13
Λ C.

The three α clusters are to be symmetrized (totally 18-
channels).

Table 4 Spin-orbit splitting energies in 9
ΛBe and 13

Λ C.
Calculated values by GEM are given in Ref. [56] using the
OBE-model-based [59–62] and quark-model-based [63, 64]
ΛN spin-orbit forces. Experimental values are taken from [57]
for 9

ΛBe and from [58] for 13
Λ C. The theoretical prediction us-

ing the quark-based ΛN spin-orbit force was confirmed by
the experiments.

CAL CAL EXP
(OBE) (quark)

Splitting (keV) (keV) (keV)
9
ΛBe E(5/2+1 − 3/2+1 ) 80–200 35–40 31.4+2.5

−3.6

13
Λ C E(3/2−1 − 1/2−1 ) 390–960 150–200 150± 54± 36

Afterwards, experimental values were reported as
∆EEXP(5/2

+
1 − 3/2+1 ) = 31.4+2.5

−3.6 keV in 9
ΛBe by BNL-

E930 [57] in 2002 and ∆ECAL(3/2
−
1 − 1/2−1 ) = 150 ±

54 ± 36 keV in 13
Λ C by BNL-E929 [58] in 2001, which

is consistent with our prediction using the quark-based
ΛN spin-orbit force. The very weak spin-orbit compo-
nent of the ΛN interaction compared with that of the
NN interaction was confirmed.

4.4 Prediction for neutron-rich hypernuclei

It is of importance to produce neutron-rich Λ hypernu-
clei for the fundamental study of hyperon-nucleon (Y N)
interaction. It is quite helpful to the newly developing ex-
periments to predict energy levels of these Λ hypernuclei
before measurement.

In 2009, the present authors and collaborators [65]
predicted energies of the ground and excited states of a
neutron-rich hypernucleus 7

ΛHe together with 7
ΛLi(T = 1)

and 7
ΛBe using an α+Λ+N +N 4-body cluster model.

A part of the aim of this work was to help the new
7Li(e, e′K+)7ΛHe experiment scheduled at JLAB.

We constructed 4-body Gaussian basis functions on all
the Jacobi coordinates in Fig. 25 in order to take account
of the full correlations among all the constituent parti-
cles. It is to be stressed that 2-body interactions among
those particles were chosen so as to reproduce satisfacto-
rily the observed low-energy properties of the subsystems
(NN , NΛ, Nα, Λα, NNα and NΛα), at least all the ex-
isting binding energies of the subsystems [65].

This condition for interactions is important in the
analysis of the energy levels of these hypernuclei. Our
analysis is performed systematically for both ground and
excited states of αΛNN systems with no more adjustable
parameters in the stage of full 4-body calculation. There-
fore, these predictions can offer an important guidance
to the interpretation of upcoming hypernucleus experi-
ments, 7Li(e, e′K+)7ΛHe reaction at JLAB.

As shown in Fig. 26, the Λ binding (separation) energy
BΛ of the 1/2+ ground state (namely, the binding energy
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Fig. 25 Jacobi coordinates for all the rearrangement chan-
nels (c = 1, . . . , 9) of the α+ Λ +N1 +N2 4-body model for
Λ-hypernuclei 7

ΛHe, 7
ΛLi and 7

ΛBe [65]. Two nucleons are to
be antisymmetrized.

Fig. 26 Calculated energy levels of 6He and 7
ΛHe by

Ref. [65]. The predicted Λ binding energy B
(CAL)
Λ = 3.66

MeV for the excited states was afterwards reproduced by the
experiment [67]. Reproduced from Ref. [65].

measured from the 6He(g.s.)+Λ threshold) is calculated
as Bcal

Λ = 5.36 MeV, while the 3/2+ and 5/2+ excited
states are given at 1.66 and 1.74 MeV above the 1/2+

ground state, respectively.
In 2013, this hypernucleus 7

ΛHe was observed by the
JLAB E01-011 experiment with the 7Li(e, e′K+)7ΛHe re-
action and the Λ separation energy was reported [66] as
Bexp

Λ = 5.68±0.03(stat.)±0.25(sys.) MeV, which is con-
sistent with the theoretical prediction. Observation of
the first excited-state peak (3/2+1 and 5/2+1 unresolved)

by the JLAB E01-015 experiment was reported [67] with
Bexp

Λ = 3.65± 0.20(stat.)± 0.11(sys.) MeV, which agrees
with the theoretical prediction Bcal

Λ = 3.66 MeV (average
for the two excited states).

Those theoretical and experimental studies of the ener-
gies of 7

ΛHe states are newly attracting strong attentions
from the viewpoints of CSB (charge symmetry breaking)
of the Y N interactions. For more details, see Ref. [68].

4.5 Prediction of hypernuclear states with strangeness
S = −2

Study of ΛΛ interaction and ΞN interaction (both S =
−2) is important. However, since hyperon-hyperon (Y Y )
scattering experiment is difficult to perform, it is essen-
tial to extract information on these interactions from the
structure study of S = −2 hypernuclei such as double Λ
hypernuclei and Ξ hypernuclei.

For this aim, KEK-E373 emulsion experiment was per-
formed and the 6

ΛΛHe was observed without ambiguity
for the first time. The reported ΛΛ binding energy (bind-
ing energy of 6

ΛΛHe measured from the 4He(g.s.)+Λ+Λ
threshold) is BΛΛ = 6.91 ± 0.16 MeV; analysis of the
emulsion data to find new hypernuclei is still in progress.
Besides, it is planned to perform, in 2017, new emulsion
experiment at J-PARC (J-PARC-E07). However, since
it is difficult to determine spins and parities of observed
states, theoretical analysis is important for the identifi-
cation of those states. The present authors and collabora-
tors have succesfull experiences in interpreting the states
of the following two double Λ hypernuclei.

4.5.1 Double Λ hypernucleus 10
ΛΛBe

The KEK-E373 experiment observed a double Λ hy-
pernucleus, 10

ΛΛBe, which is called Demachi-Yanagi
event [69–72]. The reported ΛΛ binding energy was
Bexp

ΛΛ = 12.33+0.35
−0.21 MeV. However, it was not determined

whether this event was observation of the ground state
or any excited state in 10

ΛΛBe.
We studied 10

ΛΛBe with the framework of α+α+Λ+Λ
4-body model [73]. We constructed 4-body Gaussian ba-
sis functions on all the Jacobi coordinates in Fig. 27 in
order to take account of the full correlations among all
the constituent particles. Two-body interactions among
those particles were chosen so as to reproduce satisfacto-
rily the observed low-energy properties of the subsystems
(αΛ, αα and αΛΛ, ααΛ). We then predicted, with no
more adjustable parameters, the energy level of 10

ΛΛBe.
As seen in Fig. 28, the calculated ΛΛ binding energy

of the 2+ state is Bcal
ΛΛ = 12.28 MeV, which is in good

agreement with the experimental data. The Demachi-
Yanagi event was then interpreted as the observation of
the 2+ excited state of 10

ΛΛBe (the ground state is located
2.86 MeV below). For more details, see Ref. [73] in which
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Fig. 27 Jacobi coordinates for all the rearrangement chan-
nels (c = 1, . . . , 9) of the α + X + Λ + Λ 4-body model. For
the double Λ hypernuclei 10

ΛΛBe, we take X = α. The two α’s
are to be symmetrized and the two Λ’s are to be antisym-
metrized. Reproduced from Ref. [73].

Fig. 28 Calculated energy levels of 8Be, 9
ΛBe and 10

ΛΛBe
on the basis of the αα, ααΛ and ααΛΛ models, respectively.
The level energies are measured from the particle breakup
thresholds or are given by excitation energies Ex. Reproduced
from Ref. [73].

more energy levels of 7
ΛΛHe, 7

ΛΛLi, 8
ΛΛLi, 9

ΛΛLi and 9
ΛΛBe

are predicted though no experiment on them is done yet.

4.5.2 Double Λ hypernucleus 11
ΛΛBe

The KEK-E373 experiment observed another new dou-
ble Λ hypernucleus, called Hida event [71, 72]. This
event had two possible interpretations: one is 11

ΛΛBe with
BΛΛ = 20.83±1.27 MeV, and the other is 12

ΛΛBe with and
BΛΛ = 22.48± 1.21 MeV. It is uncertain whether this is
observation of a ground state or an excited state.

Assuming this event to be 11
ΛΛBe, we calculated the en-

ergy spectra of this hypernucleus within the framework
of α+α+n+Λ+Λ 5-body cluster model [74]. All the in-
teractions are tuned to reproduce the binding energies of
possible subsystems (cf. Ref. [74] for the details). There
is no adjustable parameter when entering the 5-body cal-
culation of 11

ΛΛBe. The calculated ΛΛ binding energy was
BΛΛ = 18.23 MeV, which does not contradict the in-
terpretation that the Hida event is observation of the
ground state of 11

ΛΛBe.
As for Ξ− hypernuclei, there are a few experimental

data at present. Among them, the observed spectrum of
the (K−,K+) reaction on a 12C target seems to indi-
cate that the Ξ-nucleus interactions are attractive with
a depth of ∼ 14 MeV when a Woods–Saxon shape is as-
sumed. Taking this information into consideration, we
performed α+n+n+Ξ− and α+α+n+Ξ− four-body
cluster-model calculations, and predicted bound states
for these hypernuclei. It is expected to perform search
experiments for these Ξ− hypernuclei at J-PARC in the
future. For more details, see Ref. [77].

4.6 Strategy of studying hypernuclei and Y N and Y Y
interactions

In the previous Secs. 4.2–4.5, we have reviewed some of
our GEM studies of hypernuclei and Y N and Y Y inter-
actions. Here, we emphasize that one can obtain useful
information on the Y N and Y Y interaction combining
few-body calculations of the hypernuclear structure and
the related spectroscopy experiments on the basis of the
following strategy (cf. Fig. 29):

i) First, we begin with candidates of Y N and Y Y in-
teractions that are based on the meson theory and/or
the constituent quark model.

ii) We then utilize spectroscopy experiments of hyper-
nuclei. Generally, the experiments do not directly give
any information about the Y N and Y Y interactions.

iii) Using the interactions in (i), accurate calculations
of hypernuclear structures are performed. The calculated
results are compared with the experimental data.

iv) On the basis of this comparison, improvements for
the underlying interaction models are proposed.

Following this strategy, we have succeeded in extract-
ing information on the Y N and Y Y interactions pro-
posed so far with the use of GEM. These efforts are sum-
merized in review papers [4, 5, 75–77] on the physics of
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Fig. 29 Strategy for extracting information about Y N and
Y Y interactions from the study of the structure of light hy-
pernuclei. Reproduced from Ref. [5].

hypernuclei and Y N and Y Y interactions.

5 Extension of GEM

5.1 Few-body resonances with the complex-scaling
method

We extended GEM to the case of calculating the energy
and width of few-body resonances, employing the com-
plex scaling method (CSM) [78–82] whose applications
to nuclear physics problems are reviewed, for example,
in Ref. [12]. We applied GEM+CSM to the study of i)
possibility of narrow 4-neutron resonance [83] using real-
range Gaussian basis functions, and ii) new broad 0+3

resonance in 12C [17] using complex-range Gaussian ba-
sis functions.

The resonance energy (its position and width) is ob-
tained as a stable complex eigenvalue of the complex
scaled Schrödinger equation:

[H(θ)− E(θ)]ΨJM,TTz
(θ) = 0, (19)

where H(θ) is obtained by making the complex radial
scaling with an angle θ

rc → rceiθ, Rc → Rceiθ, ρc → ρceiθ, (20)

for example, in the case of 4-body system of Fig. 9. Ac-
cording to the ABC theorem [78, 79], the eigenvalues of
Eq. (19) may be separated into three groups:

i) The bound state poles, remain unchanged under the
complex scaling transformation and remain on the neg-
ative real axis.

ii) The cuts, associated with discretized continuum
states, are rotated downward making an angle of 2θ with
respect to the real axis.

iii) The resonant poles are independent of parameter θ
and are isolated from the discretized non-resonant con-
tinuum spectrum lying along the 2θ-rotated line when
the relation tan 2θ > −Im(Eres)/Re(Eres) is satisfied.
The resonance width is defined by Γ = −2 Im(Eres).

5.1.1 Tetraneutron (4n) resonances

As a beautiful example that satisfies the above properties
i)–iii), we show, in Fig. 30, narrow and broad resonances
as well as the non-resonant continuum spectrum of the 4-
neutron system (tetraneutron, 4n) [83]; they are rotated
in the complex energy plane from θ = 10◦ − 22◦.

In Ref. [83], we discussed about the theoretical possi-
bility to generate a narrow resonance in the 4-neutron

Fig. 30 Dependence of the eigenenergy distribution on the complex scaling angle θ for the 4n system with Jπ = 0+. Two
different cases are considered a) presence of a narrow resonance at Eres = 3.65 − 0.66i MeV for W1(T = 3/2) = −28 MeV
and b) presence of a broad resonance at Eres = 5.88− 2.85i MeV for W1(T = 3/2) = −21 MeV. Reproduced from Ref. [83].
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system as suggested by a recent experimental result
(Eres = 0.83 ± 0.65 ± 1.25 MeV and Γ ≤ 2.6 MeV) [84].
This experiment provides a good chance to investigate
the isospin T = 3/2 component of the 3-nucleon (3N)
force since the T = 1/2 component does not work in this
system; the T = 3/2 component has been considered to
be smaller than the T = 1/2 one in the literature.

To investigate this problem, we introduced a phe-
nomenological 3N force for T = 3/2 (in the same func-
tional form of the T = 1/2 one; cf. Eq. (2.2) of Ref. [83])
in addition to a realistic NN interaction (AV8′). We
inquired what should be the strength of the T = 3/2
3N force (compare with the T = 1/2 one) in order
to generate such a resonance; we performed this by
changing the strength parameter W1(T = 3/2) of the
T = 3/2 3N force. As for the T = 1/2 3N force,
W1(T = 1/2) = −2.04 MeV is known from our study of
the ground and second 0+ states of 4He (cf. Section 3.3).

The reliability of the 3N force in the T = 3/2 channel
was examined by analyzing its consistency with the low-
lying T = 1 states of 4H, 4He and 4Li and the 3H + n
scattering. The ab initio solution of the 4n Schrödinger
equation was obtained using the complex scaling method
with boundary conditions appropriate to the 4-body res-
onances. We found that, in order to generate narrow 4n
resonant states, unrealistically strong attractive 3N force
is required as is explained below.

In Fig. 31, we display the trajectory of the 4n S-matrix

Fig. 31 Tetraneutron (4n) resonance trajectory for the
Jπ = 0+ state. The circles correspond to resonance positions
calculated in Ref. [83]. The strength parameter of the T = 3/2
3N force, W1(T = 3/2), is changed from −37 to −16 MeV in
steps of 1 MeV. To guide the eye, the resonance region sug-
gested by the measurement [84] is indicated by the arrow at
the top. Very strong attructive force of W1(T = 3/2) = −36
to −30 is required to generate a resonance in the energy re-
gion. Reproduced from Ref. [83].

pole (resonance) with J = 0+ state by reducing the 3N -
force strength parameter from W1(T = 3/2) = −37 to
−16 MeV in step of 1 MeV. We were unable to continue
the resonance trajectory beyond the W1(T = 3/2) = −16
MeV value with the CSM, the resonance becoming too
broad to be separated from the non-resonant continuum.
To guide the eye, at the top of the same figure, we
present an arrow to indicate the 4n energy range (Eres =
0.83 ± 0.65 ± 1.25 MeV) suggested by the recent mea-
surement [84]. In order to generate a 4n resonance in our
calculation, we need the strength of the 3N force in the
T = 3/2 channel so large as W1(T = 3/2) = −36 to −30
MeV.

In Ref. [83], showing many reasons, we concluded that
we find no physical justification for the issue that the
T = 3/2 term should be one order of magnitude more at-
tractive than the T = 1/2 one, as is required to generate
tetraneutron states compatible with the ones claimed in
the recent experimental data [84]. We therefore requested
the authors of the experiment paper to re-examine their
result. They say that additional experiment has been
performed and analysis is under way.

5.1.2 3-body resonances in 12C studied with complex-
range Gaussians

Use of the complex-range Gaussian basis functions, in-
troduced in Section 2.4, is powerful in CSM calcula-
tions since the CSM resonace wave function becomes
very oscillatory when the rotation angle θ becomes large
(though the wave function is still L2 integrable).

In Section 5.1.2, we show a typical example in order
to demonstrate that the use of the complex-range Gaus-
sians gives rise to much more precise result than that of
the real-range Gaussians. In Ref. [17] the present authors
and collaborators studied the 3α-cluster resonances per-
forming the 3-body GEM calculation with the complex-
range Gaussian basis functions in the 3α OCM (orthog-
onality condition model). The main purpose of the work
was to discuss about the newly observed broad 0+3 reso-
nance, but here we do not enter it. Instead, we show a
comparison of the two results by the use of two different
types of Gaussian basis functions; both calculations took
the same 3α-cluster model and the same interactions.

Figure 32 illustrates the 0+ eigenvalue distribution of
the complex scaled Hamiltonian H(θ) for the 3α-cluster
OCM model obtained by Kurokawa and Katō [85] (2005)
using the real-range Gaussian basis functions. The scal-
ing angle is θ = 16◦. On the other hand, Fig. 33 by
our calculation [17] (2013) shows the same quantity as
in Fig. 32, but using the complex-range Gaussian basis
functions for θ = 16◦ (black) and 26◦ (blue).

One sees that Fig. 33 gave much more precise result
than that in Fig. 32; especially, the non-resonant contin-
uum spectra are almost on straight lines even at θ = 26◦.
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Fig. 32 The 0+ eigenvalue distribution of the complex
scaled Hamiltonian for the 3α cluster OCM model obtained
by Kurokawa and Katō [85] using the real-range Gaussian
basis functions. The scaling angle is θ = 16◦. This figure is
to be compared with Fig. 33. Reproduced from Ref. [85].

Fig. 33 The 0+ eigenvalue distribution of the complex
scaled Hamiltonian for the 3α cluster OCM model with the
use of the complex-range Gaussian basis functions. The scal-
ing angles are θ = 16◦ (black) and 26◦ (blue). This figure is
to be compared with Fig. 32. Reproduced from Ref. [17].

In order to investigate the new broad 0+3 resonance
that was predicted in Ref. [85], we performed the CSM
calculation for scaling angles from θ = 22◦ up to 36◦.
These large angles are required to reveal explicitly such
a low-lying broad resonance separated from the 3-body
continuum spectra. In our calculation [17], it was really
possible to have the 0+3 state at Eres = 0.79− 0.84i MeV
as a clearly isolated and stable resonance pole against so

large θ as 30◦ − 36◦ (cf. Fig. 7 of Ref. [17]). See the
paper for more about the 0+3 state.

5.2 Few-body reactions with the Kohn-type variational
principle to S-matrix

GEM is applicable to few-body reactions. In Section 5.2,
we review briefly three examples:

i) Muon transfer reaction in the cycle of muon cat-
alyzed fusion (µCF) (cf. Section 3.1),

ii) Catalyzed big-bang nucleosynthesis (CBBN) re-
actions (for review, see Ref. [86] and Section 9.2 of
Ref. [87]).

iii) Scattering calculation of 5-quark (uudds̄) systems.
The subjects i) and ii) give good tests to 3-body reac-

tion theories for elastic and transfer processes in the pres-
ence of strong 3-body distortions (virtual excitations) in
the intermediate stage of reaction.

5.2.1 Muon transfer reaction

In the µCF cycle (cf. Fig. 22 of [3]), muons injected into
the D2/T2 mixture form finally (dµ)1s and (tµ)1s, and
then (dµ)1s is changed to (tµ)1s by the muon transfer
reaction due to the difference in their binding energies:

(dµ)1s + t→ d+ (tµ)1s + 48 eV. (21)

This reaction (cf. Fig. 34) was extensively studied the-
oretically in 1980’s and 1990’s as an important door-
way process to the µCF and also by the following rea-
son: Calculation of the cross section of this reaction at
Ecm = 0.001 − 100 eV has been a stringent benchmark
test for the calculation methods of Coulomb 3-body re-
actions. Since the muon mass is 207 times the electron
mass, fully non-adiabatic treatment is necessary. The
GEM calculaion [88, 89] gave one of the most precise re-
sults so far (cf. a brief review in Section 8.1 of Ref. [3]).

We consider the reaction (21) at incident c.m. energies
0.001–100 eV which are much less than the excitation
energy of the n = 2 state of (tµ) and (dµ), ∼ 2 keV. The
formulation below follows Section 8.1 of Ref. [3].

The wave function which describes the transfer reac-
tion (21) as well as the diagonal (tµ)1s−d and (dµ)1s− t
processes with the total energy E may be written as

Fig. 34 Three Jacobi coordinates of the d+ t+µ− system.
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ΨJM (E) = ϕ
(dµ)
1s,ε1

(r1)χ
(dµ−t)
JM (k1,R1)

+ϕ
(tµ)
1s,ε2

(r2)χ
(tµ−d)
JM (k2,R2)

+

νmax∑
ν=1

bν(E)Φ
(ν)
JM (Eν). (22)

The first and second terms describe the open channels
(dµ)1s−t and (tµ)1s−d, respectively. Here, k1 is the wave
number of the channel c = 1 and is given as ℏ2k21/(2µ1) =
E− ε1 with the intrinsic energy ε1; and similarly for the
channel c = 2.

The third term is responsible, in the interaction region,
for the 3-body degrees of freedom that are not included
in the first and second terms. The third term is expanded
by a set of L2-integrable 3-body eigenfunctions (should
nearly be a complete set in the restricted region). As such
eigenfunctions, we employ {Φ(ν)

JM (Eν); ν = 1, . . . , νmax}
with the eigenenergy Eν that are obtained by diagonal-
izing the total Hamiltonian with the use of the 3-body
Gaussian basis functions, Eqs. (3), whose total number
is νmax.

The authors of Refs. [88, 89] solved the unknown func-
tions χ(dµ−t)

JM (k1,R1) and χ
(tµ−d)
JM (k2,R2) as well as the

unknown coefficients {bν(E); ν = 1, . . . , νmax} by using
the Kohn-type variational principle to S-matrix (see Sec-
tion 4 of Ref. [13] for the general formulation and Sec-
tions 2.5 and 8.1 of Ref. [3]).

Figure 35 illustrates the calculated cross sections σ21
of the reaction (21) by GEM [89] (solid line), by Ref. [90]
(open boxes) and by Ref. [91] (open circles). As re-
viewed in Ref. [92], the GEM calculations provides a

Fig. 35 Calculated transfer cross sections σ21 of (dµ)1s +
t → d + (tµ)1s + 48 eV. E

(1)
c.m. = E − ε

(1)
1s is the collision

c.m. energy in the incident channel. The results are given
by GEM [89] (solid line), by Ref. [90] (open boxes) and by
Ref. [91] (open circles). Dotted lines are partial-wave cross
sections for each J by GEM. Precise numbers of the cross
sections are seen partially in Table 18 of Ref. [3]. Reproduced
from Ref. [3].

standard result for the benchmark test calculations of
this Coulomb 3-body reaction.

Here, we emphasize an important role of the third term
of the total wave function (22); the term is responsible for
the 3-body degrees of freedom in the interaction region.
If we omit the term, the cross section σ21 of the transfer
reaction becomes more than ten times larger than σ12
obtained above with the third term included. This is due
to the fact that, in such a low-energy reaction, the ef-
fect of the 3-body distortion (virtual excitation) induces
a strong attractive force in the interaction region and
causes severe mismatching of the wave length between
the interaction region and the outside region, which re-
sults in the strong reduction of the transfer cross section.

5.2.2 Catalyzed big-bang nucleosynthesis (CBBN)
reactions

The present authors and collaborators [20, 93] applied
the 3-body reaction-calculation method in Section 5.2.1
to the calculation of the reaction rates in the catalyzed
big-bang nucleosynthesis (CBBN) reactions a) to g) in
Table 5 and several more reactions (so-called rate-time
CBBN reactions) in Table II of Ref. [20]. Those CBBN
reaction rates were incoorpolated in the BBN network
calculation in the literature and have been used for the
study of the 6Li-7Li abundance problem, etc.

In the CBBN reactions a) to g), the particle X− stands
for a hypothetical long-lived negatively-charged, massive
(≳ 100 GeV) leptonic particle such as a supersymmetric
(SUSY) particle stau, a scalar partner of the tau lep-
ton. It is known that if the X− particle has a lifetime of
τX ≳ 103 s, it would capture a light element previously
synthesized in the standard BBN and forms a Coulom-
bic bound state, for example, (7BeX−) at temperature
T9 ≲ 0.4 (in units of 109 K), (αX−) at T9 ≲ 0.1 and
(pX−) at T9 ≲ 0.01. Those exotic-atom bound states are
expected to induce the reactions a) to g) in which X−

works as a catalysis.
Recent literature papers have claimed that some of

these X−-catalyzed reactions have significantly large
cross sections so that inclusion of the reactions into the
BBN network calculation can change drastically abun-
dances of some elements; this can give not only a solu-
tion to the 6Li-7Li problem (calculated underproduction
of 6Li by ∼ 1000 times and overproduction of 7Li+7Be
by ∼ 3 times) but also a constraint on the lifetime and
abundance of the elementary particle X−.

However, most of these literature calculations of the
reaction cross sections were made assuming too naive
models or approximations that are not suitable for
those complicated low-energy nuclear reactions. We per-
formed a fully quantum three-body calculation of the
cross sections of the above types of X−-catalyzed reac-
tions [20, 93], and provided their reaction rates to the

Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)
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Table 5 Summary of the calculated reaction rates of catalyzed big-bang nucleosynthesis (CBBN) reactions obtained by
the 3-body GEM calculations [20]. The first three are for T9 ≲ 0.2 and the others are for T9 ≲ 0.5. Reproduced from Ref. [20].

CBBN reaction Reaction rate (cm3·s−1·mol−1) by GEM [20]
non-resonant reaction

a) (αX−) + d → 6Li+X− 2.78× 108T
− 2

3
9 exp(−5.33T

− 1
3

9 )(1− 0.62T
2
3
9 − 0.29T9)

b) (αX−) + t → 7Li+X− 1.4× 107T
− 2

3
9 exp(−6.08T

− 1
3

9 )(1 + 1.3T
2
3
9 + 0.55T9)

c) (αX−) + 3He → 7Be+X− 9.4× 107T
− 2

3
9 exp(−9.66T

− 1
3

9 )(1 + 0.20T
2
3
9 + 0.05T9)

d) (6LiX−) + p → α+ 3He+X− 2.6× 1010T
− 2

3
9 exp(−6.74T

− 1
3

9 )

e) (7LiX−) + p → α+ α+X− 3.5× 108T
− 2

3
9 exp(−6.74T

− 1
3

9 )(1 + 0.81T
2
3
9 + 0.30T9)

f) (7BeX−) + p → (8BX−) + γ 2.3× 105T
− 2

3
9 exp(−8.83T

− 1
3

9 )(1 + 1.9T
2
3
9 + 0.54T9)

resonant reaction

g) (7BeX−) + p → (8BX−)res.
2p → (8BX−) + γ 1.44× 106T

− 3
2

9 exp(−2.15T−1
9 ) mX = 100 GeV

BBN network calculations. Our reaction rates are cited
in recent review papers of BBN [87] and CBBN [86] and
have been actually used, for example, in Refs. [94–96].

We note that GEM is responsible for such BBN net-
work calculations using our CBBN reaction rates since
absolute values of the cross sections were predicted (usu-
ally, such a prediction is difficult for nuclear reactions).

5.2.3 Scattering calculation of 5-quark (uudds̄) systems

In Ref. [97], the present authors and collaborators per-
formed a 5-body (uudds̄) scattering calculation, for the
first time, about the penta-quark resonance Θ+(1540)
(experiment by Ref. [98]). We took the five sets of Ja-
cobi coordinates (Fig. 36) and employed the same frame-
work of the previous Sections 5.2.1 and 5.2.2. The NK
scattering channel is treated with c = 1, described sim-
ilarly as the first term of Eq. (22) (note that no second
term in the present case). The channels c = 2–4 stand for

Fig. 36 Five sets of Jacobi coordinates for the uudds̄ sys-
tems. Four u, d quarks, labeled by particle 1–4, are to be
antisymmetrized, while particle 5 stands for s̄ quark. Sets
c = 4, 5 contain two qq correlations, while sets c = 1–3 do
both qq and qq̄ correlations. Sets c = 1–3 describe molecu-
lar configurations and sets c = 4, 5 does connected ones. The
NK scattering channel is treated with c = 1. Reproduced
from Ref. [97].

the 5-body degrees of freedom in the interaction region,
described similarly as the third term of Eq. (22). We pre-
pared a very large set of 5-body GEM basis functions and
generated, by the bound-state approximation (diagonal-
ization of the total Hamiltonian), the 5-body eigenstates
{Φ(ν)

JM (Eν); ν = 1, . . . , νmax} with νmax ≃ 15000.
There is no bound state below the NK threshold at

E = 1.4 GeV. Therefore, all the eigenstates Φ
(ν)
JM (Eν)

are so-called pseudo-states, namely, discretized contin-
uum states. It is not a priori known whether the pseudo-
states become real resonances or non-resonant contin-
uum states when the Schrödinger equation is fully solved
under the NK-scattering boundary condition imposed.

Although a lot of pseudo-states Φ
(ν)
JM (Eν) with Jπ =

1
2

± and 3
2

± were obtained within the bound-state ap-
proximation, all the pseeudo-states in 1.4–1.85 GeV in
mass around Θ+(1540) melt into non-resonant contin-
uum states when the coupling with the NK scattering
state is switched on (see the phase shifts in Fig. 37).

We then concluded, at the early stage of various dis-
cussions on Θ+(1540), that there appears no 5-quark
(uudds̄) resonance below 1.85 GeV in mass.

Fig. 37 Calculated phase shifts for (a) Jπ = 1
2

− and (b)
Jπ = 1

2

+ states. The solid curves are given by the full-fledged
calculation, while the dash-dotted curves are by the calcula-
tion with the elastic NK channel alone. Energies are mea-
sured from the NK threshold (Eth). The arrow indicates the
energy of Θ+(1540) in E − Eth. Reproduced from Ref. [97].
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6 Summary

We have reviewed our calculation method, Gaussian ex-
pansion method (GEM) [1–5] for few-body systems, and
its applications to various subjects. Those applications
have been performed under our research strategy illus-
trated in Fig. 1. We studied few-body problems on

a) bound states using the Rayleigh–Ritz variational
method,

b) resonant states using the complex-scaling method
(Section 5.1) and

c) reaction processes using the Kohn-type variational
principle to S-matrix (Section 5.2).

We have explained
1) high accuracy of GEM calculations (Section 3),
2) successfull predictions by GEM calculations before

measurements (Section 4) and
3) wide applicability of GEM to few-body problems in

various reseach fields.
We introduced three types of Gaussian basis functions:

i) real-range Gaussians (Section 2.2),
ii) complex-range Gaussians (Section 2.4) and
iii) infinitesimally-shifted Gaussian lobe functions

(Section 2.5).
All of the Gaussians have range parameters chosen

to form geometric progression which is dense at short
distances so that the description of the dynamics medi-
ated by short-range interactions can be properly treated.
Moreover approprite superposition of many Gaussians
can decay accurately (exponentially) up to a sufficiently
large distance (cf. Figs. 17 and 16 for a 4-body case).

The function space spanned by the basis functions of
the second type ii) is much wider than that of the first
type i), and is particularly good at describing highly os-
cillatory wave functions (cf. Figs. A8 and A9).

Use of the third type iii), mathematically equiva-
lent to the first two, makes the calculation of few-body
Hamiltonian matrix elements quite easier (with no tedius
angular-momentum algebra) since the basis functions do
not require any spherical harmonics function Ylm(θ, ϕ)
to describe the angular part.

One of the advantages of taking the Gaussian ranges in
geometric progression is that the number of variational
parameters are so small that optimization of them can
easily be performed. The GEM calculation is quite trans-
parent in the sense that all the nonlinear variational pa-
rameters can be explicitly reported in a small table even
in 4-body calculations (Section 2.3).

The total wave function of bound (resonant) state is
expanded in terms of few-body Gaussian basis functions
of the Jacobi coordinates for all the rearrangement chan-
nels (Section 2.1 for 3-body and Section 3.3 for 4-body).
This multi-channel representation makes the function

space much wider than that spanned by single-channel
basis functions. Therefore, those basis functions are par-
ticularly suitable for describing both the short-range be-
havior and long-range behavior (or weak binding) along
any Jacobi coordinate of the system.

We are careful about all the pair interactions in order
to reproduce the binding energies of all the subsystems.
Therefore, there is no adjustable parameters when enter-
ing the full few-body calculation; the calculated result is
“predicted” in this sense (Section 4).

We are interested in applying GEM to few-body prob-
lems in any fields that we have not enter yet (cf. Fig. 1
of our research strategy); collaboration for it is welcome.

Appendix A Examples of accurate 2-body
GEM calculations

A.1 Harmonic oscillator potential

It is a good test to solve a problem whose exact analytical
solution is known. We consider nucleon motion in a 3-
dimensional harmonic oscillator (HO) potential:(

− ℏ2

2mN
∇2 +

1

2
mNω

2r2 − E

)
ϕlm(r) = 0 (A1)

with ℏ2/mN = 41.47 MeV·fm2 and ℏω = 15 MeV. Radial
part of the wave function is expanded in terms of the
Gaussian basis functions of Eq. (5). The Hamiltonian
and norm-overlap matrix elements can be calculated with
Eqs. (12)–(15) in Ref. [3]. We take l = 0.

The Gaussian range parameters are chosen as {nmax =
10, r1 = 1.5 fm, rnmax = 4.0 fm} after a little try-and-
error effort about r1 and rnmax . More precise optimiza-
tion is not necessary for practical use since the result is
satisfactorily good as follows:

In Table A1, calculated energy E(k) of the k-th eigen-

Table A1 Test of the accuracy of GEM calculation for
a nucleon in a harmonic oscillator potential with ℏω = 15
MeV using a set {nmax = 10, r1 = 1.5 fm, rnmax = 4.0 fm}
for l = 0. The calculated and exact eigenenergies (E(k); k =
1, . . . , 7) are listed in terms of the number of quanta, ε(k) =
E(k)/(ℏω)− 3/2.

k ε(k) (GEM) ε(k) (Exact)
1 (0s) 0.000000 0

2 (1s) 2.000000 2

3 (2s) 4.000000 4

4 (3s) 6.000005 6

5 (4s) 8.000064 8

6 (5s) 10.002508 10

7 (6s) 12.015534 12
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Fig. A1 Wave function of a nucleon in a harmonic os-
cillator potential of ℏω = 15 MeV. The 5s state is illus-
trated. The solid line shows the GEM result using a set
{nmax = 10, r1 = 1.5 fm, rnmax = 4.0 fm}, while the closed
circles denote the exact one.

state (k = 1, . . . , 7) is compared with the exact value;
here ε(k) = E(k)/(ℏω) − 3/2 is presented. Wave func-
tion of the 5s (k = 6) state is illustrated in Fig. A1.
We obtain precise energies and wave functions for the
lowest 6 states using 10 Gaussians. It can be said that
the GEM well describes oscillating functions with 4 or
5 nodes (except for the origin); this will be enough in
actual nuclear-potential problems.

As will be shown in Appendix A.6, use of the complex-
range Gaussians can much more accurately describe, for
example, the excited state with 19 oscillations in terms
of 28 Gaussians for the same Schrödinger equation (A1).

A.2 Coulomb potential: Hydrogen atom

Here, we consider the eigenstates of the hydrogen atom
(p+ e−) as solution of the Schrödinger equation(

−1

2
∇2 − 1

r
− E

)
ψlm(r) = 0, (A2)

where radius r and energy E are given in the atomic
units of ℏ2/(mee

2) = 0.5291 Åand mee
4/ℏ2 = 27.21 eV.

In Table A2, calculated eigenenergies E(k)(k =
1, . . . , 7) are compared with the exact values, −1/(2k2),
for l = 0. We took the Gaussian range parameters as
{nmax = 20, r1 = 0.1 a.u., rnmax = 80 a.u.}, which might
be nearly the best set for nmax = 20; since nmax = 20 is
sufficiently large for the lowest-lying 7 states, a little ef-
fort was necessary to optimize r1 and rnmax taking round
numbers with the accuracy of 0.00001 a.u. in energy. Of
course, we can obtain better solutions if we employ a
larger basis set, but here we do not enter the problem.
Much more accurate solution will be presented in Ap-
pendix A.6 with the use of complex-range Gaussian basis
functions.

Table A2 Calculated eigenenergies E(k) (in the atomic
unit) of the hydrogen atom with l = 0 are compared with the
exact values for the lowest 7 states. We took the real-range
Gaussians of {nmax = 20, r1 = 0.1 a.u., rnmax = 80 a.u.}.

k E(k) (GEM) E(k) (Exact)
1 −0.499982 −0.500000

2 −0.124998 −0.125000

3 −0.055555 −0.055556

4 −0.031249 −0.031250

5 −0.019998 −0.020000

6 −0.013883 −0.013889

7 −0.010203 −0.010204

A.3 Woods–Saxon potential

We solve 0s, 1s and 0d bound states of neutron in
a Woods–Saxon potential; namely, in the Schrödinger
equation (A1) we replace the H.O. potential by

V (r) =
V0

1 + e(r−R0)/a
(A3)

with V0 = −55 MeV, R0 = 3.0 fm, a = 0.6 fm and
ℏ2/m = 41.47 MeV. The energy by the direct numerical
calculation is listed in the first column of Table A3. Use
of GEM calculation with a Gaussian basis set {nmax =
8, r1 = 1.0 fm, rnmax = 6.0 fm} gives the result in the
second column of Table A3.

A satisfactorily accurate result is obtained by GEM.
In Fig. A2, the wave functions given by the 8 Gaussian
basis functions agree with those by the direct calculation.

A.4 Realistic NN potential: Deuteron

As a realistic NN potential for solving deuteron, we em-
ploy the AV8′ potential [38] which is often used in few-
body calculations such as the benchmark test calculation
of 4He ground state [37] which is mentioned in Section
3.3. The AV8′ potential is expressed as a sum of central,
spin-orbit and tensor forces; Fig. A3 shows its central
part (T = 0, S = 1) having a strong repulsive core and
tensor part (T = 0).

Table A3 Binding energies of the 0s, 1s and 0d states
of a neutron in the Woods–Saxon potential (see text) by the
direct numerical calculation and the GEM calculations. The
Gaussian basis set is {nmax = 8, r1 = 1.0 fm, rmax = 6.0 fm}.

Exact GEM
(nmax = 8)

E0s (MeV) −33.2531 −33.2528

E1s (MeV) −3.2221 −3.2208

E0d (MeV) −2.1897 −2.1893

132106-24
Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)



Review article

Fig. A2 Wave functions of the 0s, 1s and 0d states of
a neutron in a Woods–Saxon potential (see text). The solid
curve denotes the GEM result with eight Gaussians, whereas
the dotted curve is the direct numerical one, but both curves
are almost overlap in the whole region.

Fig. A3 The AV8′ NN potential. The central part (T =
0, S = 1) and tensor part (T = 0) are shown.

The purpose of GEM calculation of this system is to
describe simultaneously both the strong short-range cor-
relation and the asymptotic behavior accurately. We
employ a Gaussian parameter set:

{nmax = 15, r1 = 0.2 fm, rnmax = 20 fm} for S-wave,
{nmax = 20, r1 = 0.2 fm, rnmax = 25 fm} for D-wave,

namely, 35 basis functions totally.
Calculated wave function in the interaction region and

that in the asymptotic region are illustrated respectively
in Fig. A4 and Fig. A5. Strong reduction and steep in-
crease of the wave-function magnitude due to the repul-
sive core is well derived. The correct asymptotic behavior
(exponential decaying) of the wave function (multiplied
by r) is demonstrated up to r ∼ 50 fm where the am-
plitude is reduced by five-order of magnitude from the
maximum value at r ∼ 1 fm.

Fig. A4 The S-wave and D-wave components of the
deuteron wave function calculated by GEM with AV8′.

Fig. A5 Asymptotic behavior of the deuteron S- and D-
wave components (multiplied by r) by GEM with AV8′.

A.5 Very strong short-range correlation and very long
tail: 4He-atom dimer

To the authors’ knowledge, the most weakly bound 2-
body state in nature is the ground state of 4He-atom
dimer, and the most difficult problem to solve 2-body
bound state with a central potential is this dimer state.

An example of the 4He-4He potential is the one called
LM2M2 potential [45] illustrated in Fig. A6 in red
curve: this potential has a very strong repulsive core
(∼ 106 K at r = 0) accompanied by shallow attractive
tail (∼ −10 K pocket at r = 3 Å) which results in a
very weak bound state at E = −0.00130 K according
to a precision direct numerical calculation by the step-
by-step method. If we roughly scale this problem into a
nuclear system, we would have a potential core height
of ∼ 106 MeV and an attractive pocket of −10 MeV at
r ∼ 2 fm, resulting in an extremely shallow bound state
at ∼ −0.001 MeV.

Therefore, one might think that it would be almost im-
possible for any variational approach to solve this prob-
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Fig. A6 Wave function of the 4He-atom dimer (short-
range region) calculated by GEM. The LM2M2 potential be-
tween 4He atoms is illustrated (in red curve) in arbitrary
units. The only bound state is located at E = −0.00130 K,
so shallow.

Fig. A7 Wave function of the 4He-atom dimer (asymptotic
region) calculated by GEM with the set {nmax = 60, r1 =
0.25 Å, rnmax = 700 Å}. The asymptotic behavior is correctly
reproduced up to ∼1000 Å.

lem accurately, particularly the wave function having
strong short-range correlations and a long-range asymp-
totic tail. But, it is possible to solve it using GEM. Di-
agonalization of Hamiltonian using our basis functions
with the set {nmax = 60, r1 = 0.25 Å, rnmax = 700 Å}
gives the same energy (E = −0.00130 K) and wave func-
tion as those with direct numerical method; in Figs. A6
and A7 small difference between the results of the two
method is not visible.

It is striking that both the short-range correlations
and the exponentially-damped tail are simultaneously re-
produced very accurately. This owes to the geometric-
progression Gaussian ranges which have a dense distri-
bution in the short-range region and a coherent super-
position of long-range Gaussians in the asymptotic re-
gion. It will be difficult to reach this degree of agreement

if other types of Gaussian-range set are chosen. This
short-range correlations in the 4He dimer is relatively
very much stronger than that in the realistic nucleon-
nucleon interaction (AV8′); notice the large difference in
the degree of amplitude attenuation in the short-range
region in Fig. A6 for the 4He dimer and that in Fig. A4
for the deuteron S-wave.

In the cases of 3- and 4-body systems, the authors
presented similar figures as Figs. A6 and A7 in Ref. [14]
(Figs. 3, 4, 6, 8, 10 and 11) and in Ref. [16] (Figs. 4,
5, 8, 9 and 10) for 4He-atom clusters in the cold-atom
physics.

A.6 Complex-range Gaussians basis functions

A.6.1 Highly excited states in HO potential

A good test of the use of complex-range Gaussian basis
functions is to calculate the wave functions of highly ex-
cited states in a harmonic oscillator (HO) potential. We
take the case of a nucleon with angular momentum l = 0
in a potential having ℏω = 15.0 MeV. We expand the
s-state wave function, Ψ0, as

Ψ0(r) =

nmax∑
n=1

[
c(cos)
n ϕ

(cos)
n0 (r) + c(sin)

n ϕ
(sin)
n0 (r)

]
. (A4)

Parameters of the complex-range Gaussians are
{2nmax = 28, r1 = 1.4 fm, rnmax = 5.8 fm, ω = π

2
1

1.22 =
1.09}. For the sake of comparison, we also tested the
real-range Gaussian basis functions with the parameters
{nmax = 28, r1 = 0.5 fm, rnmax = 11.3 fm}. Optimized r1
and rnmax are different between the two types of bases
though their total numbers are the same. In Table A4,
we compare the calculated energy eigenvalues with
the exact ones. It is evident that the complex-range

Table A4 Test of accuracy of real-range Gaussian and
complex-range Gaussian basis functions for highly excited
states with l = 0 of a HO potential. The number of basis
functions is 28 for both cases. Energies are listed in terms of
the number of quanta, E/(ℏω)− 3

2
. Reproduced from Ref. [3].

Exact Real-range Complex-range
0 0.0000 0.0000
4 4.0000 4.0000
8 8.0000 8.0000
12 12.0000 12.0000
16 16.002 16.0000
20 20.01 20.0000
24 24.1 24.0001
28 29.5 28.0003
32 37.3 32.002
38 53.8 38.003
46 91.6 46.3

132106-26
Emiko Hiyama and Masayasu Kamimura, Front. Phys. 13(6), 132106 (2018)



Review article

Gaussians can reproduce up to much more highly
excited states than the real-range Gaussians do.

Figure A8 demonstrates good accuracy of the wave
function of the 19-th excited state having 38 quanta. Er-
ror is within a few %, much smaller than the thickness of
the line. The figure suggests that the basis functions is
also suitable for describing highly oscillating scattering
wave functions inside the matching radius (cf. Fig. 11 in
Ref. [3]) when the Kohn-type variational method for the
S-matrix [13].

A.6.2 Highly excited states of hydrogen atom

We explore another typical example in which the
complex-range Gaussian basis functions reproduce highly
oscillatory functions with high accuracy. Table A5 lists
the calculated energy eigenvalues of the hydrogen atom
with l = 0, n = 1 − 40 compared with the exact val-
ues. Parameters of the complex-range Gaussian basis
functions are {2nmax = 160, r1 = 0.015 a.u., rnmax =

Fig. A8 Wave function of the l = 0, N=19 (38-quanta)
state obtained by diagonalizing the HO-potential Hamilto-
nian using 28 complex-range Gaussian basis functions. It is
compared with the exact wave function but the difference is
invisible since the error is less than a few % everywhere. See
text for the Gaussian parameters. Reproduced from Ref. [3].

Table A5 Calculated energy eigenvalues of the hydrogen
atom with l = 0, n = 1 − 40 compared with the exact val-
ues. Parameters of the complex-range Gaussian basis func-
tions are taken to be {nmax = 80, r1 = 0.015 a.u., rnmax =
2000 a.u., ω = 1.5}. This table is taken from Ref. [3].

n Ecal (a.u.) Eexact (a.u.) rel. error

1 −4.999999845× 10−1 −5.000000000× 10−1 3.1× 10−8

3 −5.555555494× 10−2 −5.555555556× 10−2 1.1× 10−8

10 −4.999999983× 10−3 −5.000000000× 10−3 3.5× 10−9

26 −7.396449686× 10−4 −7.396449704× 10−4 2.4× 10−9

30 −5.555555323× 10−4 −5.555555556× 10−4 4.2× 10−8

36 −3.856834714× 10−4 −3.858024691× 10−4 3.1× 10−4

40 −3.106429115× 10−4 −3.125000000× 10−4 5.9× 10−3

Fig. A9 Wave function of the l = 0, n = 26 state of the
hydrogen atom. The solid line is the exact one, and the dots
are given by the complex-range Gaussian basis functions with
the same parameters as in Table 2. Relative error of the latter
is 10−7–10−5 up to r = 1500 a.u. at which absolute value of
the wave function is four-order of magnitude smaller than
that at r = 0. Reproduced from Ref. [3].

2000 a.u., ω = 1.5}. The energy is reproduced within a
relative error of 5 × 10−8 up to the state with n = 30.
The wave function of the state with n = 26 is illustrated
in Fig. A9, both for the exact solution and the calculated
one. The relative error of the calculated wave function
is 10−7–10−5 up to r = 1500 a.u..
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