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The collective behaviors of populations of coupled oscillators have attracted significant attention in
recent years. In this paper, an order parameter approach is proposed to study the low-dimensional
dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscil-
lators as a prototype system. The order parameter equation of star-linked phase oscillators can be
obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensem-
ble order parameter approach. Different solutions of the order parameter equation correspond to the
diverse collective states, and different bifurcations reveal various transitions among these collective
states. The properties of various transitions in the star-network model are revealed by using tools of
nonlinear dynamics such as time reversibility analysis and linear stability analysis.
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1 Introduction

Understanding the intrinsic microscopic mechanism em-
bedded in collective macroscopic behaviors of popula-
tions of coupled units on heterogeneous networks has be-
come the focus in a variety of fields, such as the biological
neurons circadian rhythm, chemical reacting cells, and
even society systems [1–8]. Numerous different emerging
macroscopic states/phases have been revealed, and vari-
ous non-equilibrium transitions among these states have
been observed and studied on heterogeneous networks
[9–19].

The transitions among the different collective states
on heterogeneous networks exhibit the typical feature
of multistability, i.e., these states may coexist for a
group of given parameters and depend on the choice of
initial conditions. This interesting behavior is closely
related to the first-order phase transition, and multi-
stability in the discontinuous transitions indicates the
competition of miscellaneous attractors and their corre-
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sponding basins of attraction in the phase space. For
a network of coupled oscillators, the microscopic de-
scription of the dynamics of oscillators should be made
in a high-dimensional phase space, which is very dif-
ficult to deal with. The key point in understanding
macroscopic transitions is the projection of the dynam-
ics from this high-dimensional space to a much lower-
dimensional subspace. This can be executed by intro-
ducing appropriate order parameters and building their
dynamical equations. Ott and Antonsen [20] proposed
an ansatz to project the infinite-dimensional dynamics
to a low-dimensional manifold called the Ott–Antonsen
(OA) manifold, which has been successfully applied to
systems composed of large numbers of oscillators. How-
ever, strictly speaking, the OA manifold analysis can-
not be applied to finite-oscillator systems. Watanabe
and Strogatz introduced the Möbius transformation for
finite-size systems with specific symmetries to obtain ex-
act three-dimensional dynamics [21, 22]; however, this
scheme cannot be extended to general finite systems.
The mechanism of the validity of the OA approach was
studied recently, and the ensemble order parameter ap-
proach is proposed, which extends the OA approach to
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more general cases such as finite-number of oscillators
and more general coupling forms [23].

Abrupt or explosive transition from the incoherent
state to synchronization may occur on networks if the
frequencies of the oscillators on the nodes are positively
correlated to the node’s degrees [13], which has been
observed numerically on scale-free networks and exper-
imentally in electronic circuits [24, 25]. The first-order
transition can be changed and more ways of transitions
can be observed by adjusting the phase shift among the
oscillators [26]. Numerous efforts have been made to
understand the mechanism of explosive synchronization
from different viewpoints such as the topological struc-
tures of networks, the coupling functions among nodes,
and so on [17, 25, 27–32].

An analytical understanding of the transitions among
the various synchrony states in heterogeneous networks is
very valuable. In addition to being the simplest, the star
topology is the key topology that can describe the hetero-
geneity property of complex networks such as scale-free
networks [33–36]. In this paper, the collective states and
the abundant transitions among these states on a star
network are studied by considering the effect of phase
shift among coupled oscillators [23, 26, 37–39]. The dy-
namics of star networks of oscillators are analytically
studied by building the equations of motion of the or-
der parameter for networks with a finite size, which ac-
complishes a great reduction from the microscopic high-
dimensional phase dynamics of coupled oscillators to a
macroscopic low-dimensional dynamics. Based on the
order parameter dynamics, we further reveal numerous
transitions among different collective states in this model
by using tools of nonlinear dynamics such as time re-
versibility analysis [15] and linear stability analysis. We
found three typical processes of the transitions to the
synchronous state, i.e., the transitions from the neutral
state, the in-phase state, or the splay state to the syn-
chronous state, and a continuous process of desynchro-
nization and a group of hybrid phase transitions that are
discontinuous with no hysteresis.

2 The Ott–Antonsen ansatz and the
Watanabe–Strogatz approach

We first illustrate the Ott–Antonsen ansatz [20] briefly
by analyzing the following class of identical oscillators
governed by the equations of motion

φ̇j = feiφj + g + f̄e−iφj , j = 1, · · · , N, (1)

where f is a smooth, complex-valued 2π-periodic func-
tion of the phases φ1, · · · , φN and the overbar denotes
complex conjugate, g is a real valued function since φ̇j is
real. By introducing the distribution of phases of oscil-

lators in the limit N −→ ∞, the evolution of the system
(1) is given by the continuity equation

∂ρ

∂t
+
∂(ρν)

∂ϕ
= 0, (2)

where ρ(ϕ, t) is the phase distribution function, and
ρ(ϕ, t)dϕ gives the fraction of phases that lie between
ϕ and ϕ+dϕ at time t. The velocity field is the Eulerian
version of Eq. (1),

ν(ϕ, t) = feiφ + g + f̄e−iφ. (3)

Suppose ρ is of the form

ρ(ϕ, t) =
1

2π

{
1 +

∞∑
n=1

[z̄(t)neinϕ + z(t)ne−inϕ]

}
(4)

for some unknown function z that is independent of ϕ.
Note that Eq. (4) is an algebraic rearrangement of the
usual form for the Poisson kernel

ρ(ϕ) =
1

2π

1− r2

1− 2r cos(ϕ− Φ) + r2
, (5)

where the complex number z can be expressed in the
complex plane as

z = reiΦ. (6)

The ansatz (4) defines a submanifold in the infinite-
dimensional space of the density function ρ. This Poisson
submanifold is two-dimensional and is parameterized by
the complex number z, or equivalently, by the polar co-
ordinates r and Φ. An intriguing point discovered by Ott
et al. [20] is the invariance of the Poisson submanifold,
i.e., if the initial phase density is a Poisson kernel, it al-
ways remains a Poisson kernel. This can be verified by
substituting the velocity field (3) and the ansatz (4) into
the continuity equation (2). It can be found that the
amplitude equations for each harmonic einϕ are simulta-
neously satisfied if and only if z(t) evolves according to

ż = i(fz2 + gz + f̄). (7)

This equation can be recast in a more physically mean-
ingful form in terms of the complex order parameter de-
fined as the centroid of the phases ϕ regarded as points
eiϕ on the unit circle:

⟨eiϕ⟩ =
∫ 2π

0

eiϕρ(ϕ, t)dϕ. (8)

By substituting Eq. (4) into Eq. (8), it is seen that

z = ⟨eiϕ⟩ = reiΦ (9)

for all states on the Poisson submanifold. Thus, it is clear
that z represents the order parameter of the system, r
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is its modulus, and Φ is its mean phase. However, from
Ott–Antonsen ansatz, it cannot be determined whether
the governing equation Eq. (7) can be used for a system
with finite size.

For a finite number of oscillators N , the original mi-
croscopic dynamical state can be reduced to a macro-
scopic collective state by the Watanabe–Strogatz ap-
proach [21, 22], and the governing equations of the
system can be generated by the Möbius group action
[40, 41]. The class of identical oscillators is still gov-
erned by the equations of motion Eq. (1); therefore, the
oscillators’ phases φj(t) evolve according to the action of
the Möbius group on the complex unit cycle

eiφj(t) =Mt(eiθj ) (10)

for j = 1, . . . , N , where Mt is a one-parameter family of
the Möbius transformations and θj is a constant angle.
By parameterizing the one-parameter family of Möbius
transformations as

Mt(w) =
eiψw + η

1 + η̄eiψw
, (11)

where |η(t)| < 1 and ψ(t) ∈ R, and assuming that

wj = eiθj , (12)

we get

η̇ = i(fη2 + gη + f̄), (13a)
ψ̇ = fη + g + f̄ η̄. (13b)

With these new variables, the order parameter can be
rewritten as

z(t) =
1

N

N∑
j=1

eiψeiθj + η(t)

1 + η̄(t)eiψeiθj , (14)

Eqs. (13) and (14) can describe the system with ar-
bitrary initial conditions as η(0), ψ(0), and N constants
θj , 1 ≤ j ≤ N . The order parameter (14) could be sim-
plified further by choosing the constants

θj = 2π
j − 1

N
, 1 ≤ j ≤ N, (15)

with which, the order parameter (14) reads

z(t) = η(t)(1 + I), (16)

where I = (1 − |η(t)|−2)/[1 ± (eiψ η̄(t))−N ], “−” for the
case with even N and “+” for the case with odd N. For
large N , I ≪ 1, the order parameter could be approxi-
mated as

z(t) ≈ η(t), N ≫ 1. (17)

Based on the above analysis, the dynamics of the system
with finite size can be described by the same equation as
the governing equation (7), which is obtained from the
Ott–Antonsen ansatz for the system with infinite size.
Then, Eq. (7) can be used to explore the low-dimensional
collective behaviors of the system with finite size.

3 The Sakaguchi–Kuramoto model on star
networks: The order parameter equation

We started with a star network of coupled phase oscilla-
tors with nonzero phase shift as our working model. In
the star network with one hub and K leaves, the degree
of the leaves is ki = 1 (i = 1, . . . ,K) and the degree of the
hub is kh = K. By assuming that the natural frequen-
cies of the oscillators are proportional to their degrees,
the equations of motion for the hub and leaf nodes can
be written as

θ̇h = ωh + λ
K∑
j=1

sin(θj − θh − α),

θ̇j = ω + λ sin(θh − θj − α), 1 ≤ j ≤ K, (18)

where θh, θj , and ωh, ω are instantaneous phases and nat-
ural frequencies of the hub and leaf nodes respectively.
λ is the coupling strength. K is the number of leaf nodes
connected with this hub and α is the phase shift. The
effect of phase shift among the coupled oscillators has
been extensively investigated in recent years, while this
has been seldom discussed in the case of star networks
[14, 42]. Abundant collective dynamics appear in the
global coupled model in the presence of a finite phase
shift [14], where synchrony can decay, or incoherence can
regain its stability with increased coupling and multista-
bility between partially synchronized states, and/or the
incoherent state can appear in the globally coupled net-
work.

The coupled phase oscillator system with α = 0 of the
star network was originally designed to study the char-
acteristics of explosive synchronization [13]; however the
process of synchronization may be affected by the intro-
duction of phase shift [14]. By introducing the phase
differences between the hub and leaves φj = θh − θj ,
the phase dynamics of star networks can be transformed
to the following phase difference dynamics on an all-
connected network,

φ̇i = ∆ω − λ
K∑
j=1

sin(φj + α)− λ sin(φi − α), (19)

where 1 ≤ i ≤ K. We further define the order parameter
of the all-connected network to describe the degree of
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synchronization as

z(t) ≡ r(t)eiΦ(t) =
1

K

K∑
j=1

eiφj . (20)

The star network becomes globally synchronous if the
modulus r(t) = 1 and the mean phase Φ(t) = const.
If the modulus r(t) = 1 while the mean phase Φ(t) is
periodic, which corresponds to the state with φj(t) =
φ(t), all the leaf nodes are synchronous to each other
while they are asynchronous to the hub oscillator.

Eq. (19) can be rewritten as

φ̇j = feiφj + g + f̄e−iφj , j = 1, · · · ,K, (21)

where i denotes the imaginary unit, f = iλ
2

e−iα, and
g = ∆ω − λKr sin(Φ+ α).

For finite K, owing to the high topological symme-
try of the star network, the collective behaviors of the
system can be analyzed by deriving the low-dimensional
dynamical equations in terms of both the ensemble or-
der parameter approach [23] and the Watanabe–Strogatz
transformation [21, 22]. If the initial phases of the oscil-
lators are chosen as (15), we have the dynamical equation
for the order parameter z(t) as

ż = −λ
2

e−iαz2 + i[∆ω−λKr sin(Φ+α)]z+
λ

2
eiα, (22)

which is the OA result (18) in terms of the order pa-
rameter. Different solutions of Eq. (22) build corre-
spondences with diverse collective states of the coupled
oscillator system.

4 Collective dynamics of stationary states

In this section, we discuss the collective dynamics of the
star network in terms of Eq. (22). By setting z = x+ iy,
the order parameter dynamics in the x− y plane can be
described as

ẋ = λ

(
1

2
+K

)
cosαy2 − λ

2
cosαx2

+λ(K − 1) sinαxy −∆ωy +
λ

2
cosα,

ẏ = λ

(
1

2
−K

)
sinαx2 − λ

2
sinαy2

−λ(K + 1) cosαxy +∆ωx+
λ

2
sinα. (23)

The steady-state solutions are determined by setting ẋ =
0 and ẏ = 0, which results in four fixed points noted by

(xi, yi) with

x1,2 =
− sinα∆ω ±A sinα
λ[2K cos(2α) + 1]

,

y1,2 = −− cosα∆ω ±A cosα
λ[2K cos(2α) + 1]

,

x3,4 =
sinα
λ

+
sin(2α)

2 B ±K[ sin(2α)
2 B − sin(2α2)]

λ sinα[K2 + 2 cos(2α)K + 1]
,

y3,4 =
−∆ω(− cosα± sinαB −K cosα)

λ[K2 + 2 cos(2α)K + 1]
, (24)

where “+” represents the fixed points (x1,3, y1,3), “−”
represents the fixed points (x2,4, y2,4), and

A =
√
−2Kλ2 cos(2α)− λ2 +∆ω2,

B =
√
λ2 +K2λ2 + 2Kλ2 cos(2α)−∆ω2. (25)

The existence condition for the fixed points are deter-
mined by Eq. (25), where −2Kλ2 cos(2α)−λ2+∆ω2 ≥ 0,
and λ2+K2λ2+2Kλ2 cos(2α)−∆ω2 ≥ 0. For the fixed
points (x1,2, y1,2), the existence condition can be given
as

λ ≤ λ1 =
∆ω√

2K cos(2α) + 1
, (26)

and for the fixed points (x3,4, y3,4), the existence condi-
tion is

λ ≥ λ2 =
∆ω√

K2 + 2K cos(2α) + 1
. (27)

For the fixed points (x3,4, y3,4), there is an additional
natural restriction relation

x2 + y2 = 1, (28)

while for the fixed points (x1,2, y1,2), x2 + y2 may be
greater or lower than 1. The definition of z implies that
only those fixed points satisfying x2+ y2 ≤ 1 are reason-
able.

Linear stability analysis can be applied to the fixed
points (xi, yi), i = 1, 2, 3, 4 by computing the eigenvalues
of the 2 × 2 Jacobian matrix J of the fixed points with
elements

J11 = −λ cosαxi + λ(K − 1) sinαyi,
J12 = λ(1 + 2K) cosαyi + λ(K − 1) sinαxi −∆ω,

J21 = λ(1− 2K) sinαxi − λ(K + 1) cosαyi +∆ω,

J22 = −λ sinαyi − λ(K + 1) cosαxi. (29)

The eigenvalues of the Jacobian matrix are

β1,2 =
J11+J22 ±

√
(J11+J22)2−4(J11J22−J12J21)

2
.

(30)
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Table 1 The stability conditions of the four fixed points.

Fixed point Stability condition

(x1, y1) λ < λ̂f
c , α ∈ (α−

0 , 0)

λ > 0, α ∈ (−π/2, α−
0 )

(x2, y2) λ > λ+
sc, α ∈ (α+

0 , π/2)

(x3, y3) λ > λ−
sc, α ∈ (α−

0 , 0)

λ < λ+
sc, α ∈ (α+

0 , π/2)

(x4, y4) Always unstable

The stability conditions of the four fixed points are
summarized in Table 1, where the parameters in
the table are λ̂fc = ∆ω/

√
2K cos(2α) + 1, λ+sc =

−∆ω/[K cos(2α) + 1], λ−sc = ∆ω/[K cos(2α) + 1], α−
0 =

− arccos(−1/K)/2, α+
0 = arccos(−1/K)/2.

The fixed points of the order parameter equation are
related to the collective states of the coupled phase os-
cillators. The fixed points (x3,4, y3,4) with |z| = 1 corre-
spond to the synchronous state (SS) of the system, where
all the phase differences between the hub and leaf nodes
are constant and have the same value, as

φj(t) = const, 1 ≤ j ≤ K, (31)

implying the global synchronization of the hub and leaves
in a star network. The above stability analysis indicates
that the fixed point (x4, y4) corresponds to the unsta-
ble synchronous state and the fixed point (x3, y3) corre-
sponds to the stable synchronous state, and their stabil-
ity can be studied easily.

The fixed points (x1,2, y1,2) with the modulus |z| =√
x2 + y2 > 1 is unphysical, because the order parameter

z of the coupled oscillators is bounded by |z| ≤ 1. If
|z| < 1, the related collective state is called the splay
state (SPS) [11, 43], and the phase differences between
the hub and leaf nodes satisfy a function relation as

φj(t) = φ

(
t+

jT

K

)
, 1 ≤ j ≤ K (32)

with T the period of φ(t), as shown in Fig. 1(a). This
kind of state physically represents the collective state
where all the leaf oscillators in the star network are in
synchronous motion with a constant time shift.

5 Collective dynamics of time-dependent
states

Long-term solutions of the order parameter equation
contain not only the states given by fixed points, but also
the time-dependent states corresponding to the periodic
solutions. There are two periodic regimes: the regime

Fig. 1 (a) The time evolution of sinφj(t) with α = −0.4π,
λ = 2, j = 1, 2. (b) The Lyapunov exponents of the network
with α = 0.1π. (c) The time evolution of sin θi(t) with α =
0.1π, λ = 0.5, i = 1, · · · ,K. (d) The order parameter against
the coupling strength with different initial states for α = 0.
The size of the star network is N = 11.

0 < α < π/2 and λ < λec = λ2, and the critical line with
α = 0,±π/2:

5.1 The in-phase state

When λ < λec and 0 < α < π/2, as shown in Fig. 1(b),
the largest Lyapunov exponent is zero and the other ex-
ponents are negative, implying a stable limit-cycle solu-
tion. This solution can be conveniently found by trans-
forming the Eq. (22) to polar coordinates as z = reiΦ:

ṙ = −λ
2
(r2 − 1) cos(Φ+ α),

Φ̇ = −λ
2

(
r +

1

r

)
sin(Φ− α) + ∆ω − λKr sin(Φ+ α).

(33)

There is a limit cycle solution with r = 1 and peri-
odic phase Φ(t), which is called the in-phase state (IPS),
where all the phase differences between leaves and the
hub are the same and time dependent, i.e.,

φj(t) = φ(t), 1 ≤ j ≤ K. (34)

This state corresponds to the phases of all the leaf nodes
evolve synchronously, while they are not synchronous to
the hub, as shown in Fig. 1(c). In this case, the model
Eq. (18) is reduced to the case with K = 1 and the
stability of the state can be obtained by Floquet theory
for limit cycle as it is stable for 0 < α < π/2 and unstable
for −π/2 < α < 0.

Hong-Bin Chen, et al., Front. Phys. 12(6), 120504 (2017)
120504-5



Research article

5.2 The neutral state

The dynamics at α = 0,±π/2 when λ < λec are special
cases and correspond to the critical dynamical states of
the system, where the related fixed point is found to be
neutrally stable where Re(β1,2) = 0 and Im(β1,2) ̸= 0
in Eq. (30). In this case, there is a large class of crit-
ical states with the order parameter r determined by
the initial values of (x, y), and the long-term behavior
of z depend crucially on the initial phases, as shown in
Fig. 1(d). We call this state the neutral state(NS) [15],
and the corresponding fixed point is neutrally stable,
where all Lyapunov exponents of the fixed point are zero
when λ < λec, as shown in Fig. 2(a). The Kuramoto sys-
tem is dissipative [44]; therefore, the existence of a large
class of neutral states are counterintuitive, which implies
that the phase space of this state contains an integrable
Hamiltonian system family of periodic orbits, shown in
Fig. 2(b).

To understand the mechanism of these neutral states,
we resort to the analysis of the order parameter equations
(23). For the case of α = 0, Eq. (23) can be simplified to

ẋ = λ

(
K +

1

2

)
y2 − λ

2
x2 −∆ωy +

λ

2
,

ẏ = −λ(K + 1)xy +∆ωx. (35)

The fixed points are determined by setting ẋ = 0 and
ẏ = 0. When λ < λec only the fixed point (x1, y1)
exists inside the unit cycle in the plane as shown in
Fig. 2(b). The fixed point is neutrally stable, and all
the Lyapunov exponents of the neutral state with α = 0
are zero. If we define a time reversal transformation
as R : (t, x, y) 7→ (−t,−x, y), the dynamical equations
(35) remain invariant. Hence, they are called the time-
reversible dynamical system or the quasi-Hamiltonian
system [15]. This symmetry endows the system with
many interesting properties.

The time reversal transformation R can be resolved
into R = TW with T : t 7→ −t and W : (x, y) 7→ (−x, y).

Fig. 2 (a) The Lyapunov exponents of the network with
α = 0, N = 11. (b) Phase plane of Eq. (23) with ∆ω = 9,
K = 10, α = 0, λ = 0.1. Red lines are ẋ = 0, and green
lines are ẏ = 0. The intersection of ẋ = 0 and ẏ = 0 is fixed
point D. Trajectories with different initial values are marked
by “∗”.

Hence, the invariant set for W is the y axis with x =
0, y > 0. For any trajectory crossing this invariant set,
according to the time reversal symmetry, the forward
trajectory and the backward trajectory are symmetric.
If the forward trajectory evolves into an attractor, the
backward trajectory will evolve into the symmetric re-
peller of the system. Then, the attractor and the repeller
of the system will emerge in pairs. When the trajectory
crosses the invariant set more than once, the forward and
backward trajectories will coincide with each other, form-
ing the periodic solution for the system, which is called
the reversible trajectory [15]. For any reversible trajec-
tory, the Lyapunov exponents have the sign-symmetry
form and the volume of phase space in its vicinity are
conserved in the form of averages as shown in the nu-
merical simulations.

The order parameter plane of our system is bounded
by the unit circle with an invariant set as x = 0, y >
0. Therefore, the attractor and repeller emerge at the
same time, implying that if only one fixed point exists
in the plane, it is neither the attractor nor the repeller,
i.e.; the only fixed point is neutrally stable. If only one
neutrally stable fixed point exists in the plane, and the
trajectories are vagrant and must cross the invariant set
more than once, then those trajectories are closed and
periodic. This is what happens when α = 0 with the
region λ < λec as shown in Fig. 2(b). For α = 0 and
λ > λec, there is a coexisting region for the synchronous
and neutral states as the critical cases in the coexistence
region for the neutral and synchronous states.

All the above possible collective states are summa-
rized in the parameter space (α, λ) as a phase diagram
in Fig. 3 having the boundaries that were obtained an-
alytically from both the existence and stability condi-
tions. In Fig. 3, four regions of the phase shift α can
be identified. For the first region −π/2 < α < α−

0 ,
the splay state exists and is stable for any λ. With
the increase of coupling strength λ, the unstable syn-
chronous state exists above the threshold λ > λec. For
the second region α−

0 < α < 0, the splay state exists
and is stable within 0 < λ < λ̂fc , and the synchronous
state exists with λ > λec; however, it is unstable unless
λ > λ−sc. Obviously there exists a co-existing region for
the splay state and the synchronous state in the region
−α−

0 < α < 0, within the coupling interval λ−sc < λ < λ̂fc .
In the third region, where 0 < α < α+

0 , the splay state
is always unstable, the stable synchronous state emerges
as the coupling strength λ > λec. For the fourth region
α+
0 < α < π/2, the splay state always exists, however, it

is stable only when λ > λ+sc, and the stable synchronous
state only exists in the region λec < λ < λ+sc. The neu-
tral state exists as a particular case for the phase shift,
α = 0,±π/2, and the in-phase state is always stable
in the region 0 < α < π/2, within the coupling range
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Fig. 3 Phase diagram of the Sakaguchi–Kuramoto model.
Regimes SS, SPS and IPS are stable region for the syn-
chronous state, the splay state and the in-phase state respec-
tively. The stable region for the neutral state is too narrow
to plot with only α = 0,±π

2
. The coexistence regime of the

splay state and the synchronous state is plotted by shadow.

0 < λ < λec. The variety of states in the phase diagram
leads to various transitions among them.

6 Scenarios of synchronization transitions

The phase diagram shown in Fig. 3 presents a great vari-
ety of transitions among the different collective dynami-
cal states. It is observed that some of the states coexist
with each other at the same parameter. These coexisting
states may lead to abrupt transitions among them and
hysteresis behaviors, while the others lead to continuous
transitions.

6.1 Synchronization transition from the neutral state

We first investigated the synchronization process from
the neutral state to the synchronous state for α = 0. The
synchronization process when α = 0 is discontinuous,
which is known as the explosive synchronization, has at-
tracted significant attention recently [13]. It was shown
that by changing the coupling strength λ, this transition
is abrupt, and there is a hysteretic behavior at the on-
set of synchronization. λbc and λfc are the backward and
forward critical coupling strengths respectively, where
λbc = λ2 and λfc depends on the initial states as shown
in Fig. 4(a). The upper limit of λfc is denoted by λ̂fc . As
λ > λ̂fc , the synchronization state is globally attractive.
It is difficult to understand this process on the basis of
the self consistent method, especially for the hysteresis
behavior and coexisting region.

The critical coupling corresponds to the upper limit of
λfc , which can be determined as

λ̂fc =
∆ω√
2K + 1

. (36)

From the analytical curve and the simulation results
given in Fig. 4(b), it is clear that the results conform
with the curve.

In the bistable regime, as shown in Fig. 4(c), the null-
clines ẋ = 0 (the red lines) and ẏ = 0 (the green lines)
have four intersections labeled by A-D, where A is an at-
tractor, C is a repeller, and B and D are neurally stable.
Any orbit crossing the nullcline A-B-C will eventually fall
to A, and the others will hold the property as periodic
orbits. It is clear that the stable fixed point A corre-
sponds to the synchronous state. Moreover, the basin
for the neutral state can be calculated using an approx-
imation by the circle, which has its center at point D
and the radius equal to the length of the line B-D. As
λ increases, points D and B move closer to each other
and eventually collide at the critical coupling, as shown
in Fig. 4(d), and the synchronous state becomes globally
attractive.

6.2 Synchronization transition from the splay state

The synchronization process from the splay state to the
synchronous state for α−

0 < α < 0 is found to be discon-
tinuous. Numerical computations reveal that this kind
of transition is abrupt with hysteresis at the onset of syn-
chronization as shown in Fig. 5(a). The abrupt transition
implies that there are two critical coupling strengths λbc
and λfc , where λbc = λ−sc and λfc depend on the basin of
attraction. The upper limit of λfc can be determined by

Fig. 4 (a) The forward and backward continuation dia-
grams with α = 0, N = 11. (b) The upper limit of forward
critical coupling strength with α = 0 in Eq. (36). Phase plane
of Eq. (23) with ∆ω = 9, K = 10, α = 0, (c) λ = 1.5, (d)
λ = 1.9. Red lines are ẋ = 0, and green lines are ẏ = 0. The
intersections of ẋ = 0 and ẏ = 0 are fixed points A, B, C, D.
Trajectories with different initial values are marked by “∗”.

Hong-Bin Chen, et al., Front. Phys. 12(6), 120504 (2017)
120504-7



Research article

Fig. 5 (a) The forward and backward continuation dia-
grams with α = −0.2π,N = 11. (b) The upper limit of for-
ward critical coupling strength with α = −0.2π in Eq. (37).
Phase plane for ∆ω = 9, K = 10, α = −0.1π, (c) λ = 1.8,
(d) λ = 2.17. Red lines are ẋ = 0 and green lines are ẏ = 0.
The intersections of ẋ = 0 and ẏ = 0 are the fixed points A,
B, C, D. Trajectories with different initial values are marked
as “∗”.

analyzing the inverse saddle-node bifurcation as

ˆ
λfc =

∆ω√
2K cos(2α) + 1

. (37)

As shown in Fig. 5(b), the simulation results are consis-
tent with the analytical curve.

The dynamical manifestations of the discontinuous
transition from the splay state to the synchronous state
are shown in Figs. 5(c) and (d). Figure 5(c) exhibits
the coexistence of the splay state and the synchronous
state as the stable fixed points D and A respectively.
The basins of attraction of the splay state and the syn-
chronous state are separated by the saddle point B.
When the coupling λ increases, as shown in Fig. 5(d),
the saddle point B and the attractor D collide and dis-
appear via an inverse saddle-node bifurcation, and this
discontinuous transition makes the fixed point A corre-
spond to the synchronous state a global attractor.

6.3 Synchronization transition from the in-phase state

The route of synchronization from the in-phase state to
the synchronous state for α > 0 is shown in Fig. 6(a).
The critical coupling strength of this continuous transi-
tion λec is determined by Eq. (27). It can be found from
Fig. 6(b) that the simulation results agree well with the
analytical curve.

The dynamical manifestations of the transition from
the in-phase state to the synchronous state are shown in
Figs. 6(c) and (d). As shown in Fig. 6(c), the in-phase

state is a limit cycle in the order parameter plane. As λ
increases, the stable fixed point A corresponding to the
synchronous state emerges on the limit cycle. The tran-
sition from the in-phase state to the synchronous state
takes place continuously through a saddle-node bifurca-
tion, as shown in Fig. 6(d).

6.4 Scenario of desynchronization

In the region α+
0 < α < π

2 of the phase diagram 3, the
synchronous state is unstable when λ > λ+sc and the sta-
ble splay state emerges, which is contrary to our conven-
tional belief that the system will always be synchronous
if the coupling strength is large enough. The transition
is called desynchronization, and it is a continuous tran-
sition as shown in Fig. 7(a). The order parameter r de-
creases rapidly at the threshold and effective frequencies
of hub and leaf nodes are divided at the same coupling λ.
From the phase diagram, it can be seen that the route of
the de-synchronization is from the synchronous state to
the splay state. The threshold of de-synchronization is
λ+sc = −∆ω/[K cos(2α) + 1] as shown in Fig. 7(b); this
is consistent with the simulation results.

The dynamical manifestations of the continuous tran-
sition from the synchronous state to the splay state are
shown in Figs. 7(c) and (d). From Fig. 7(c), which il-
lustrates the stable synchronous state of the system, it
is seen that when λ < λ+sc, all the orbits in the phase of

Fig. 6 (a) The forward continuation diagrams with α =
0.3π,N = 11. (b) The forward critical coupling strength
with α = 0.3π in Eq. (27). Phase plane for ∆ω = 9, K = 10,
α = 0.3π, (c) λ = 0.5, (d) λ = 1.5. Red lines are ẋ = 0 and
green lines are ẏ = 0. The intersections of ẋ = 0 and ẏ = 0
are the fixed points A, B, C, D. Trajectories with different
initial values are marked as “∗”.
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Fig. 7 (a) The order parameter against the coupling
strength with α = 0.3π,N = 11. (b) The critical coupling
strength λ+

sc with α = 0.3π. Phase plane for ∆ω = 9, K = 10,
α = 0.3π, (c) λ = 3, (d) λ = 5. Red lines are ẋ = 0 and
green lines are ẏ = 0. The intersections of ẋ = 0 and ẏ = 0
are the fixed points A, B, C, D. Trajectories with different
initial values are marked as “∗”.

the order parameter will eventually evolve to the fixed
point A. As λ increases and becomes larger than the crit-
ical coupling λ+sc, the two nullclines will intersect at the
four fixed points as shown in Fig. 7(d). The point A will
lose its stability and a new stable fixed point B, which
corresponds to the splay state, appears. This process of
transition from the synchronous state to the splay state
is continuously completed by this bifurcation.

7 Conclusion

To summarize, in this paper we studied the dynamics of
coupled oscillators on a star network with the Sakaguchi–
Kuramoto model using the dynamical order parameter
equation that can be obtained in terms of different ap-
proaches, e.g., the ensemble order parameter approach
and the Watanabe–Strogatz approach. The order pa-
rameter equation obtained for the star network can be
approximately described from the Ott–Antonsen ansatz,
which originates from the high symmetry of the topology.
The essential dynamical mechanisms of different scenar-
ios of synchronization can be understood analytically by
the reduction from a high-dimensional phase space to a
much lower-dimensional order parameter space without
any additional approximation. Different solutions of the
order parameter equation correspond to the various col-
lective states of the coupled oscillators, and the different

bifurcations reveal various transitions among those col-
lective states. These transition processes were revealed
in the plane of order parameter and their critical cou-
pling strengths were obtained analytically, and verified
by the simulation results.
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