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Agent-based modeling is a powerful simulation technique to understand the collective behavior and
microscopic interaction in complex financial systems. Recently, the concept for determining the key
parameters of agent-based models from empirical data instead of setting them artificially was sug-
gested. We first review several agent-based models and the new approaches to determine the key
model parameters from historical market data. Based on the agents’ behaviors with heterogeneous
personal preferences and interactions, these models are successful in explaining the microscopic origi-
nation of the temporal and spatial correlations of financial markets. We then present a novel paradigm
combining big-data analysis with agent-based modeling. Specifically, from internet query and stock
market data, we extract the information driving forces and develop an agent-based model to simulate
the dynamic behaviors of complex financial systems.
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1 Introduction

Complex financial systems typically have many-body in-
teractions. The interactions of multiple agents induce
various collective phenomena, such as abnormal distribu-
tions, temporal correlations, and sector structures [1–9].
Complex financial systems are also substantially influ-
enced by external information that may, for example,
drive the systems to non-stationary states, larger fluctu-
ations, or extreme events [10–17].

Complex financial systems are important examples of
open complex systems. Standard finance supposes that
investors have complete rationality, but the progress of
behavioral and experimental finance shows that investors
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in real life have behavioral and emotional differences [18,
19]. To be more specific, agents who are not fully rational
may have different personal preferences and interact with
each other differently in financial markets [9, 20–26].

Information is a leading factor in complex financial
systems. However, our understanding of external infor-
mation and its controlling effect in agent-based modeling
is rather limited [27–30]. In recent years, exploring the
scientific impact of online big-data has attracted much
attention of researchers from different fields. The mas-
sive new data sources resulting from human interactions
with the internet offer a better understanding of the pro-
found influence of external information on complex finan-
cial systems [31–39].

Agent-based modeling is a powerful simulation tech-
nique to understand the collective behavior in complex
financial systems [40–45]. More recently, the concept of
determining the key parameters of agent-based models
from empirical data instead of setting them artificially
was suggested [20]. A similar concept has also been ap-
plied to order-driven models, which were first proposed
by Mike and Farmer [46] and improved by Gu and Zhou
[47–50]. In this family of order-driven models, the pa-
rameters of order submissions and order cancellations
are determined using real-order book data. For compar-
ison, agent-based models focus more on the behaviors of
agents [40–45], while order-driven models are mainly in-
tended to explore the dynamics of order flows [46–50].
In Section 2, we review several agent-based models that
are based on agents’ behaviors with heterogeneous per-
sonal preferences and interactions. These models explore
the microscopic origination of the temporal and spatial
correlations of financial markets [9, 21, 24]. In Section 3,
we present a novel paradigm combining big-data analysis
with agent-based modeling [51].

2 New approaches in agent-based models

From the viewpoint of physicists, the dynamic behavior
and community structure of complex financial systems
can be characterized by temporal and spatial correla-
tion functions. Recently, several agent-based models are
proposed to explore the microscopic generation mecha-
nisms of temporal and spatial correlations [9, 21, 24].
These models are microscopic herding models, in which
the agents are linked with each other and trade in groups,
and, in particular, contain new approaches to multi-
agent interactions.

2.1 Basics of agent-based models

The stock price on day t is denoted as Y (t), and the log-
arithmic price return is R(t) = ln[Y (t)/Y (t − 1)]. For

comparison of different time series of returns, the nor-
malized return r(t) is introduced as

r(t) = [R(t)− ⟨R(t)⟩]/σ, (1)

where ⟨· · · ⟩ represents the average over time t, and
σ =

√
⟨R2(t)⟩ − ⟨R(t)⟩2 is the standard deviation of

R(t). In stock markets, the information for investors is
highly incomplete; therefore, an agent’s decision of buy,
sell, or hold is assumed to be random. In these models,
there is only one stock and N agents, and each agent
operates one share every day. On day t, each agent i
makes a trading decision ϕi(t) so that

ϕi(t) =


1, buy,
−1, sell,
0, hold,

(2)

and the probabilities of buy, sell, or hold decisions are
denoted as Pbuy(t), Psell(t), and Phold(t), respectively.
The price return R(t) is defined by the difference of the
demand and supply of the stock as

R(t) =

N∑
i=1

ϕi(t). (3)

For simplicity, the volatility is defined as the absolute
return |R(t)|. Other definitions yield similar results.

The investment horizon is introduced since agents’ de-
cisions are based on the previous stock performance of
different time horizons [9, 21, 24]. It has been found
that the relative portion γi of agents with an i-days in-
vestment horizon follows a power-law decay, γi ∝ i−η

with η = 1.12 [20]. The maximum investment horizon
is denoted as M . To describe the integrated investment
basis of all agents, a weighted average return R′(t) is
introduced as

R′(t) = k ·
M∑
i=1

γi i−1∑
j=0

R(t− j)

 , (4)

where k is a proportional coefficient. According to
Ref. [52], the investment horizons of investors range from
a few days to several months. For M between 50 and 500,
the results from simulations remain robust.

In complex financial systems, herding is one of the col-
lective behaviors, which arises when investors imitate the
decision of others rather than follow their own beliefs and
judgment. In other words, investors cluster into groups
when making decisions [53, 54]. Here, a herding degree,
D(t), is introduced to quantify the clustering degree of
the herding behavior as

D(t) = nA(t)/N, (5)

where nA(t) is the average number of agents in each clus-
ter on day t.
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2.2 Agent-based model with asymmetric trading and
herding

The negative and positive return-volatility correlations,
that is, the so-called leverage and anti-leverage effects,
are particularly important for the understanding of price
dynamics [1, 6, 55, 56]. Although various macroscopic
models have been proposed to describe the return-
volatility correlation, it is very important to understand
the correlations from the microscopic level. To study the
microscopic origination of the return-volatility correla-
tion in financial markets, two novel microscopic mecha-
nisms, that is, investors’ asymmetric trading and herd-
ing in bull and bear markets, are recently introduced in
agent-based modeling [21].

2.2.1 Two important behaviors of investors

(i) Asymmetric trading. An investor’s willingness to
trade is affected by the previous price returns, leading
the trading probability to be distinct in bull and bear
markets. The model thus assumes dynamic probabili-
ties for buying and selling, but with Pbuy(t) = Psell(t).
As the trading probability Ptrade(t) = Pbuy(t) +Psell(t),
its average over time is set to be ⟨Ptrade(t)⟩ = 2p.
We adopt the value of p estimated in Ref. [20], where
p = 0.0154. The market performance is defined to be
bullish if R′(t) > 0 and bearish if R′(t) < 0. The in-
vestors’ asymmetric trading in bull and bear markets
gives rise to the distinction between Ptrade(t+1)|R′(t)>0

and Ptrade(t+1)|R′(t)<0. Thus, Ptrade(t+1) should take
the following form:

Ptrade(t+ 1) =


2p · α, R′(t) > 0

2p, R′(t) = 0

2p · β, R′(t) < 0

. (6)

Here, α and β are asymmetric factors, and ⟨Ptrade(t)⟩ =
2p requires α+ β = 2; that is, α and β are not indepen-
dent.

(ii) Asymmetric herding. Herding, as a collective be-
havior in financial markets, describes the fact that in-
vestors form clusters when making decisions, and these
clusters can be large [53, 54]. However, the herding be-
havior in bull markets is not the same as that in bear
ones [57, 58].

In general, herding should be related to previous
volatilities [59, 60], and we set the average number of
agents in each cluster nA(t + 1) = |R′(t)|. Thus, the
herding degree on day t+ 1 is

D(t+ 1) = |R′(t)|/N. (7)

This herding degree is symmetric for R′(t) > 0 and
R′(t) < 0. However, investors’ herding behaviors in bull
and bear markets are asymmetric. Thus, D(t+1) should

be redefined as

D(t+ 1) = |R′(t)−∆R|/N. (8)

Here, ∆R is the degree of asymmetry. Every day, agents
in a cluster make the same trading decision, that is, deci-
sion to buy, sell, or hold with the same probability Pbuy,
Psell, or Phold.

2.2.2 Determination of α and ∆R

Data from six representative stock-market indices are
collected, that is, daily data for the S&P 500 Index,
Shanghai Index, Nikkei 225 Index, FTSE 100 Index,
HKSE Index, and DAX Index.

We assume that the trading probability is proportional
to the trading volume. Thus, the ratio of average trading
volumes for the bull and bear markets is

V+/V− =
Ptrade(t+ 1)|R′(t)>0

Ptrade(t+ 1)|R′(t)<0
= α/β. (9)

Together with the condition that α + β = 2, α is de-
termined from V+/V− for the six representative stock
market indices, as shown in Table 1.

From empirical analysis, the herding degrees of bull
and bear stock markets are not equal, that is, dbull ̸=
dbear. To quantize this asymmetry, a shifting ∆r is in-
troduced such that dbull[r

′(t)] = dbear[r
′(t)] with r′(t) =

r(t) + ∆r. From this definition, ∆r is derived to be

∆r =
1

2
[dbear(r(t))− dbull(r(t))]. (10)

Here, the herding degrees of bull markets (r(t) > 0) and
bear markets (r(t) < 0) are defined as the average |r(t)|
with weight V (t), that is,

dbull[r(t)] =
∑

t,r(t)>0

V (t) · r(t)/
∑

t,r(t)>0

V (t)

dbear[r(t)] =
∑

t,r(t)<0

V (t) · |r(t)|/
∑

t,r(t)<0

V (t)
. (11)

Then, shifting to the time series R(t), which equalizes
the herding degree, D(t + 1) = |R′(t) − ∆R|/N in bull
markets (R′(t) > 0) and bear markets (R′(t) < 0) is
computed in a similar manner. Table 1 shows the values
of ∆r and ∆R for different indices.

2.2.3 Simulation results

With α and ∆R determined for each index, the model
produces the time series of returns R(t). To describe how
past returns affect future volatilities, the return-volatility
correlation function L(t) is defined as

L(t) = ⟨r(t′) · |r(t′ + t)|2⟩/Z, (12)

Ting-Ting Chen, et al., Front. Phys. 12(6), 128905 (2017)
128905-3



Review article

Table 1 The values of α, ∆r and ∆R for the six indices.
∆R is computed from the linear relation between ∆r and ∆R
for all these indices.

Index α ∆r ∆R

S&P 500 1.01± 0.01 0.067± 0.007 3

Shanghai 1.09± 0.01 −0.043± 0.005 −2

Nikkei 225 1.01± 0.01 0.039± 0.005 2

FTSE 100 0.99± 0.01 0.028± 0.003 2

Hangseng 1.02± 0.02 0.032± 0.003 2

DAX 0.98± 0.02 0.013± 0.002 1

with Z = ⟨|r(t′)|2⟩2 [61]. Here, ⟨· · · ⟩ represents the
average over time t′. As displayed in Fig. 1, L(t)
calculated with the empirical data of the S&P 500 Index
shows negative values up to at least 15 days, and this is
the well-known leverage effect [1, 6, 61]. On the other
hand, L(t) for the Shanghai Index remains positive for
about 10 days. This is the so-called anti-leverage effect
[6, 55]. The return-volatility correlation function pro-
duced in the model is in agreement with that calculated
from empirical data on amplitude and duration for both
the S&P 500 and Shanghai indices. This is the first time
that the leverage and anti-leverage effects are simulated

with a microscopic model. As displayed in Fig. 2, L(t)
for the simulations is also in agreement with that for the
Nikkei, FTSE 100, HKSE, and DAX indices.

Fig. 1 The return-volatility correlation functions for the
S&P 500 and Shanghai indices, and for the corresponding
simulations. The S&P 500 and Shanghai indices are simu-
lated with (α,∆R) = (1.0, 3) and (α,∆R) = (1.1,−2), re-
spectively. Dashed lines show the exponential fits L(t) =
c · exp(−t/τ).

Fig. 2 The return-volatility correlation functions for the four indices and the corresponding simulations. The Nikkei 225,
FTSE 100, Hangseng, and DAX indices are simulated with (α,∆R) = (1.0, 2), (1.0, 2), (1.0, 2) and (1.0, 1), respectively.
Dashed lines show the exponential fits L(t) = c · exp(−t/τ).
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As shown in Fig. 4 and Fig. 5 of Ref. [21], the model
also produces volatility clustering and fat-tail distribu-
tion of returns [21]. The Hurst exponent of A(t) is cal-
culated to be 0.79, which also indicates the long-range
correlation of volatilities [62]. The auto-correlation func-
tion of returns fluctuates around zero. The power-law ex-
ponent of the simulated returns is estimated to be 2.96,
close to the so-called inverse cubic law [63–66].

2.3 Agent-based model with asymmetric trading
preference

The problem of whether and how volatilities affect the
price movement draws much attention. However, the
usual volatility-return correlation function, which is lo-
cal in time, typically fluctuates around zero. Recently,
a dynamic observable nonlocal in time was constructed
to explore the volatility-return correlation [9]. Strikingly,
the correlation is found to be non-zero with an amplitude
of a few percent and duration of over two weeks. This
result provides compelling evidence that past volatili-
ties nonlocal in time affect future returns. Alternatively,
this phenomenon could be also understood as the non-
stationary dynamic effect of complex financial systems.

To study the microscopic origin of the nonlocal
volatility-return correlation, an agent-based model is
constructed [9], in which a novel mechanism, that is,
the asymmetric trading preference in volatile and stable
markets, is introduced.

In financial markets, the market behaviors of buying
and selling are not always in balance [67]. Hence, Pbuy

and Psell are not always equal to each other. They are
affected by previous volatilities, and the more volatile
the market is, the more Pbuy differs from Psell.

For an agent with an i-days investment horizon, the
average volatility over previous i days is taken into ac-
count, which is defined as

vi(t) =
1

i

i∑
j=1

v(t− j + 1). (13)

The background volatility is considered to be vM (t),
with M being the maximum investment horizon. On
day t, the agent with an i-days investment horizon es-
timates the volatility of the market by comparing vi(t)
with vM (t). Therefore, the integrated perspective of all
agents on the recent market volatility is defined as

ξ(t) =
1

vM (t)

M∑
i=1

γivi(t). (14)

Thus, the probabilities of buying and selling are assumed
to be{

Pbuy(t+ 1) = p[c · ξ(t) + (1− c)],

Psell(t+ 1) = 2p− Pbuy(t+ 1).
(15)

Here, the parameter c measures the degree of agents’
asymmetric trading preference in volatile and stable mar-
kets. Compared with the model reviewed in Section 2.2, c
is the only additional parameter. In principle, c could be
determined from the trade and quote data of stock mar-
kets. Unfortunately, the data are currently not available
to us. Thus, the question of how to determine c from his-
torical market data remains unanswered. Nevertheless,
with this model, it is possible to simulate the non-zero
volatility-return correlation nonlocal in time [9].

2.4 Agent-based model with multi-level herding

The spatial structure of stock markets is explored
through the cross-correlations of individual stocks. With
the random matrix theory (RMT), for example, commu-
nities can be identified, which are usually associated with
business sectors in stock markets [7, 15, 68–72]. To simu-
late the sector structure with the agent-based model, we
newly introduce the multi-level herding mechanism [24].

2.4.1 Multi-level herding

In the model, there are N agents, n stocks, and nsec

sectors. Each sector contains n/nsec stocks. Every agent
holds only one stock, which is randomly chosen from the
n stocks. The logarithmic price return of the k-th stock
on day t is denoted by Rk(t). We assume that the agents’
herding behavior comprises the herding at stock, sector,
and market levels. The schematic diagram of the multi-
level herding is displayed in Fig. 3(a).

(i) Herding at the stock level. The agents in each in-
dividual stock first cluster into groups, which are called
I-groups. The herding degree DI quantifies the herding
behavior at this level. On day t, the herding degree for
the k-th stock is

DI
k(t) = |R′

k(t− 1)|/Nk. (16)

In the k-th stock, the number of I-groups is 1/DI
k(t),

and the agents randomly join one of the I-groups. After
the herding at the stock level, the number of I-groups
in the j-th sector and the whole market are denoted,
respectively, by N I

j (t) and N I
M (t) as follows:

N I
j (t) =

∑
k∈j

[1/DI
k(t)],

N I
M (t) =

∑
k

[1/DI
k(t)].

(17)

Here, k ∈ j represents stock k in sector j.
(ii) Herding at the sector level. Stocks in the same

sector share the characteristics of the sector. At this
level, agents’ herding behavior is driven by the price co-
movement of the sector; that is, the prices of stocks in
a sector tend to rise and fall simultaneously. Thus, the

Ting-Ting Chen, et al., Front. Phys. 12(6), 128905 (2017)
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Fig. 3 The schematic diagram of (a) the multi-level herding; (b) the procedure of simulation.

I-groups in the same sector would further form larger
groups, which are called S-groups. HM and Hj char-
acterize the price co-movement degrees for stocks in the
whole market and in sector j, respectively. For the j-th
sector, the average number of I-groups in each S-group
is set to be n · (Hj − HM ), which represents the pure
price co-movement of the sector. Therefore, the herding
degree is

DS
j (t) = n · (Hj −HM )/N I

j (t). (18)

In sector j, the number of S-groups is 1/DS
j (t), and each

I-group joins one of the S-groups.
(iii) Herding at the market level. Agents’ herding be-

havior at this level is driven by the price co-movement
of the entire market. The S-groups in different sectors
share common features of the whole market, and thus
they cluster into larger groups. These groups are called
M -groups. For the S-groups in sector j, the herding
degree at market level is

DM
j (t) = n ·HM/NM

j (t), (19)

and the number of M -groups is 1/DM
j (t). The total

number of M -groups in the market is the maximum of
1/DM

j (t) for different j. With all M -groups numbered,
an S-group in sector j joins one of the first 1/DM

j (t)
M -groups.

In the formation of S-groups, the I-groups in the same
stock tend not to join the same S-group, otherwise these
I-groups would have gathered together during the herd-
ing at the stock level. Similarly, in the formation of
M -groups, the S-groups in the same sector tend not to
join the same M -group.

After the herding for the three levels, all agents clus-
ter into M -groups. The agents in the same M -group
make the same trading decision ϕi(t) with the same
probability. Similar to the previous models [20, 21],
the buying and selling probabilities are equal, that is,
Pbuy = Psell = P , thus Phold = 1 − 2P . Here, P is

the buying or selling probability of an M -group, which
can be calculated from the daily trading probability p
for each agent and the average number of agents in an
M -group [24]. The return of the k-th stock is defined
as Rk(t) =

∑
i∈k ϕi(t). Here, i ∈ k represents agent i in

stock k.

2.4.2 Determination of HM and Hj

On each day t, according to the sign of rk(t), the stocks
are grouped into two market trends, that is, rising and
falling. The amplitudes of the rising and falling trends
on day t are defined as v+(t) and v−(t), respectively, as
follows:

v+(t) =
∑

i,ri(t)>0

r2i (t)/ns,

v−(t) =
∑

i,ri(t)<0

r2i (t)/ns.
(20)

Here, ns is the number of stocks in a sector, and ns = n
in the calculation of HM . The amplitude vd(t) of the
dominating trend and the amplitude vn(t) of the non-
dominating trend are{

vd(t) = max{v+(t), v−(t)},
vn(t) = min{v+(t), v−(t)}.

(21)

Stocks grouped into the dominating trend are denoted
as “dominating stocks”.

To characterize the price co-movement degrees for
stocks in the whole market and in sector j, the co-
movement degrees HM and Hj are computed as{

HM = ⟨ζ(t)⟩ ·
⟨
vd(t)− vn(t)

⟩∣∣
market ,

Hj = ⟨ζ(t)⟩ ·
⟨
vd(t)− vn(t)

⟩∣∣
sector j

.
(22)

Here, |market and |sector j represent the stocks in the whole
market and in the j-th sector, respectively. ζ(t) repre-
sents the similarity in the signs of the returns for different
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Table 2 The values of parameters HM and Hj for the
NYSE and HKSE.

HM H1 H2 H3 H4 H5

NYSE 0.363 0.491 0.414 0.438 0.431 0.546
HKSE 0.306 0.426 0.406 0.364 0.361 0.340

stocks, and it is defined as the percentage of the domi-
nating stocks; that is, ζ(t) = nd(t)/ns.

⟨
vd(t)− vn(t)

⟩
is the average total amplitude of the dominating stocks.

The co-movement degrees HM and Hj for the NYSE
and HKSE indices are shown in Table 2.

2.4.3 Simulation results

Estimated from historical market data and investment
reports, the buying or selling probability is P = 0.363
for the NYSE index and P = 0.317 for the HKSE index
[24]. With HM and Hj determined for the NYSE and
HKSE indices, respectively, the model produces the time
series Rk(t) of each stock. The schematic diagram of the
simulation procedure is displayed in Fig. 4(b).

To characterize the spatial structure, one may com-
pute the equal-time cross-correlation matrix Cij =
⟨ri(t)rj(t)⟩ [65, 71], where ⟨· · · ⟩ represents the average
over time t, and Cij measures the correlation between
the returns of the i-th and j-th stocks. The distribu-
tion of the eigenvalues is displayed for the NYSE and
HKSE indices in Fig. 4, and the bulk of the distribution
and three largest eigenvalues from the simulation are in
agreement with those from the empirical data.

The first, second, and third largest eigenvalues of C are
denoted by λ0, λ1, and λ2, respectively. λ0 represents

Fig. 4 The probability distribution of the eigenvalues of
the cross-correlation matrix C for the NYSE and HKSE, and
for the corresponding simulations. The inset shows the three
largest eigenvalue for the NYSE and HKSE, and for the cor-
responding simulations.

the market mode, that is, the price co-movement of the
entire market, and the components of the corresponding
eigenvector is rather uniform for all stocks. Other large
eigenvalues stand for the sector modes, and the eigen-
vector of these eigenvalues is dominated by the stocks in
a certain sector.

The empirical result of the NYSE index is displayed in
Fig. 5(a). The eigenvectors of λ1 and λ2 are dominated
by sector (5) and sector (1), respectively, with the com-
ponents significantly larger than those in other sectors.
These features are reproduced in our simulation, and the
results are shown in Fig. 5(b). For the HKSE index, the
eigenvectors of λ1 and λ2 are respectively dominated by
sector (1) and sector (2), and these features are also ob-
tained [24]. From the simulated returns, we also observe
volatility clustering.

3 Big data and agent-based modeling

Information is a leading factor in complex financial sys-
tems. In the past years, however, it has been difficult to
quantify the effect of external information on financial
systems due to lack of data. Our understanding of exter-
nal information and its controlling effect in agent-based
modeling is rather limited [27–30]. Fortunately, massive
new data sources have resulted from human interactions
with the internet in recent years. Therefore, we propose
a novel paradigm by combining big-data analysis with
agent-based modeling [51].

3.1 Information driving forces

Internet query data cannot only reflect the arrival of
news but also provide a proxy measurement of the infor-
mation gathering process of traders before their trading
decisions. We collect weekly Google search volumes and
corresponding historical market data for 108 components
of the S&P 500. In this section, we define an informa-
tion driving force and analyze how it drives the complex
financial system.

The states of external information, that is, Google
search volume Gk(t) for the k-th stock, may be com-
plicated [35, 39]. As a first approach, we simplify the
information states to two states as follows:

Sk(t) =

{
1, Gk(t) > Ḡk,

0, Gk(t) ≤ Ḡk.
(23)

Here, Ḡk is the mean value of Gk(t). Traders are more
influenced by the external information at Sk(t) = 1 and
less at Sk(t) = 0. The auto-correlation function of the
time series r(t′) is defined as

A(t) = [⟨|r(t′)||r(t+ t′)|⟩ − ⟨|r(t′)|⟩2]/A0, (24)

Ting-Ting Chen, et al., Front. Phys. 12(6), 128905 (2017)
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Fig. 5 The absolute values of the eigenvector components ui(λ) corresponding to the three largest eigenvalues for the
cross-correlation matrix C calculated from (a) the empirical data in the NYSE; (b) the simulated returns for the NYSE.
Stocks are arranged according to business sectors separated by dashed lines. (1) Basic Materials; (2) Consumer Goods;
(3) Industrial Goods; (4) Services; (5) Utility.

where A0 = ⟨|r(t′)|2⟩−⟨|r(t′)|⟩2 [21]. For each stock, the
auto-correlation functions of Gk(t

′), Sk(t
′), and Vk(t

′)
are computed and averaged over k. As displayed in
Fig. 6(a), the average auto-correlation functions of Gk(t

′)
and Sk(t

′) exhibit a power-law-like behavior in a certain
period of time. This is similar to that of Vk(t

′). On
the other hand, all three curves start deviating from the
power law at about t = 26 weeks, which could be con-
sidered as the correlating time τ .

To study how external information influences the trad-
ing behavior of traders, we calculate the moving time
averages of the trading volumes in different information
states. Here, we adopt the correlating time τ of the
Google search volumes as the length of the moving time
window. Denoting the moving time averages of the trad-
ing volumes at Sk(t

′) = 1 and Sk(t
′) = 0 by V 1

k (t) and
V 0
k (t), respectively, one can simply compute

V 1
k (t) = ⟨Vk(t

′)⟩τ |Sk(t)=1,

V 0
k (t) = ⟨Vk(t

′)⟩τ |Sk(t)=0, (25)

where ⟨· · ·⟩τ represents the average over the time window
t′ ∈ (t, t+τ). We then empirically define the information
driving force for the k-th stock on time t as follows:

F̃k(t) = V 1
k (t)/V

0
k (t)− 1. (26)

If F̃k(t) > 0, that is, V 1
k (t) > V 0

k (t), the traders trade
more frequently at state Sk(t) = 1, and the external in-
formation does drive the market to be more active. The
positive information driving forces reflect the informa-
tion gathering process of the traders before their trad-
ing decisions. If F̃k(t) < 0, that is, V 1

k (t) < V 0
k (t), the

traders trade less frequently at state Sk(t) = 1, and the
market is not driven to be more active. The negative
information driving forces may be related to ambiguous
or uncertain information that does not play a key role in

trading behavior. As displayed in Fig. 6(b), the proba-
bility distribution of F̃k(t) is obviously asymmetric with
a heavier positive tail. This result indicates that external
information usually drives the market to be more active,
which is consistent with the previous empirical findings
for internet query data or news [32, 35].

To study the information driving forces in different
market states, we compute the average information driv-
ing forces, F̃ bear and F̃ bull, for the bull and bear markets,
respectively. Thus, their difference is defined as

∆F̃ = (F̃ bear − F̃ bull)/⟨F̃ ⟩, (27)

where ⟨F̃ ⟩ is the mean value of F̃k(t) for all different t
and i. The result is ∆F̃ = 0.4; that is, the information
driving forces in the bear market are stronger than those
in the bull market. The asymmetric information driving
forces in the bull and bear markets indicate that traders
are more sensitive in the bear market.

3.2 Agent-based model driven by information driving
forces

3.2.1 Model framework

As an application, we propose an agent-based model
driven by the information driving force. We consider
a stock market composed of N agents, in which there is
only one stock, and each agent operates one share every
day. On day t, after all the agents have made their trad-
ing decision ϕi(t) according to Eq. (2), we can calculate
the price return according to Eq. (4). We still assume
P buy
i (t) = P sell

i (t), but the trading probability of the i-th
agent, Pi(t) = P buy

i (t) + P sell
i (t), evolves with time.

The information driving force of the i-th agent in this
section is denoted by Fi(t), which is distinguished from
the empirically-defined information driving force F̃k(t)

128905-8
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Fig. 6 (a) The average auto-correlation functions of the Google search volumes, trading volumes and the information
states of the S&P 500 components. A power-law fit is given by the dashed line. As shown in the inset, the curve is fitted
with an exponential law A(t) = c exp(−t/τ) with τ = 26. (b) The probability distribution of the information driving forces
for the S&P 500 components. An exponential fit P (F̃k) = a1 exp(−b1F̃k) with b1 = 3.5 for F̃k(t) > 0 is displayed with the
solid line. The dashed line corresponds to an exponential fit for F̃k(t) < 0, i.e., P (F̃k) = a2 exp(b2F̃k) with b2 = 10.5.

of the k-th stock in Section 3.1. We assume that Fi(t)
induces a dynamic fluctuation of the trading probability,

Pi(t) = E(1 + Fi(t))P (0), (28)

where P (0) is the initial value of P (t), and E is the
identity matrix. In our model, we set P (0) = 2p/(1+ F̄ )
to ensure the time average of the trading probabilities
for the i-th agent ⟨Pi(t)⟩ = 2p, where p = 0.0154 [20].
Here, F̄ is the mean value of information driving forces
Fi(t).

3.2.2 Information states

As stated in Section 3.1, there are two information states
for the market, that is, S(t) = 1 and S(t) = 0, and the
information driving force plays an important role only
at state S(t) = 1. Here, we omit the subscript k of
Sk(t), as the difference between different stocks is not
discussed in our model. The initial information state
is randomly set to be S(t) = 1 or S(t) = 0. Then, the
information state will flip between S(t) = 1 and S(t) = 0,
with an average transition probability pt. On average, an
information state will persist for 1/pt. Then, we assume
pt = 1/τ , where τ is the correlating time of the Google
search volume for the S&P 500 components.

For simplicity, we only consider the positive informa-
tion driving forces, since the negative ones are not dom-
inant. In Section 3.1, the probability distribution of the
empirically-defined information driving forces is fitted
with the exponential function Prob(F̃ ) ∼ exp(−b1F̃ ),
with b1 = 3.5. We suppose that Fi(t) of different i obeys
the same distribution. Therefore, the simplest form of
Fi(t) should be

Fi(t) = si(t)y(t), (29)

where the stochastic variable y(t) obeys the distribution

Prob(y), and si(t) is the state of the i-th agent. For each
time t, we set the states for a dominating percentage of
the agents to be si(t) = S(t) and those for others to be
si(t) = 1− S(t).

To describe the asymmetric trading behavior of agents
in the bull and bear markets, we complete the form of
Fi(t) as

Fi(t) = si(t)y(t)[1 + a · sgn(R′(t))], (30)

where a is the asymmetric coefficient, and R′(t) is the
weighted return defined in Eq. (4). We assume that
the asymmetric coefficient a = ∆F̃/2. Here, ∆F̃ is
the difference between the empirically-defined informa-
tion driving forces in the bull and bear markets, which
is computed from Eq. (27) in Section 3.1.

The herding behavior can be explained by the in-
formation dispersion [53, 73]. The agents behave simi-
larly because they are exposed to the same information.
Here, we assume that the agents with positive informa-
tion driving forces Fi(t) are divided into clusters. The
average number of agents in each cluster n(t) should
be related to the information driving force, and we set
n(t) = p−1

t ΣN
i=1Fi(t)/N .

3.2.3 Simulation results

With the number of agents set to be N = 104, we per-
form the numerical simulation and obtain the return time
series R(t).

Our model reproduces the statistical features of real
stock markets. For instance, the simulation is compared
with the daily price returns of the S&P 500 components.
To reduce the fluctuations, the calculations for the em-
pirical data are averaged over all stocks. The probability
distribution functions P (|r(t)|) of the absolute values of

Ting-Ting Chen, et al., Front. Phys. 12(6), 128905 (2017)
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Fig. 7 Comparison of the S&P 500 components and the
simulations: (a) The probability distribution functions of the
absolute values of returns. The auto-correlation functions
of volatilities are displayed in the inset. (b) The return-
volatility correlation functions.

returns are displayed in Fig. 7(a), and empirical fat tails
are observed. The volatility clustering is characterized
by the auto-correlation function of volatilities [3], which
is defined in Eq. (24). As shown in the inset of figure
Fig. 7(a), A(t) from the simulation is in agreement with
that from the empirical data.

To describe how past returns affect future volatili-
ties, we compute the return-volatility correlation func-
tion L(t) defined in Eq. (12). As displayed in Fig. 7(b),
L(t) from our simulation is consistent with that from
empirical data.

4 Summary

We first review several agent-based models and new ap-
proaches to determine the key model parameters from
historical market data. Based on the agents’ behav-
iors with heterogeneous personal preferences and inter-
actions, these models are successful in explaining the
microscopic origination of the temporal and spatial cor-
relations of financial markets. More specifically, asym-

metric trading and asymmetric herding are introduced
to agent-based modeling to understand the leverage and
anti-leverage effects. The asymmetric trading preference
in volatile and stable markets is proposed to explain the
nonlocal return-volatility correlation. Finally, an agent-
based model with multi-level herding is constructed to
simulate the sector structure.

We then present a novel paradigm combining big-
data analysis with agent-based modeling. From internet
query and stock market data, we extract the informa-
tion driving forces and develop an agent-based model to
simulate the dynamic behaviors of complex financial sys-
tems. The key parameters of the model are determined
from the statistical properties of the information driv-
ing forces. Our results provide a better understanding
of the controlling effect of the information driving forces
on complex financial systems. The ideology of the in-
formation driving force may be applied to agent-based
modeling of other open complex systems.
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