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In this study we investigate the collective behavior of the generalized Kuramoto model with an ex-
ternal pinning force in which oscillators with positive and negative coupling strengths are conformists
and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscilla-
tors follow a uniform probability density. By numerically simulating the model, it is shown that the
model supports multistable synchronized states such as a traveling wave state, π state and periodic
synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase
distribution oscillating in a confined region and the phase difference between conformists and contrar-
ians oscillating around π periodically. In addition, we present the parameter space of the oscillating π
state and traveling wave state of the model.
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1 Introduction

Since its introduction almost 40 years ago, the Kuramoto
model of globally coupled oscillators [1] has been estab-
lished as a paradigmatic model describing Synchroniza-
tion phenomenon in large populations of coupled oscilla-
tors. Similar to the Ising model in the theory of phase
transitions [2], the Kuramoto model captures essential
features of synchronization observed in many physical
systems such as in collective atomic recoil lasers [3, 4],
electrochemical oscillators [5, 6], Josephson junction ar-
rays [7, 8], and charge-density waves [10, 11], as well
as in a more interdisciplinary context, like for the syn-
chronous flashing of groups of fireflies [12], the rhythm of
pacemaker cells of the heart [13], the interaction of cells
containing oscillatory chemically reacting constituents
[14], phase synchronization in electrical power distribu-
tion networks [15–17], and for a large applauding audi-
ence [18], for some other systems, see Ref. [19]. Theo-
retically, the classical Kuramoto model with its general-
izations turns out to be the standard for synchronization
problem that has inspired a lot of work because of both
its simplicity for mathematical treatment and its rele-
vance to practice [2, 19].

In the weak interaction limit, the dynamics of the
limit-cycle oscillators could be effectively described in
terms of their phase variable ϕ [20]. The original Ku-
ramoto model comprises N phase oscillators that are
globally coupled through the sine of their phase dif-
ference. Each oscillator has its own natural frequency
ωi chosen from a given probability density g(ω) and
is characterized by its phase ϕi, which is a continuous
parametrization of oscillator’s evolution with 2π gain
at completion of each cycle. One of the key assump-
tions in the Kuramoto model is that the mutual cou-
pling strength K between an oscillator and the mean
field is positive. The oscillators with positive coupling
tend to fall in line with neighboring oscillators in favor
of the in-phase relationship with them. A natural gen-
eralization of it is to allow the coupling strength (K)
to have either sign. The oscillators with negative cou-
pling drive the oscillators apart to align antiphase with
each other. Some authors considered the local interaction
among oscillators and found evidence of glassy behav-
ior when both positive and negative coupling strengths
were allowed simultaneously [21, 22]. Positive and nega-
tive communications coexist in biological systems; some
studies have evaluated the significance of these commu-
nications on the synchronization in neural networks that
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consist of excitatory and inhibitory neurons [23] which
interact with their neighboring neurons positively and
negatively, respectively. Hong and Strogatz studied the
situation in which the coupling strength was regarded
as an oscillator’s ability to react to the mean field indi-
vidually [24, 25]. In their work, both positive and neg-
ative coupling strengths are present in the population.
Conformist oscillators are the ones with positive inter-
action while contrarian oscillators are those with nega-
tive interaction. They found a surprising time-dependent
state, a traveling wave state in which the mean field os-
cillates at a frequency different from the population’s
mean natural frequency and the phase differences be-
tween conformists and contrarians are locked at an angle
away from π. Positive and negative interactions are also
very common in social systems [26] such as human so-
ciety. For example, conformists positively interact with
the neighbors, following the neighbors’ opinion uncondi-
tionally, whereas contrarians negatively interact, always
rejecting the neighbors’ idea.

A natural extension of the generalized Kuramoto
model is to add external fields; this gives rise to a much
richer dynamical behavior. External fields can model the
external current applied to a neuron so as to describe
the collective properties of excitable systems with planar
symmetry. For other physical devices, such as Josephson
junctions, a periodic external force can model an oscillat-
ing current across the junctions. The pinning force has
been mostly considered in an active rotator model with
attractive interaction [27–31]. Shinomoto and Kuramoto
studied the phase transition in active rotator systems
and found two different regions in the phase diagram:
a region of time-periodic physical observables and a re-
gion of stable stationary synchronized states [32]. Hong
considered a system of coupled phase oscillators under
a pinning force and found peculiar dynamic states [33].
However, the effects of pinning force in the system of
coupled phase oscillators with attractive and repulsive
interactions have not been well explored.

In this study, we have investigated the dynamics and
synchronization properties of the generalized Kuramoto
model consisting of conformists and contrarians with a
pinning force term for fully coupled systems. The ef-
fect of pinning force on the collective dynamics in the
generalized Kuramoto model coupled via the attractive
and repulsive interactions, which is the motivation of this
study, has been explored. We have focused on the model
with a uniform probability density of natural frequency.
In the following, we report our main results.

2 Model

The generalized Kuramoto model with both attractive
and repulsive interactions under a pinning force consists

of the following set of equations:

ϕ̇i=ωi+a sinϕi+
Ki

N

N∑
j=1

sin(ϕj−ϕi), i = 1, 2, . . . , N,

(1)

where ϕi, ωi and Ki are the phase, natural frequency,
and coupling strength to the mean field, respectively, of
the ith oscillator. ωi is chosen uniform at random from
[−γ, γ], here γ is the width of natural frequency distri-
bution. Ki was chosen randomly from the probability
distribution, which for simplicity was assumed to be a
double-δ probability distribution of coupling strengths:
Γ(K) = (1− p)δ(K −K−) + pδ(K −K+), here K− < 0
and K+ > 0 represent the couplings for the contrarians
and conformists, respectively, and p denotes the proba-
bility that a random oscillator is a conformist. N is the
number of phase oscillators in the system. The second
term on the right-hand side of Eq. (1) is the pinning force
introduced to mimic the dynamics of excitable limit-cycle
oscillators [32, 33], and a is the intensity of pinning force.
To measure the level of coherence between the oscillators
in the model, we employed the mean field-like quantity,
namely, the complex order parameter ReiΦ which is de-
fined as

Z = ReiΦ =
1

N

N∑
j=1

eiϕj , (2)

where the amplitude 0 ≤ R ≤ 1 measures the phase co-
herence in the population and Φ gives the average phase.
In terms of R and Φ, Eq. (1) can be rewritten as

ϕ̇i = ωi + a sinϕi +KiR sin(Φ− ϕi), i = 1, 2, . . . , N.

(3)

Eq. (3) expresses the evolution of the ith oscillator solely
in terms of R and Φ. The complex order parameters in
conformists and contrarians are also important quanti-
ties to determine the dynamics in Eq. (1) and they are
defined as Z± = R±eiΦ± = (1/N±)

∑
j∈S±

eiϕj , where
S+ (or S−) means the set of conformists (or contrarians)
and N± are the numbers of conformists and contrarians,
respectively. Z is related to Z± by Z = N−

N Z− + N+

N Z+.

3 Results and analysis

The dynamics given by the Eq. (1) was numerically in-
vestigated by a 4th-order Runge–Kutta algorithm at a
time step δt = 0.01. The initial sufficient long tran-
sient is discarded, after which all quantities of interest
were measured. Throughout the work, we let N = 10000,

130504-2
Di Yuan et al., Front. Phys. 13(3), 130504 (2018)



Research article

K− = −1.0, K+ = 1.5, a = 0.01, and γ = 0.05 unless
specified. Initially, the phase of each oscillator was ran-
domly chosen from [0, 2π].

We started by considering the dynamics of Eq. (1) de-
pending on the fraction of conformists p. To do this,
we investigated the variation of amplitudes of the order
parameter R, R+, and R− against p. The results are
presented in Fig. 1. With the increase of p, the fraction
of conformists increases, the system presents several dif-
ferent regimes for different dynamical states as shown in
Figure 1. Different dynamics may be distinguished by
the phase distributions of oscillators. We investigated
the threshold of p for the different synchronized states.
Fig. 1 reveals that synchronized clusters are established
once p becomes nonzero. The blurred π state is stable in
the range of p < 0.354, corresponding to nonuniformly
distributed populations of conformists and contrarians
on the unit circle. The time evolutions of the phase dis-
tributions in Figs. 2(a) and (d) for p = 0.2 show that
conformists and contrarians form two partially synchro-
nized clusters, respectively. The peaks of their phase
distributions are blurred and are separated from one an-
other by an angle of π. Here, the political interpretation
is that two main factions have emerged, in diametric op-
position to each other. They could lie anywhere on the
political spectrum, but once they emerge, the contrarians
oppose the conformists’ view. In the range of p > 0.596,

the π state is stable in which conformists and contrari-
ans converge to two completely synchronized states. For
p = 0.9, as seen from Figs. 2(c) and (f), the conformists
and contrarians form two globally synchronized clusters
from the time evolutions of the phase distributions. The
phase distributions have one peak each for conformists
and contrarians and the two distributions of phases are
stationary. These peaks of the phase distributions are
separated from each other by an angle of π. Figures 2(b)
and (e) show that in the range 0.415 < p < 0.596, the

Fig. 1 Amplitudes of the order parameter R (square sym-
bol), R− (triangle symbol), and R+ (circle symbol) against
the fraction of conformists in the population p. Here K− =
−1.0, K+ = 1.5, a = 0.01, and γ = 0.05.

Fig. 2 Time evolutions of phase distributions in subpopulations of conformists (a–c) and contrarians (d–f). The colors
in (a)–(f) represent the number of oscillators, and the specific number can be identified from the color bars. (a, d) p = 0.2;
(b, e) p = 0.5; (c, f) p = 0.9. Here K− = −1.0, K+ = 1.5, a = 0.01, and γ = 0.05.

Di Yuan et al., Front. Phys. 13(3), 130504 (2018)
130504-3



Research article

dynamical behavior consists of traveling wave states for
p = 0.5, the phase distributions of contrarians and con-
formists spontaneously travel along the phase axis always
maintaining a separation but not at the angle of π. Here,
the conformists are uniform in their views, although the
unified view keeps changing, periodically cycling through
all possible points of the political spectrum. Meanwhile,
the contrarians oppose them, but not completely diamet-
rically, and their opinions remain dispersed throughout.

We have distinguished several dynamical states by
means of investigations. However, it is worth pointing
out that there still exists another amusing periodic dy-
namics in Eq. (1). The dynamical states appear during
the transition between the blurred π states and travel-
ling wave states. In order to characterize the dynamics,
we considered the time evolutions of the phase distri-
butions for the conformists and contrarians which are
plotted in Figs. 3(a) and (b), respectively, for p = 0.40.
We all know that the phase distributions of both con-
formists [P+(ϕ)] and contrarians [P−(ϕ)] are stationary
for the π state while they travel at constant speed Ω
along the phase axis for a traveling wave state [24]. How-
ever, Figs. 3(a) and (b) show an entirely different state:

the phase distributions are neither stationary nor travel-
ing, instead they are oscillating in a confined space with
a constant amplitude and period. In order to investigate
the periodic dynamics further, we considered how the
conformists and contrarians organize themselves in the
oscillating states. In order to do it, we arranged all oscil-
lators according to their coupling strengths and natural
frequencies. If an oscillator i has its coupling strength
K+ and an oscillator j has the coupling strength K−,
then ni < nj regardless of their natural frequencies, here
ni and nj are the numbers of oscillators i and j, respec-
tively; ni < nj , if two oscillators have the same coupling
strength but the natural frequencies of oscillators relate
as ωi < ωj . The time evolution of oscillators’ phases is
shown in Fig. 3(c). We can clearly see that there ex-
ist several synchronous clusters, in which adjacent os-
cillators stay closely in phase and the phase of each os-
cillator presents periodic cycling with time. However,
Figs. 3(a), (b), and (c) show that the period of phase
evolution is same as that of the phase distributions of
both conformists and contrarians.

The periodic dynamics of the nonstationary state can
also be confirmed according to the evolutions of ampli-

Fig. 3 Time evolutions of (a, b) phase distributions for subpopulations of conformists and contrarians, respectively. (c)
Oscillators’ phases, in which the oscillators are ordered according to their coupling strengths and their natural frequencies.
Colors in (a)–(c) represent the number of oscillator; specific number can be identified from color bars. (d) Amplitudes R
(black circle symbol), R− (blue circle symbol) and R+ (red circle symbol), of order parameter. (e) Average phases Φ (black
square symbol), Φ− (blue triangle symbol) and Φ+ (red circle symbol). (f) Phase difference ∆Φ. ∆Φ oscillates around π
periodically, which refers to an oscillating π state. Here K− = −1.0, K+ = 1.5, a = 0.01, γ = 0.05, and p = 0.40.
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tudes, R and R±, of the order parameter. Figure 3(d)
shows the evolutions of amplitudes, R (black circle sym-
bol), R+ (red circle symbol) and R− (blue circle symbol),
of the order parameters. The evolutions of the average
phases Φ (black square symbol), Φ+ (red circle symbol)
and Φ− (blue triangle symbol) are shown in Fig. 3(e). It
is obvious that three amplitudes of order parameter and
the average phases oscillate periodically. Furthermore,
Fig. 3(f) presents the evolution of phase difference ∆Φ
between contrarians and conformists, which shows that
∆Φ oscillates around π with an amplitude A∆Φ of about
1.12 rad and with a period of about T = 54 time units
and its average over one period stays at π. In this sense,
we termed the periodic dynamical state as an oscillating
π state.

Before going further, it is necessary to point out that
the periodic oscillating π state is different from the oscil-
lating state reported earlier in literature. For instance,
Hansel et al. [34] found a slow periodic oscillation be-
tween two two-cluster states for the case of identical os-
cillators coupled through the first and the second Fourier
modes. Quasiperiodic, periodic and chaotic traveling
waves were observed recently in the subset of contrarians,
when all the conformists were synchronized, by Burylko
et al. [35]. Bick et al. [36] considered the coupled phase
oscillator system with multi-harmonic couplings. The
results showed that even symmetric systems of identical
oscillators may exhibit chaotic mean field oscillations. In
our study, the periodic oscillating π state was found in
the model (1). There are three typical characteristics
for the oscillating π state. In the first state, the phase
distributions of both contrarians and conformists do not
travel through the phase space, but they oscillate period-
ically in a limited region. In the second state, besides the
oscillations of amplitudes of the order parameter, the av-
erage phases Φ and Φ± are also oscillating periodically,
and the phase difference ∆Φ oscillates around π with a
constant period and amplitude. In the third state, ad-

jacent oscillators stay closely in phase and the phase of
each oscillator manifests periodic cycling with time. So,
we deem that the periodic oscillating π state found in
model (1) could be complementary to the previous work.

It is important to point out that the oscillating π state
bifurcates directly from the blurred π state through a
continuous transition. The oscillating π state will be-
come unstable when p is larger thana critical value. Fig-
ures 4(a) and (b) show the time evolutions of the aver-
age phases Φ (the black curve), Φ+ (the red curve), Φ−
(the blue curve), and the phase difference ∆Φ (the curve
in darkcyan) at p = 0.414 and p = 0.415, respectively.
It is obvious that the oscillating π state disappears at
p = 0.415 and instead, a traveling wave state shows up:
the phase difference ∆Φ does not oscillate around π any
more and the average phases Φ, Φ+ and Φ− run through
the entire range of 2π. Together with Fig. 1, Figs. 4(a)
and (b) suggest that the oscillating π state yields to a
traveling wave state through a discontinuous transition.

To characterize the dependence of the oscillating π
state and the traveling wave state on the parameters of
a and p, two quantities Ω and ξ were introduced. Ω is
the speed of the traveling wave, and ξ is the standard
deviation of instantaneous wave speed. The speed of the
traveling wave is defined as Ω = (1/N)

∑N
j=1⟨ϕ

g
j ⟩t, and

the standard deviation of instantaneous wave speed is
defined as ξ =

√
(1/m)

∑m
j=1(Ω

′ − Ω)2, where Ω′ is the
instantaneous wave speed and m is the total number of
period times. When Ω ̸= 0 and ξ = 0, the system of
coupled phase oscillators displayed a traveling wave be-
havior. When Ω ̸= 0 and ξ ̸= 0, the system displayed
the periodic oscillating π state. Ω, the speed of trav-
elling wave, and ξ, the standard deviation of instanta-
neous wave speed, are presented as functions of a and
p in Figs. 5(a) and (b), respectively. Figure 5(a) shows
that the traveling wave state occurs in a narrow win-
dow. With the increase of a from zero, the wave speed

Fig. 4 (a, b) Evolutions of average phases Φ (the curve in black), Φ+ (the curve in red), Φ− (the curve in blue) and the
phase difference ∆Φ (the curve in darkcyan) for p = 0.414 and p = 0.415, respectively. Here K− = −1.0, K+ = 1.5, a = 0.01,
and γ = 0.05.
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Fig. 5 The speed of travelling wave (Ω) in (a) and the standard deviation (ξ) of instantaneous wave speed in (b) as
functions of a and p. Here K− = −1.0, K+ = 1.5, and γ = 0.05.

decreases gradually. The area in which the π state os-
cillates increases gradually with increase in the value of
p, as shown in Fig. 5(b). By comparing Figs. 5(a) and
(b), we find that the oscillating π state is located at the
upper boundary of the travelling wave state. The above
results were obtained for K− = −1.0 and K+ = 1.5. For
other combinations of K− and K+, the dependence of
the oscillating π state and the traveling wave state on
the parameters a and p is similar to that in Fig. 5. Note
that at the intermediate value of p, different dynamics
of the system can be realized by changing the intensity
of pinning force a, which also reflects the important role
of the pinning force on the dynamics of the model (1).

4 Conclusions

In this work, we considered the generalized Kuramoto
model with an external pinning force in which oscilla-
tors with positive coupling strength are conformists, and
oscillators with negative coupling strength are contrari-
ans. We focused on a situation in which the natural fre-
quencies of oscillators follow a uniform probability den-
sity in the range [−γ, γ]. We explored the dynamics
of the model in detail and found multistable synchro-
nized states which can be characterized by phase dis-
tributions of oscillators. States such as traveling wave
states, blurred π state, and π state have already been
reported. Specifically, we found an interesting periodic
synchronous state that we termed as the oscillating π
state. In the oscillating π state, the phase distributions
of contrarians and conformists are not stationary but os-
cillating in a confined region and the phase difference
between contrarians and conformists oscillates around π
periodically. Furthermore, the oscillating π state may
bifurcate from blurred π state at low p or from a π state

at high p. We found that when the pinning force is weak
enough in comparison with the coupling strength Ki, the
interplay between the pinning force and the mixed inter-
action of the conformists and contrarians induces a pe-
culiar dynamic state namely, periodic oscillating π state
depending on the fraction of the conformists. When the
pinning force is absent, the system is found to display
three different states: incoherent state, traveling wave
state, and π state, depending on the conformist frac-
tion p. When the weak pinning enters the system, new
dynamic states such as the periodic oscillating π state,
which are main consequences of the pinning force in the
system, appear. When the pinning force is strong enough
only the π state (or fully pinned state) is found to exist.
We have presented the phase diagram of the model (1) in
the parameter space from which the parameter regimes
of the oscillating π state and the traveling wave state can
be obtained.
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