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Quantum computing has undergone rapid development in recent years. Owing to limitations on scala-
bility, personal quantum computers still seem slightly unrealistic in the near future. The first practical
quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud
computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol
that allows computation to be performed on encrypted data without decrypting them, so it is well
suited to cloud computing. Here, we first applied homomorphic encryption on IBM’s cloud quantum
computer platform. In our experiments, we successfully implemented a quantum algorithm for linear
equations while protecting our privacy. This demonstration opens a feasible path to the next stage of
development of cloud quantum information technology.
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1 Introduction

In recent years, much progress has been made in devel-
oping quantum computing technologies [1–5]. Because
of the quantum superposition principle, quantum com-
puters can outperform their classical counterparts when
performing certain tasks, for example, Shor’s algorithm
[6–10], quantum simulation [11–14], solving linear sys-
tems of equations [15–17], and quantum machine learn-
ing [18, 19]. Therefore, the emergence of quantum com-
puters will change the world. Owing to high construction
and maintenance costs, the first quantum computers are
likely to be owned only by a small number of organiza-
tions. Fortunately, however, with cloud service, ordinary
users are also expected to be able to apply so as to use
these quantum computers.

As expected, IBM recently made a five-qubit quantum
computer publicly available over the cloud [20]. Based

*arXiv: 1612.02886.

on a five-qubit superconducting chip in a star geome-
try and a full Clifford algebra, the system can be repro-
grammed and allows for circuit design and simulation.
Through the classical internet, users can easily test and
execute quantum algorithms on an interactive platform
called Quantum Experience. Several experiments have
already been reported [21–23].

Future cloud quantum computing is likely to be avail-
able to users through an interface similar to IBM’s cloud
quantum computing platform, where users interact with
the platform through a website. In this case, the quan-
tum circuit, input data, and output data of users are
completely accessible to the server. While sharing cloud-
based computational resources for quantum computing,
we also need to consider privacy. Although a number
of protocols and experiments have been proposed to de-
velop secure cloud quantum computing [24–27], these
encryption methods are not suited to the current level
of technology, because input or output data cannot be
accessible to the servers on the website in the previous
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protocol.
In classical cryptography, homomorphic encryption

[28–30] is a scheme that allows certain operations to be
performed on encrypted data without decryption. Thus,
users can provide encrypted data to a remote server for
processing without having to reveal the plaintext. Al-
though the data are open to the server, the server can-
not reveal the real data because the data are encrypted.
After the server outputs the results to a user, the user
can recover the actual output data through his privacy
key. Therefore, homomorphic encryption has become a
practical encryption technique for cloud computing.

In this study, we designed a homomorphic encryption
protocol for cloud quantum computing, which is suit-
able for IBM’s cloud server. On the basis of the basic
quantum gates provided by the server, we developed a
series of construction methods for various operations. Fi-
nally, we successfully implemented a quantum algorithm
for linear equations on IBM’s cloud server while protect-
ing our privacy. This work will hopefully motivate more
people to get involved in this field, because this study is
the first to consider the security of users’ data on IBM’s
cloud server and can provide guidance for future large-
scale cloud quantum computing.

2 Methods

To solve linear equations on a quantum computer, we
employ the quantum algorithm proposed by Harrow et
al. [15], which can provide an exponential speedup over
existing classical algorithms. Given a matrix A and a
vector b, we aim to solve the equations Ax = b. To
convert the problem to a quantum version, we rescale
x and b to ∥x∥ = ∥b∥ = 1. Thus, we can encode the
problem as

A|x⟩ = |b⟩. (1)

Denote {|ui⟩} and {λi} as the eigenbasis and eigen-
values of matrix A, respectively. The input state |b⟩
can be expanded in the eigenbasis of A as |b⟩ =

∑N
i=1 βi|ui⟩, where βi = ⟨ui|b⟩. To seek the solution

|x⟩ = A−1|b⟩/||A−1|b⟩||, the algorithm can be decom-
posed into three main steps (see Fig. 1).

In the first step, phase estimation is applied to the
transformation of |b⟩|0⟩⊗n into

∑N
i=1 βi|ui⟩|λi⟩, where

|0⟩⊗n is the eigenvalue register of n qubits, and eigenval-
ues |λi⟩ are stored in the eigenvalue register after phase
estimation.

In the second step, the map |λi⟩ → λi
−1|λi⟩ is im-

plemented to extract the eigenvalues of A−1. By imple-
menting a controlled R(λ−1) rotation on an additional
ancilla qubit initially in the state |0⟩, we can transform
the system to

N∑
i=1

βi|ui⟩|λi⟩

(√
1− C2

λ2
i

|0⟩+ C

λi
|1⟩

)
. (2)

The final step is to implement inverse phase estimation
to disentangle the eigenvalue register to |0⟩⊗n. Then, we
have

N∑
i=1

βi|ui⟩

(√
1− C2

λ2
i

|0⟩+ C

λi
|1⟩

)
. (3)

After measuring and postselecting the ancillary qubit
of |1⟩, we will obtain an output state

∑N
i=1 C(βi/λi)|ui⟩,

which is proportional to our expected result state |x⟩.
To delegate the task of solving linear equations to

IBM’s cloud quantum computing platform, one can di-
rectly encode the quantum circuit on the servers with-
out considering security. This is equivalent to sending
the cloud server the matrix A and vector b directly.
However, when security is required, this approach is
no longer feasible. Inspired by homomorphic encryp-
tion (see Fig. 2), we can compile a homomorphically en-
crypted version of the algorithm.

To implement homomorphic encryption, we must en-
sure that the operations of the server and the encryption
scheme of the user meet the following conditions:

f(E(x)) = E(f(x)), (4)

Fig. 1 Quantum circuit for solving systems of linear equations. The circuit of the original quantum algorithm. In the
circuit, U =

∑T−1
k=0 |k⟩⟨k| ⊗ eiAkt0/T , H is the Hadamard gate. FT is the Fourier transformation and FT † is the inverse

Fourier transformation. The output |x⟩ is obtained when the ancilla is detected as |1⟩.
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Fig. 2 The homomorphic encryption scheme. User encrypt the data using privacy key before sending it to the cloud
quantum server. Server do not own the privacy key so that it cannot learn anything about the encrypted data. If the
operations of server are homomorphic operations, then server can utilize arbitrary computations on the encrypted data
without decrypting it. The output of the server remains in encrypted form, and can only be recovered by the user who have
the privacy key.

where f denotes the operations of the server, and E(x)
denotes the encryption of the message x. According to
the conditions of homomorphic encryption, we can design
the protocol as follows:

Step 1. For a linear equation Ax = b with n variants,
the user randomly chooses ai ∈ {0, 1} as private keys,
letting xi = yi + ai, and then substitutes it into the
linear equations

A(yi + ai) = b. (5)

The user rewrites the equations as Ayi = b′, where
b′ = b − Aai, and then sends A and b′ to the cloud
server.

Step 2. The server implements a quantum algorithm
to solve the equations received from the user and feeds
back the results r to the user.

Step 3. The user decrypts the results as

xi = ri + ai. (6)

Here, we analyze the entire process of the protocol.
Step 1 can be regarded as the encryption process. That
is, for ∀x, E(x) = x′, where x′ is the encryption of
message x. Let g(x′) and F be linear equations and
the algorithm for solving linear equations, respectively.
Then step 2 can be represented as F (g(x′)) → x′. Fi-
nally, step 3 is used to decrypt the results as D(x′) → x,
where D denotes the decryption operation; then the user
can obtain the actual results. Note that the homomor-
phic encryption process perfectly hides the input and
output of the user, and the server cannot obtain any of
the private data, because it deals only with encrypted
data.

3 Experimental realization

Here we present a proof-of-principle experiment of this
protocol on IBM’s cloud quantum computing platform.
Using one state qubit as the two-vector |b⟩, one eigen-
value qubit, and an ancilla qubit, we can use the pro-
tocol to solve systems of 2 × 2 linear equations. The
quantum circuit of the algorithm for 2 × 2 linear equa-
tions can be compiled into the circuit shown in Fig. 3(a)
[13]. A unitary R is introduced to diagonalize matrix A
as A = R†(λ1 0

0 λ2

)
R, where λi is the eigenvalue of A.

R(λ−1) rotation can be realized by using a controlled
Ry(θ), where Ry(θ) = exp(−iθσy/2), σy is the usual
Pauli matrix, and θ is controlled by the eigenvalue qubit
with the function θi = −2 arccos(λ1/λ2). The algorithm
succeeds with probability when the ancilla qubit is mea-
sured in the state |1⟩. In our implementation, we choose
the following two systems of linear equations:(

0.7 0.3
0.3 0.7

)
· x =

(
1/
√
2 + 0.7

1/
√
2 + 0.3

)
, (7)(

1.75 0.75
0.75 1.75

)
· x =

(
1/

√
2 + 1.75

−1/
√
2 + 0.75

)
. (8)

Without loss of generality, we set the private key of
the user to a1 = 1, a2 = 0. By substituting xi = yi + ai
into the linear equations, the user can perfectly hide his
input data, and the equations can be rewritten as(

0.7 0.3
0.3 0.7

)
· y =

(
1
1

)
/
√
2, (9)(

1.75 0.75
0.75 1.75

)
· y =

(
1
−1

)
/
√
2. (10)
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Fig. 3 The construction of the gates for solving Eqs. (9) and (10). (a) The optimised circuit for 2 × 2 system of linear
equations. R is a unitary operation that can diagonalizes the matrix A as A = R†(λ1 0

0 λ2

)
R, where λi is the eigenvalue of

A. (b) The construction of the controlled Ry(θ). (c) The R gate in (a) can be compiled to Hadamard gate for solving the
equations (9) and (10). (d) The construction of the Ry(θ/2) and Ry(−θ/2) in the (b).

Then the user can encode the circuit on IBM’s cloud
quantum computing platform. For both of these linear
equations, the R gate in Fig. 3(a) can be compiled into a
Hadamard gate [see Fig. 3(c)]. Note that IBM provides
only the CNOT gate as a two-qubit gate. To realize
the controlled Ry(θ) operation (θ is equal to −57.34◦ for
both of the linear equations), we decomposed the con-
trolled Ry(θ) gate into two CNOT gates, one Ry(θ/2)
gate and one Ry(−θ/2) gate. In our implementation, we
set the eigenvalue register as the central qubit of IBM’s
superconductor quantum chip. As the chip allows oper-
ation of CNOT gates only with the central qubit as the
target qubit in their star geometry, if we want to operate
CNOT gates with the central qubit as a control qubit,
we need to combine a CNOT gate and four Hadamard
gates. Then the controlled Ry(θ) gate can be compiled to
a combination of several Hadamard gates, CNOT gates,
the Ry(θ/2) gate, and the Ry(−θ/2) gate [see Fig. 3(b)].
Now the question becomes how to construct an R gate,
because only Clifford gates (X,Y, Z,H, S, S† and CNOT)
and two non-Clifford gates (T and T †) are available on
the platform. Adding almost any non-Clifford gate to
the Clifford gates is universal [31]. Therefore, by adding
the T gate to the Clifford gates, it is possible to reach all
the points of the Bloch sphere. A Monte Carlo simula-
tion indicates that the more T gates our circuit has, the
more densely we can cover the Bloch sphere with states
we can reach. Figure 4 depicts the states attainable by
adding at most 1, 3, 5, and 7 T gates to the Clifford
gates.

In Fig. 4, the red dot is the Ry(θ/2) operation we
desired. On the basis of the results of the numerical
simulation, we can approximate the Ry(θ/2) gate by
the gate RS , which is a combination of seven T gates
and seven Hadamard gates [see Fig. 3(d)]. To char-
acterize its accuracy, we compute the similarity F =
1/2 · Tr(UidealUsimu) as 0.998, where Uideal is the ideal
unitary operation Ry(θ/2), and Usimu is the simulated
unitary operation RS , indicating that our simulated uni-
tary operation is very similar to the ideal operation
Ry(θ/2). Through the red dot (Ry(θ/2) operation) and
the purple dot (simulated operation RS) in Fig. 4(d), it
is more intuitive that these two dots are very close. At
this point, we can compile the full circuit for solving the
two equations on the IBM servers.

4 Results

Measuring the first qubit of the circuit in Fig. 3(a) in
the Pauli Z,X, Y basis, we can obtain the solutions of
the equations. Figures 5(a) and (b) show both the ideal
(red bar) and experimentally obtained (blue bar) ex-
pectation values for each Pauli operator when the algo-
rithm is implemented to solve Eqs. (9) and (10), respec-
tively. We compute the fidelity of the output state as
F = ⟨x|ρexp|x⟩, where |x⟩ is the ideal output state, and
ρexp is the experimentally output state from the mea-
surement results of the Pauli Z,X, Y basis. The output
states have fidelities of 0.992(1) and 0.920(7) for Eqs. (9)
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Fig. 4 (a), (b), (c) and (d) are the Bloch sphere with the dots are the attainable states of U |0⟩, where U is the operation
by adding at most 1, 3, 5, and 7 T gates to the Clifford gates respectively. The red dot in (a), (b), (c), and (d) is the Ry(θ/2)
operation we desired for solving Eqs. (9) and (10). The purple dot in (d) is the simulated operation of Ry(θ/2).

Fig. 5 Experimental results. (a) and (b) are the measurement results of the output state of Eqs. (9) and (10). For
each equations, the ideal (red bar) and experimentally obtained (blue bar) expectation values of the Pauli Z, X, and Y are
presented. The error bars denote one standard deviation, deduced from propagated Poissonian counting statistics of the raw
detection events.

and (10), respectively, indicating that our experiments
yielded highly reliable results.

By postprocessing the results using a classical com-
puter, the user can easily decrypt the secret results to
obtain the actual results as {x1 = 1.7173, x2 = 0.6967}
and {x1 = 1.7227, x2 = 0.6911} for Eqs. (7) and (8), re-
spectively. Theoretical analysis shows that the error is
within 2% of the actual solution. Thus, the homomor-
phic encryption protocol is found to be successful.

5 Conclusion

In summary, we presented the first experimental demon-
stration of a homomorphic encryption protocol for solv-
ing linear equations on IBM’s cloud quantum computer
platform. The protocol is very suitable for current tech-
nology, which enables users to delegate the task of com-
putation by encoding the circuit on the website of quan-
tum servers while protecting their data. Even though
the current quantum computations on IBM’s server are
proof-of-principle demonstrations, the process can be
scaled to larger systems in the future. Ideally, this work

will provide a workable solution for future cloud quan-
tum computation.

Acknowledgements The authors acknowledge the use of IBM’s
Quantum Experience for this work. The views expressed are those
of the author and do not reflect the official policy or position
of IBM or the IBM Quantum Experience team. This project
was supported by the National Basic Research Program of China
(Grant No. 2013CB338002), National Natural Science Foundation
of China (Grant Nos. 11504430 and 61502526).

References and notes

1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien, Quantum computers,
Nature 464(7285), 45 (2010)

2. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu,
L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum
teleportation of multiple degrees of freedom of a single
photon, Nature 518(7540), 516 (2015)

3. J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jef-
frey, T. White, D. Sank, J. Mutus, B. Campbell, Y.

He-Liang Huang, et al., Front. Phys. 12(1), 120305 (2017)
120305-5

http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature14246
http://dx.doi.org/10.1038/nature14246
http://dx.doi.org/10.1038/nature14246
http://dx.doi.org/10.1038/nature14246
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270


Research article

Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C.
Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A.
Vainsencher, J. Wenner, A. N. Cleland, and J. M. Mar-
tinis, State preservation by repetitive error detection in
a superconducting quantum circuit, Nature 519(7541),
66 (2015)

4. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E.
Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y.
Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P.
O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Korotkov, A. N. Cleland, and J. M. Martinis, Supercon-
ducting quantum circuits at the surface code threshold
for fault tolerance, Nature 508(7497), 500 (2014)

5. R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A.
G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro,
A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C.
Quintana, P. Roushan, A. Vainsencher, J. Wenner, E.
Solano, and J. M. Martinis, Digital quantum simulation
of fermionic models with a superconducting circuitm,
Nature Communications 6, 7654 (2015)

6. P. W. Shor, Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum com-
puter, SIAM Rev. 41(2), 303 (1999)

7. L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yan-
noni, M. H. Sherwood, and I. L. Chuang, Experimental
realization of Shor’s quantum factoring algorithm us-
ing nuclear magnetic resonance, Nature 414(6866), 883
(2001)

8. C. Y. Lu, D. E. Browne, T. Yang, and J. W. Pan,
Demonstration of a compiled version of Shor’s quantum
factoring algorithm using photonic qubits, Phys. Rev.
Lett. 99(25), 250504 (2007)

9. E. Lucero, R. Barends, Y. Chen, J. Kelly, M.
Mariantoni, A. Megrant, P. O’Malley, D. Sank, A.
Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cle-
land, and J. M. Martinis, Computing prime factors with
a Josephson phase qubit quantum processor, Nat. Phys.
8(10), 719 (2012)

10. T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P.
Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R.
Blatt, Realization of a scalable Shor algorithm, Science
351(6277), 1068 (2016)

11. R. P. Feynman, Simulating physics with computers, Int.
J. Theor. Phys. 21(6–7), 467 (1982)

12. R. Blatt and C. Roos, Quantum simulations with
trapped ions, Nat. Phys. 8(4), 277 (2012)

13. A. A. Houck, H. E. Türeci, and J. Koch, On-chip
quantum simulation with superconducting circuits, Nat.
Phys. 8(4), 292 (2012)

14. A. Aspuru-Guzik and P. Walther, Photonic quantum
simulators, Nat. Phys. 8(4), 285 (2012)

15. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum
algorithm for linear systems of equations, Phys. Rev.
Lett. 103(15), 150502 (2009)

16. S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić
A. Aspuru-Guzik, and P. Walther, A two-qubit pho-
tonic quantum processor and its application to solving
systems of linear equations, Sci. Rep. 4, 6115 (2014)

17. X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M.
Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W.
Pan, Experimental quantum computing to solve systems
of linear equations, Phys. Rev. Lett. 110(23), 230501
(2013)

18. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum sup-
port vector machine for big data classification, Phys.
Rev. Lett. 113(13), 130503 (2014)

19. X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L.
Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Entanglement-
based machine learning on a quantum computer, Phys.
Rev. Lett. 114(11), 110504 (2015)

20. IBM, The quantum experience, http://www. re-
search.ibm.com/quantum/, 2016

21. S. J. Devitt, Performing quantum computing experi-
ments in the cloud, Phys. Rev. A 94, 032329 (2016)

22. D. Alsina and J. I. Latorre, Experimental test of Mermin
inequalities on a 5-qubit quantum computer, Phys. Rev.
A 94, 012314 (2016)

23. R. Rundle, T. Tilma, J. Samson, and M. Everitt, Quan-
tum state reconstruction made easy: A direct method
for tomography, arXiv: 1605.08922 (2016)

24. A. Broadbent, J. Fitzsimons, and E. Kashefi, Univer-
sal blind quantum computation, in: 2009 50th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS 2009), IEEE, 2009, pp 517–526

25. J. F. Fitzsimons and E. Kashefi, Unconditionally verifi-
able blind computation, arXiv: 1203.5217 (2012)

26. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons,
A. Zeilinger, and P. Walther, Demonstration of blind
quantum computing, Science 335(6066), 303 (2012)

27. S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther,
Experimental verification of quantum computation,
Nat. Phys. 9(11), 727 (2013)

28. R. L. Rivest, L. Adleman, and M. L. Dertouzos, On
data banks and privacy homomorphisms, Foundations
of Secure Computation 4, 169 (1978)

29. C. Gentry, A fully homomorphic encryption scheme,
Ph.D. thesis, Stanford University, 2009

30. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikun-
tanathan, in Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Springer, 2010, pp 24–43

31. M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information, Cambridge: Cambridge
University Press, 2010

120305-6
He-Liang Huang, et al., Front. Phys. 12(1), 120305 (2017)

http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1038/ncomms8654
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1038/nphys2385
http://dx.doi.org/10.1126/science.aad9480
http://dx.doi.org/10.1126/science.aad9480
http://dx.doi.org/10.1126/science.aad9480
http://dx.doi.org/10.1126/science.aad9480
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2253
http://dx.doi.org/10.1038/nphys2253
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1038/srep06115
http://dx.doi.org/10.1038/srep06115
http://dx.doi.org/10.1038/srep06115
http://dx.doi.org/10.1038/srep06115
http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://dx.doi.org/10.1103/PhysRevLett.110.230501
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1103/PhysRevA.94.032329
http://dx.doi.org/10.1103/PhysRevA.94.032329
http://dx.doi.org/10.1103/PhysRevA.94.012314
http://dx.doi.org/10.1103/PhysRevA.94.012314
http://dx.doi.org/10.1103/PhysRevA.94.012314
http://dx.doi.org/10.1126/science.1214707
http://dx.doi.org/10.1126/science.1214707
http://dx.doi.org/10.1126/science.1214707
http://dx.doi.org/10.1038/nphys2763
http://dx.doi.org/10.1038/nphys2763
http://dx.doi.org/10.1038/nphys2763

	Introduction
	Methods
	Experimental realization
	Results
	Conclusion
	References and notes

