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We ascertain the modularity-like objective function whose optimization is equivalent to the maximum
likelihood in annotated networks. We demonstrate that the modularity-like objective function is a lin-
ear combination of modularity and conditional entropy. In contrast with statistical inference methods,
in our method, the influence of the metadata is adjustable; when its influence is strong enough, the
metadata can be recovered. Conversely, when it is weak, the detection may correspond to another
partition. Between the two, there is a transition. This paper provides a concept for expanding the
scope of modularity methods.
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1 Introduction

Community structure, a partition of nodes in which the
density of edges within groups is denser than that be-
tween groups, is an important large-scale structure in
complex networks, and has attracted significant atten-
tion in recent years [1–3]. Many methods have been pro-
posed for detecting community structure. Here, we focus
on two: statistical inference [4–6] and modularity-based
methods [7]. Statistical inference is flexible; it can be
used for different purposes, such as detecting generalized
communities [8] or estimating group number [9]. Addi-
tionally, statistical inference can be used for detecting
annotated networks, in which annotations or metadata
that describe the attributes of nodes (such as the age,
gender, or ethnicity of individuals in a social network)
accompany the network structure [10]. Newman–Girvan
modularity [7] is the most popular measure of the quality
of a partition. Several modifications have been proposed
for measuring different unannotated network structures,
including weighted [11], directed [12], bipartite [13] and
multiplex networks [14]. However, modularity in anno-
tated networks has not been defined. In the paper, we
focus on the objective function in these networks and its
relation to Newman–Girvan modularity.

The equivalence between modularity optimization and
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maximum likelihood [15, 16] may inspire us to our goal.
However, this derivation is for unannotated networks.
In the statistical inference method, the model of a net-
work with community structure is defined and then fit
to observed network data. In most cases, the model pa-
rameters are estimated by likelihood maximization; for
different considerations or data types, the likelihoods are
different. The likelihood in annotated networks differs
from (though is similar to) that of unannotated net-
works. Herein, we ascertain the modularity-like objective
function whose optimization is equivalent to the maxi-
mum likelihood in annotated networks. We demonstrate
that the modularity-like objective function is a linear
combination of modularity and conditional entropy. In
contrast with the statistical inference method, we set
a variable parameter that controls the influence of the
metadata. Our results, in both synthetic and real-world
networks, demonstrate that if the parameter is strong
enough, the metadata can be recovered; however, if it is
weak, our method may recover another partition that is
more evident, instead of the metadata. Between the two,
we find a transition from the more evident partition to
the metadata.

2 Method

To illuminate our method, we first provide a brief intro-
duction to the likelihood of statistical inference in an-
notated networks [10]. In this paper, we consider only
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the case in which the metadata is a classification or a
partition of nodes, x = {xi}. In this method, a degree-
corrected stochastic block model is defined to a network.
The probability, or likelihood, that the model generates
a particular network A and group assignment s with q
groups is

P (A, s|ΘΘΘ,ΓΓΓ ,x) = P (A|ΘΘΘ, s)P (s|ΓΓΓ ,x)

=
∏
i<j

p
Aij

ij (1− pij)
1−Aij

∏
i

γsixi , (1)

where γsx is the probability that a node is assigned to
group s given its metadata x; ΓΓΓ denotes the matrix of
parameters γsx; pij = kikjθsisj is the probability of node
i connecting to j, where ki (kj) is degree of node i (j) and
θst are parameters indicate the strength of connection
between groups; and ΘΘΘ denotes the matrix of parameters
θst.

The likelihood maximization is equivalent to the max-
imization of the logarithm

logP (A,s|ΘΘΘ,ΓΓΓ ,x)∼
∑
i

log γsixi+
1

2

∑
ij

Aij log(kikjθsisj )

+
1

2

∑
ij

log(1− kikjθsisj )

∼
∑
x

∑
s

Nsxlog Nsx

Nx
+
1

2

∑
ij

Aij log θsisj

−1

2

∑
ij

kikjθsisj , (2)

where Nsx is the number of nodes assigned to group s
with annotation x and Nx is the number of nodes with
annotation x. The first term is∑
x

∑
s

Nsx log Nsx

Nx
= N

∑
x

∑
s

p(s, x) log p(s, x)

p(x)

= N
∑
x

p(x)

(∑
s

p(s|x) log p(s|x)
)

= −NH(S|X), (3)

where N is the number of nodes in the network and
H(S|X) is the conditional entropy. The second and third
terms induce the modularity [16]. The planted partition
model [17] is a special case of the stochastic block model
in which the parameters θst describing the community
structure take only two different values:

θst =

{
θin if s = t
θout if s ̸= t

. (4)

Eq. (4) implies that

θst = (θin − θout)δst + θout, (5)
log θst = (log θin − log θout)δst + log θout. (6)

Thus, the second and third terms of Eq. (2) are [16]
1

2

∑
ij

Aij log θsisj −
1

2

∑
ij

kikjθsisj

∼M log θin
θout

1

2M

∑
ij

(
Aij−

2M(θin−θout)

log θin−log θout
kikj
2M

)
δsisj ,

(7)

in which some constants have been dropped. The max-
imization of Eq. (2) is equivalent to the maximization
of

1

2M

∑
ij

(
Aij−γ

kikj
2M

)
δsisj−αH(S|X) = Q(γ)−αH,

(8)

where γ = 2M(θin−θout)
log θin−log θout

and α = N
M(log θin−log θout)

,
which can be estimated. In this paper, we set γ = 1
and treat α as a variable parameter to control the bal-
ance between the structure and metadata. High values
of α drag the result to the metadata, though the prin-
ciple for selecting the appropriate value of α is still un-
known. We emphasize that our goal is to determine how
metadata can be recovered, so the number of groups of
detected partitions is equals to that of the metadata in
most case. Eq. (8) is the modularity-like objective func-
tion, which is a linear combination of modularity and
conditional entropy. We have demonstrated that the op-
timization of Eq. (8) is equivalent to the maximum likeli-
hood of Eq. (1). As the modularity-like objective function
is known, we use simulated annealing [18] for optimiza-
tion with a fixed q.

3 Results

Our first example is a network generated by a stochastic
block model (SBM). In SBM, nodes are randomly as-
signed to one of q groups and the probability that any
pair of nodes connects depends on the node member-
ships, pij = ωsisj . In this case, we set q = 4 and

ω =
4c

N(1 + ϵ1)(1 + ϵ2)


1 ϵ2 ϵ1 ϵ1ϵ2
ϵ2 1 ϵ1ϵ2 ϵ1
ϵ1 ϵ1ϵ2 1 ϵ2
ϵ1ϵ2 ϵ1 ϵ2 1

 ,

(9)

where c is the average degree in the network. It is also
a special case of a nested SBM [19], in which L (here
L = 2) community structures are coupled. In the first
partition s, original groups 1 and 2 are merged into one
group, and the remaining two original groups are merged
into another group. In partition s′, original groups 1 and
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3 are merged and the left original groups are merged. ϵ1
and ϵ2 denote the strength of the two planted structures.
In this case, we set N = 2000, c = 3, ϵ1 = 0.1, ϵ2 = 0.15
and metadata x = s′. s′ is much weaker than s, so that
with this metadata, the method in Ref. [10] recovers s
rather than s′. However, by adjusting the influence of
the metadata with parameter α, our method can recover
s in an appropriate range (see Fig. 1).

Figure 1 shows that the modularity-link function looks
like a broken line with three segments. There is a tran-
sition at αc = 0.052. Below this transition, α is small
enough that structure plays a leading role. Optimiza-
tion of the objective function finds the partition with
the highest modularity. In this case, Q(s) > Q(s′), so
s is recovered. Above αc, the value of overlaps (i.e., the
fraction of nodes correctly detected) with the two struc-
tures exchanges. If α is not high, both the structure and
metadata play important roles in detection. The meta-
data provides all information of s′, H(s′|x) = 0; while it
provides no information to s, H(s|x) is high. Thus, the
metadata drags the detection to it. However, the land-
scape has a smooth valley surrounding s′ [20]. Due to
fluctuation, there are some partitions that are correlated
with s′ (i.e., the Hamming distance to s′ is low) with
higher modularity-like objective functions than those of
s′. Optimization methods will recover one of them, so
the overlap between the detected partition and metadata
is high but not equal to 1. Only when α is high enough,
metadata plays crucial role and can be recovered abso-
lutely.

Our second example is a network generated by a
planted partition model, which is a special case of SBM
with edge probabilities pin and pout for within-group
and between-group edges. We generated node metadata
that matched the true planted assignments, but with an
error rate of ρ = 0.2 to indicate random noise. Without
metadata, or if α = 0, the approximate planted structure

Fig. 1 The objective functions and overlap of a network
generated by the SBM in Eq. (9), with N = 2000, c = 3,
ϵ1 = 0.1 and ϵ2 = 0.15.

Fig. 2 The objective functions and overlap of a network
generated by a planted partition model with N = 2000, q = 2,
c = 3, and ϵ = pout/pin = 0.2.

can be recovered. As α increases, detection is gradu-
ally dragged to the metadata (see Fig. 2). If α is high
enough, the metadata is recovered absolutely and the
overlap with the planted structure was 1−ρ. The transi-
tion in Fig. 2 is not as strong as that in Fig. 1; the overlap
with the planted structure in Fig. 2 changes continuously
at αc. The planted structure was recovered best at an
α value of about 0.34. In Ref. [10], the strength of the
metadata is fixed and may be not the best choice.

Our third example is a network of students drawn from
the US National Longitudinal Study of Adolescent to
Adult Health [21]. This network consists of a high school
(US grades 9 to 12) and its feeder middle school (grades 7
and 8). The annotations of high/middle school and eth-
nicity construct two possible partitions [see Figs. 3(a)
and (b)]. Between the two, the school is more evident
than ethnicity; thus, we treat ethnicity as the metadata.
The ethnicity annotation is so weak that with this meta-
data, the method in [10] recovers the school level rather
than ethnicity. However, with α, our method can recover
ethnicity in an appropriate range [see Figs. 3(d)–(f) and
Fig. 4]. Here, we use the normalized mutual informa-
tion (NMI) [24] rather than overlap to measure how the
detected partition matches the annotation, because the
detection may have a different group number than the
annotations.

4 Conclusion and discussion

In this paper, we ascertain the modularity-like objec-
tive function whose optimization is equivalent to the
maximum likelihood in annotated networks. We demon-
strate that the modularity-like objective function is a lin-
ear combination of modularity and conditional entropy,
with a variable scale α that indicates the influence of the
metadata. Unlike in the statistical inference method, our
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Fig. 3 The ground-truth and detected partitions in the network of students. (a) The classifications of middle (blue) and
high (red) school. (b) Ethnicity metadata: purple for White, green for Black, and yellow for others. (c) The detected
partition recovers high/middle school, q = 2, α = 0.1. (d)–(f) The detected partitions recover ethnicity. (d) q = 2, α = 0.3,
(e) q = 3, α = 0.5 and (f) q = 3, α = 0.75. The figures are drawn with the Gephi network visualization software [22] and
ForceAtlas2 layout algorithm [23].

Fig. 4 The objective functions and NMI of the network of students. (a) With detected group number q = 2. (b) q = 3.
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method allows us to adjust the influence of the meta-
data. Examples in synthetic and real-world networks
show that for an appropriate range of α (in which the
influence is sufficiently strong), the metadata can be re-
covered. However, when α is low, another partition may
be detected. Between the two values, there is a transition
phase.

The statistical inference method is flexible, and it can
be used to detect generalized communities [8] and es-
timate group number [9]. It is therefore interesting to
find the corresponding modularity-like objective func-
tions. In this paper, we optimized the modularity-like
objective function by simulated annealing. Other opti-
mization algorithms, such as belief propagation [15], are
left for future work.
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