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The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix
method to consider the multiple scattering events of Dirac electrons off impurities. It has been found
that a strong impurity potential can significantly restructure the energy dispersion and the density of
states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the
pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical
conductivity by creating either an optical conductivity peak or double absorption jumps, depending on
the relative position of the impurity band and the Fermi level. More importantly, these conductivity
features appear in the forbidden region between the Drude and interband transition, completely or
partially filling the Pauli block region of optical response. The underlying physics is that the appearance
of resonance states as well as the broadening of the bands leads to a more complicated selection
rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden
region. These features in optical conductivity provide valuable information to understand the impurity
behaviors in 3D Dirac materials.
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1 Introduction

Three-dimensional (3D) Dirac materials, as new topolog-
ical states of matter extended from 2D Dirac materials
such as graphene and topological insulators, are drawing
great interest in condensed-matter physics. Experiments
have identified a class of materials, for example Cd3As2
[1], and Na3Bi [2], to be Dirac semimetals(DSMs). The
DSMs are the bulk analog of graphene and possess de-
generate Dirac cones in the spectrum around which topo-
logically protected 3D massless Dirac fermions can be
excited [3, 4]. Owing to their topological properties, the
band structure is inherently insensitive to weak pertur-
bations [5] and thus Dirac materials are good candidates
for electronic devices and quantum computing.

Optical conductivity has been extensively studied as a
powerful tool to provide insights into Dirac band disper-
sion or to probe the transport properties of new topolog-
ical materials [6–10]. Although various Dirac materials
share the same linear energy dispersion, the resulting op-

tical conductivity exhibits diverse features. For graphene
[11, 12], one of the most studied 2D Dirac materials, the
optical conductivity after the interband onset at twice
the value of the chemical potential 2|µF | is a constant
e2/(2h), independent of photon energy, which have been
confirmed by several experiments [13–15]. Instead, the
inter-band optical conductivity for 3D DSMs [16] is in a
linear relation to photon energy, which is in general con-
sidered as a “smoking gun” for 3D Dirac materials [6, 8]
to be uniquely identified from other phases. Breaking ei-
ther time-reversal symmetry or inversion symmetry will
drive the DSMs into a Weyl semimetal (WSM) phase,
which is manifested as the splitting of a pair of degener-
ate Weyl nodes with opposite chirality in momentum or
energy space [17, 18]. Interestingly, in optical response,
a double-step structure is presented as a unique feature
of inversion symmetry breaking Weyl materials. For ex-
ample, for the WSM TaAs [19], the optical response was
found to have a linear dependence below 30 meV, fol-
lowed by a second linear region between 30 meV and
125 meV with a lower slope, as compared with the first
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region.
In realistic materials, impurities or defections are al-

ways inevitably introduced and they play an important
role in the electron structure of materials. In the stud-
ies mentioned above, the optical conductivity is concen-
trated on the clean Dirac materials. To enable experi-
mental comparison, the impurity effect in Dirac materi-
als needs to be taken into account, where the impurities
are commonly modeled as different types of scattering
potentials [9, 16]. It has been reported that a constant
scattering potential will smear out the steplike structure
in the interband optical conductivity, while a scatter-
ing proportional to the density of states will modify the
slope of the interband background [16]. These studies
focused mainly on the case of a weak scattering poten-
tial, where the resulting self-energy can be treated with
a Born approximation. However, for a strong scatter-
ing potential, a full T-matrix approach is required [20].
Importantly, the strong scattering potential can heav-
ily disrupt the pristine Dirac spectrum by generating
low-energy resonance states in Weyl semimetals [21, 22]
or in topological insulators [23–25] which were also re-
garded as a mechanism to fill the energy gap created by
magnetic impurities [26, 27]. Nevertheless, though there
are many reports on the effect of impurity-induced res-
onance states on the Dirac spectrum [21–31], none of
them discussed the resonance-related electrical and opti-
cal transport properties. Very recently, we have studied
their effect on optical and thermoelectric properties on
the doped surface of topological insulators [32] and found
that the resonant state leads to interesting phenomena,
e.g., reversing the sign of the thermopower. Here, we
want to extend the study to doped 3D Dirac materials.

In this paper, we employ a T-matrix method to address
the impurity-induced resonant states in band structure
and the resulting optical response. It has been found that
the impurities significantly disturb the common longitu-
dinal optical conductivity by creating either an optical
conductivity peak or new absorption jump, depending on
the relative position of the impurity band and the Fermi
level. We discuss in detail how the resonance states re-
structure the electronic dispersion and form new tran-
sition channels. In Section 2, we exhibit the impurity-
induced self-energy and the impurity state in the frame-
work of a T-matrix method. In Section 3, by performing
a Kubo formalism, we calculate the optical conductivi-
ties and further discuss the different scenarios and the
impact of vertex correction. Finally, a brief summary is
given in Section 4.

2 Impurity state in energy spectrum

Before a discussion of dynamic conductance affected by
impurity states, we first discuss the formation of impu-

rity states in an energy spectrum. The DSM is described
by the minimal Hamiltonian,

Ĥ0 =
∑
k

c†k(~vFk · σ)ck, (1)

where c†k = (c†k,↑, c
†
k,↓) represents the electron creation

operator with momentum k = (kx, ky, kz), and σ =
(σx, σy, σz) denotes the vector of Pauli matrices for elec-
tron spins. The DSM Hamiltonian provides a simple lin-
ear energy dispersion εkγ = γ~vF |k| with γ = ± stand-
ing for electron and hole bands, respectively. The bare
Green’s function of Ĥ0 is G0(k, iω) = [iω − Ĥ0]

−1. We
are interested in how this pristine dispersion is changed
when the DSM bulk is doped. We consider the point-like
potential impurities randomly distributed at the position
rm in the form of Vim(r) =

∑
m Uδ(r − rm)σ0, where

σ0 is the identity matrix and U is the potential strength.
The impurity effect is taken into account by modifying
the self-energy of DSM Green’s function with a Dyson
equation:

G(k, iω) = G0(k, iω)[σ0 − Σ(iω)G0(k, iω)]−1. (2)

In leading order approximation which is extensively ap-
plied in Dirac materials [33, 34], the impurity induced
self-energy takes the form of

Σ(iω) = niU
2g0(iω), (3)

where g0(iω) =
∑

k G0(k, iω) and ni is the impurity con-
centration. Proceeding with the calculation, we obtain

g0(ω) =
−1

4π2(~vF )3

[
2Dcω + ω2ln

∣∣∣∣Dc − ω

Dc + ω

∣∣∣∣
+iπω2Θ(Dc − |ω|)

]
, (4)

where Θ(x) is a unitstep function and Dc is the cutoff
energy for the bandwidth. Notice that the self-energy in
Eq. (3) is a consequence of performing the impurity av-
erage over a random distribution, only suitable for weak
impurity scattering potential. For stronger potential, one
should employ the T-matrix approach [20, 23, 25, 26]

Σ(iω) = ni[1− Ug0(iω)]−1U. (5)

Beyond the simple treatment in Eq. (3), this approach
considers the multiple local scattering events of an elec-
tron around a certain impurity but neglects the correla-
tion between impurities, suitable for the diluted doping
with strong scattering potential. In fact, Eq. (3) is equiv-
alent to the first-order approximation of Eq. (5). Here,
we employ the T-matrix approach to explore the impu-
rity effect in Dirac semimetals. Substituting Eq. (5) to
Eq. (2), one can write the impurity-dressed Green’s func-
tion as

G(k, iω) = [iω − Σ(iω)]σ0 + ~vFk · σ
[iω − Σ(iω)]2 − (~vFk)2

. (6)
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Using this, the spectral function matrix in the spin space
is calculated by

A(k, ω) = − 1

π
Im[G(k, ω + i0+)], (7)

where we have analytically continued from Matsubara to
real frequencies with iω → ω + i0+.

The numerical results for the spectral function
Trσ[A(k, ω)] as functions of k and ω are plotted in Fig. 1
for different impurity strengths and concentrations. Fig-
ures 1(a)–(d) display the evolution of the DSM energy
band with the scalar potential U . Without impurity,
U = 0, as shown in Fig. 1(a), the spectral function is
simply a Dirac-delta function with the spectral weight
concentrated at ω = ±~vF |k|. Obviously, the energy
dispersion displays the behavior of a linear Dirac cone.
When impurities are introduced, there emerges an inter-
esting impurity band, whose existence is characterized by
the flattened and broadened part below the Dirac point.
As U is increased gradually, the impurity band moves
towards the Dirac point. The impurity band looks like
it splits the valence band into two parts, the upper part
having two flat tails spreading horizontally in k space
and the lower one developing into an arch. The split-
ting effect becomes visible for the resonance energy |ωr|
less than a critical energy E∗, which can be estimated ac-
cording to Ref. [29]: The total number of states within an
energy E of the Dirac point is: NE = NV

∫ E

−E
ρDOSdω,

where ρDOS = 1
4π2(~vF )3ω

2 is the density of the states,
N and V are the total number and volume of the lat-
tice sites. Setting NE∗ = niN equal to the approxi-
mate number of resonance states, one can easily find
E∗ = ~vF (6π2ni/V )

1
3 . With the increase of U , except

for the formation of an impurity band, the Dirac point
in the energy band structure is shifted upwards, leading
to a large electron-hole asymmetry. The reason is at-
tributed to a modification of the chemical potential by
Re[Σ(ω)]. For a fixed potential strength, we can tune
the impurity concentration ni to enhance the impurity
scattering. From Figs. 1 (e)–(h), one can find that ni can
broaden the impurity-band edges but never change the
central position of the impurity band. The formation of
the impurity band stems completely from the energy de-
pendence of the imaginary part of self-energy Im[Σ(ω)].

To clarify the formation for the impurity band, we
plot Im[Σ(ω)] in Fig. 2(a) for different impurity poten-
tials. For the undoped case, the self-energy Σ(ω) van-
ished. As U is added, the most prominent feature for
Im[Σ(ω)] is the energy dependence. With the increase
of U , Im[Σ(ω)] develops a dip which becomes remark-
able and quickly moves towards the Dirac point ω = 0.
By comparison, the impurity concentration ni only en-
hances the dip height but does not move the dip position.
By comparing Fig. 1 with Fig. 2, one can find that the
central position ωc of the impurity state corresponds to
that of the dip in Im[Σ(ω)], which is in turn determined
by the real part of the denominator of the T matrix, i.e.,
Re[1 − Ug(ωc)] = 0, from which we obtain ωc = − 2π2

UDc
.

Obviously, ωc is inversely proportional to the impurity
potential U , regardless of the impurity concentration ni,
that explains the above behaviors. If U < 0, the impu-
rity state will still emerge but in a conduction band.

The impurity state also can be clearly seen in
the density of states (DOS), defined as ρDOS =
− 1

π

∑
kIm[Tr[G(k, ω + i0+)]] =

∑
k Tr[A(k, ω)], which

sums the weight of Tr[A(k, ω)] for all k. We plot the cor-

Fig. 1 Evolution of energy dispersion, (a–d) for different impurity potentials U = 0, 0.3, 0.5, 1 with ni = 0.1, and
(e–h) for different impurity concentrations ni = 0.01, 0.05, 0.1, 0.2 with U = 1. Here ~vF = 1 and Dc = 30.
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Fig. 2 (a) Dependence of the imaginary part of self-energy
Im[Σ(ω)] and (b) DOS on potential U and impurity concen-
tration ni. The other parameters are the same in Fig. 1.

responding DOS as a function of ω in Fig. 2(b), which
exhibits a parabola line-shape, different from the lin-
ear DOS in the topological insulator [23]. With an in-
crease of U , the impurity band develops into a resonance
peak, which becomes sharper and higher when closing
to the Dirac point. A larger concentration of impurity
will widen the width and increase the peak height of
the resonance state. It is apparent that if we adopt the
self-energy as defined in Eq. (3), the total DOS is only
lifted upward, with no visible impurity band (or reso-
nant state) appearing. This scenario recovers the results
when the impurities are modeled as a constant scatter-
ing rate [16]. Therefore, it is expected that the presented
impurity band will remarkably impact the optical con-
ductivity, beyond the previous studies [9, 16].

3 Optical conductivity

In this section, we will study the influence of the im-
purity band on the longitudinal optical conductivity by
employing the standard procedure of Kubo formula. The
current correlation function is defined as Πxx(iΩn) =

−
∫ 1/(kBT )

0
dτeiΩnτ ⟨Tτ j

†
x(τ)jx(0)⟩, where τ is the imag-

inary time and Tτ is the time order operator. In the
ladder approximation [36], one can write the frequency-
dependent correlation function as

Πxx(iΩn)=e2kBT
∑
k,m

Tr[vxG(k, iωm)YxG(k, iΩn+iωm)],

(8)

where T is the temperature, ωm = (2m + 1)πkBT, and
the velocity operator is given by vx = ∂H0(k)/∂kx = σx.
In Eq. (8), Yx = σx if the vertex correction is neglected,
then

Yx = σx+niU
2
∑
k′

σxG(k′, iωm)YxG(k′, iΩn+ iωm), (9)

applies to the impurity dressed velocity vertex.

For convenience, we define

P (iωm, iΩn+iωm)=
∑
k

Tr[σxG(k, iωm)YxG(k, iΩn+iωm)].

(10)

After the summation over a Matsubara frequency iωm,
the correlation function reads

Πxx(iΩn) = −e2
∫ ∞

−∞

dω
2πif(ω)× [P (ω + i0+, ω + iΩn)

−P (ω − i0+, ω + iΩn)+P (ω−iΩn, ω+i0+)
−P (ω − iΩn, ω − i0+)], (11)

where f(ω) = [e(ω−µF )/(kBT ) + 1]−1 is the Fermi distri-
bution function. When one further performs the analyt-
ical continuation iΩn → Ω + i0+ and a variable change
ω → ω + Ω in the last two terms, the imaginary part of
the retarded correlation function can be derived as

Im[Πr
xx(Ω + i0+)] = e2

∫ ∞

−∞

dω
2π

[f(ω)− f(ω +Ω)]

×Re[P (ω − i0+, ω +Ω+ i0+)
−P (ω + i0+, ω +Ω+ i0+)], (12)

where
P (ω ∓ i0+, ω +Ω+ i0+) =

∑
k

Tr[σxG
A/R(k, ω)

×Y AR/RR
x GR(k, ω +Ω)],

(13)
with
Y AR/RR
x =σx

+niU
2
∑
k′

σxG
A/R(k′, ω)Y AR/RR

x GR(k′, ω+Ω).

(14)
The real part of the longitudinal optical conductivity is
calculated in terms of the retarded correlation function,

Reσxx(Ω) = − 1

Ω
Im{Πr

xx(Ω + i0+)}. (15)

With the definition of a spectral function A(k, ω) in
Eq. (7), we obtain the final expression for the longitudi-
nal optical conductivity without vertex correction as

Re[σxx(Ω)] =
e2π
Ω

∫ ∞

−∞
dω[f(ω)− f(ω +Ω)]

×
∑
k

Tr[σxA(k, ω)σxA(k, ω +Ω)]. (16)

The result is identical to the previous formula in Ref. [9],
in which it is derived starting from the bubble approx-
imation. Given that the impurity bandhas a significant
effect on the spectral function A(k, ω) as discussed in
Section 2, it will certainly modify the longitudinal opti-
cal conductivity remarkably.
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3.1 Influence of impurity states near the Fermi level

Now, we focus on the effect of impurity states on the
longitudinal optical conductivity, which is important for
understanding the behaviors of impurities. First, we con-
sider the case of the Fermi level near the position ωc

of the impurity band center. In Fig. 3(a), we plot the
optical conductivity Reσxx as a function of the photon
energy Ω for different impurity potentials U = 0, 0.7, 1,
and 1.3, The dotted line denotes the optical conductivity
for the clean case (U = 0), which exhibits a typical line
shape. Around Ω = 0, a sharp Dude peak emerges as a
characteristic of a metallic response when the Fermi en-
ergy crosses a band, which is a consequence of intraband
transitions. At Ω = 2|µF |, an absorption jump of the
optical conductivity is presented, which arises from the
interband transitions from valence to conduction bands,
as indicated by the red arrow in Fig. 3(b). After the on-
set of the interband absorption, Reσxx exhibits a linear
increase with Ω. One recalls that in 3D topological insu-
lators [37], a similar scenario appears but with the curve
tending to a saturated constant in a high frequency limit
Ω → ∞. Here, the linear increase with Ω is regarded as
a typical characteristic of three-dimensional Dirac ma-
terials as addressed in Refs. [9, 16]. Between the Drude
peak and absorption jump, there appears a Pauli blocked
region of the optical response, where the optical conduc-
tivity is heavily suppressed due to less electron-hole pair
excitations.

As U is introduced, as displayed in Fig. 3(a), the most
prominent feature is the appearance of a new optical
conductivity peak in the Pauli blocked region, which de-
pends nonmonotonously on the potential U . For a fixed
Fermi level µF above the impurity-band center ωc, one
can tune U to move ωc towards µF , accompanied by the
enhancement in the optical conductivity peak. The opti-
cal conductivity peak reaches the maximum for ωc = µF

(red solid line) and then reduces for ωc > µF (blue

dashed line). In this process, the enhanced weight of
the peak is reached by the significant reduction of the
weight of the Drude peak. This impurity-induced optical
conductivity peak is interesting, which has never been re-
ported for DSM materials in previous studies. More im-
portantly, the conductivity peak fills the Pauli blocked
region of the optical response by directly connecting the
contribution from both Drude and interband transitions.
Obviously, it stems from new channels of the creation of
electron-hole pairs.

To gain insight into the unusual behaviors, we illus-
trate the schematic diagram of optical transitions in the
band structure in Fig. 3(b), where ωc = µF is chosen.
For finite Ω, there exist two types of optical transitions,
namely, the transitions within the impurity band and
the interband transitions, respectively denoted by the
green and red arrows. A detailed analysis shows that
the photon frequency of the optical conductivity peak is
just equal to the energy difference between the impurity-
band upper and lower edges. This implies that the con-
ductivity peak contributed by the transitions from the
impurity-band lower to upper edges is at the same mo-
mentum k. For ωc = µF , the low energy peak reaches
the maximum mainly due to the generation of perfect
electron-hole pairs, leading to the highest optical con-
ductivity. In addition, one can see that for different
U , the peak position is almost unchanged. This fur-
ther verifies that the impurity optical conductivity peak
does stem from the transitions of impurity-band edges,
whose distance remains unchanged with U as indicated in
Figs. 1(b)–(d). Interestingly, the appearance of the im-
purity conductivity peak smears out the absorption jump
to divide the Drude and interband terms since the exis-
tence of a flat impurity band extends to the intraband
conductivity in the valence band to a finite frequency
and then mixes it with the interband transitions. Thus,
the impurity flat state fills the Pauli blocked region of
the optical response and renders the conductivity below

Fig. 3 Optical conductivity of disordered DSM as a function of photon energy Ω for (a) different impurity potentials
U with a fixed Fermi level µF = −0.7 and (c) different impurity concentrations ni with the Fermi level fixed at ωc. (b)
Schematic diagram of optical transitions of band structure with ωc = µF . In (a), the black dotted line is the clean case for
comparison. The other parameters are set as T = 0, ~vF = e = 1, and Dc = 30.
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Fig. 4 (a) Optical conductivity of disordered Dirac
semimetal as a function of photon energy Ω for different po-
tentials U and concentrations ni with Fermi level far away
from resonance states. (b) The schematic diagram corre-
sponding to optical transitions. Insert in (a) shows the vari-
ation of Drude peak with U and ni. The other parameters
are the same as in Fig. 3.

2|µF | and always finite.
In Fig. 3(c), we demonstrate how the impurity con-

centration influences the optical conductivity for a fixed
ωc = µF . With the increase of the impurity concentra-
tion ni = 0.05, 0.1, and 0.2, the location of the peak shifts
to high photon energy. This indicates that the optical
transitions from lower to upper edges of the impurity
band require more photon energy. The reason is that a
strong concentration broadens the width of the impurity
band, as depicted in Figs. 1(e)–(h). For Ω → ∞, all
curves tend to approach the same saturated value given
by the clean case.

3.2 Influence of impurity states away from
the Fermi level

In the following, we shift our focus to presenting the lon-
gitudinal optical conductivity Reσxx for the Fermi level
distant from the impurity states. The calculated results
are shown in Fig. 4(a) where the black dotted line for
U = 0 is plotted for reference. From Fig. 4(a), one can
see that in the Pauli block region, instead of the con-
ductivity peak, there is a new absorption jump before
the onset of the interband transitions. The position of
the new jump moves towards the low energy with an in-
crease of U , companied by the reduction of the platform
value. This is a consequence of the shifting of the im-
purity state towards the Dirac point where the DOS is
reduced. In order to comprehend the picture, we plot
the schematic diagram of optical transitions in Fig. 4(b),
where the DSM dispersion seems to split into lower and
upper branches according to the impurity resonant state.

Two types of main transitions contributing to the opti-
cal conductivity are denoted by the green and red arrows.
By comparing Figs. 4(a) and (b), it is easy to find that
while the high energy jump around Ω = 2|µF | corre-
sponds to the conventional interband transition, labeled
by the red arrow, the new jump is attributed to the flat
impurity band-assisted transition denoted by the green
arrow. The transition energy between the impurity state
and Fermi surface just matches the photon energy at the
new jump. Apart from this, the existence of the impu-
rity state also slightly modifies the conventional inter-
band jump at Ω = 2|µF | due to the valence band deviat-
ing from the pristine linear structure. After the step at
2|µF |, the conductivity still exhibits a linear dependency
on photon energy, recovering the undoped case.

In Fig. 4(a) we further compare the curves ni = 0.1
(red solid line) with ni = 0.2 (green dash-dotted line)
for U = 1. We found that with the increasing impurity
concentration ni, two jumps move respectively to a high
and low frequency, due to the broadening of the impu-
rity state as shown in Fig. 1. In the insert of Fig. 4(a),
we plot the dependence of the Drude conductivity at the
small Ω. With an increase in either impurity strength or
concentration, the Drude peak will continually decrease.
This is different from the impurity state near the Fermi
level as in Fig. 3, where the low-energy peak is due to
the intraband transition of the split valence band. Here
the low-energy step stems from the interband transition
between the newly formed impurity band and the con-
duction band. However, the common feature is that both
of them lift the Pauli block by providing new electron-
hole excitation with respect to the impurity band. By
contrast, in the previous studies [9, 16], the leading order
treatment for impurity could not lead to such a signifi-
cant effect.

3.3 Vertex correction

In this section, we consider the effect of vertex correc-
tion. Following Eq. (9), the vertex function Yx is easily
solved by assuming the common extensive form [38, 39]
Y

AR/RR
x = aA/Rσ0 + bA/Rσx + cA/Rσy + dA/Rσz. To

determine the parameters, we insert this extensive form
into Eq. (9) and arrive at

aA/R = cA/R = dA/R = 0,

bA/R =
1

1− ρU2IA/R
, (17)

with

IA/R =
2

3

∫
k′2dk′
(2π)2

[
3[ω − ΣA/R(ω)][ω +Ω− ΣR(ω +Ω)]− k′2

{[ω − ΣA/R(ω)]2 − k′2}{[ω +Ω− ΣR(ω +Ω)]2 − k′2}

]
. (18)
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Fig. 5 The vertex correction effect on the optical conductivity of disordered Dirac semimetal for (a–c) the impurity band
near Fermi level (ωc ≈ µF ) and for (d–f) the impurity band far away from the Fermi level (µF = 1). The black solid lines
are the results without vertex correction and the red dashed lines are results with vertex correction. The insets in (d–f) show
the variation of the Drude peak. The other parameters are the same in Fig. 3.

Consequently, the vertex correction isY AR/RR
x = bA/Rσx,

which reduces to be Y
AR/RR
x = σx in a clean system.

In Fig. 5, we compare the cases with (red dashed lines)
and without the vertex correction (black solid lines).
The upper panels (a)–(c) are for the impurity band near
the Fermi level while the lower panels (d)–(f) are for
|ωc − µF | ≫ 0. Whether the impurity band is near or
away from the Fermi level, the vertex correction always
heavily suppresses the slop in the linear optical conduc-
tivity for Ω → ∞. The suppressed size becomes large
with the increase of the impurity potential U and concen-
tration ni. The reduced weight of interband transitions
is transferred to the Drude peak as shown in the inset
of panels (d)–(f). By comparison, the upper panels and
the lower panels exhibit different responses to the vertex
correction in the intermediate region. In Figs. 5(a)–(c)
where ωc ≈ µF , the impurity absorption peak is insensi-
tive to the vertex correction while the reduced value of
the new plateau in Figs. 5(d)–(f) where |ωc − µF | ≫ 0,
is visible due to the vertex correction. Notice that al-
though the vertex correction has an important impact
on optical conductivity, it never qualitatively changes
the conductivity signature of the impurities.

4 Summary

We have investigated the strong impurity effect on the
energy band of 3D Dirac semimetal by employing a T-
matrix method and studied the corresponding response

in optical conductivity. We determined that a strong im-
purity potential can induce an impurity resonance state,
which significantly restructures the electronic dispersion
and DOS spectrum. In turn, the appearance of the im-
purity resonance state significantly disturbs the longitu-
dinal optical conductivity of clean 3D DSMs by exciting
electron-hole pairs in the Pauli block region of optical
response. As a consequence, the impurity state mani-
fests itself either as an optical conductivity peak or a
new absorption jump of optical conductivity, depending
on the relative distance between the impurity band and
the Fermi level. Thus, the conventional Pauli block re-
gion between the Drude and interband transition is com-
pletely or partially lifted, which has never been reported
in previous studies. The impurity effect is remarkable
for low photon energy and negligible for high photon en-
ergy where all optical conductivities tend to attain the
same value as that for a clean system, regardless of the
impurity parameters. Furthermore, we consider the ef-
fect of the vertex correction on the longitudinal optical
conductivity. It has been demonstrated that the vertex
correction can quantitatively suppress the optical con-
ductivity, but cannot change the conductivity signature
of impurities qualitatively. These features in optical con-
ductivity provide important information for understand-
ing the impurity behaviors in 3D Dirac materials.
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