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Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification
and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed
of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The
coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear
response. In the model studied here, the synchronization transition of the subunit is discontinuous
(explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus
and for a coupling strength slightly lower than the critical value leading to explosive synchronization,
the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From
physiological observations that subunits are themselves coupled together, we further propose a model
of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.
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1 Introduction

Sound transduction, the process whereby information
from incoming sound waves in the ear is processed and
transmitted to the brain, occurs in the cochlea. This
snail-shaped organ, located in the internal ear, i.e., the
innermost part of the vertebrate ear [1], is wound into a
coil with approximately two and a half turns. The cochlea
is characterized by a remarkable frequency-selective sen-
sitivity to mechanical stimulation; in humans, it can de-
tect sound intensities over 6 orders of magnitude with a
frequency selectivity as high as ∆ω/ω ≈ 0.2% [2]. The
central part of the cochlea is the organ of Corti, which
consists of three rows of outer hair cells and a single
row of inner hair cells [3]; the former are responsible for
enhancing the basilar membrane motion, and the lat-
ter translates sound-induced mechanical stimuli to the
auditory nerve [4–6]. In contrast to passive mechanical
systems, the cochlea can actively generate weak acoustic
oscillations in a broad range of frequencies [7]; conse-
quently, acoustical signal detection is an active process
[8].

Understanding how the transduction system can

achieve such remarkable performance is the theoretical
challenge addressed here. We aim to elucidate the ex-
treme sensitivity of the cochlea to incoming sound waves.
Earlier models have shown that the generation of spon-
taneous otoacoustic emissions, as well as the self-tuning
properties of the cochlea, can be understood in terms
of nonlinear oscillators close to a Hopf bifurcation [9–
11]. Moreover, several physiological models have been
reduced exactly to a quantitative Hopf normal form [12].
At the same time, spatially extended models have been
proposed, either involving the interaction of an ensemble
of uncoupled oscillators with a deformation wave of the
basilar membrane [13, 14, 16, 17] or more parsimoniously
introducing viscoelastic coupling between adjacent oscil-
lators [18–21]. One of us recently proposed that mam-
malian hearing can be enhanced by a balance between
spontaneous otoacoustic emissions and spatial coupling
[22].

To better understand the remarkable frequency sensi-
tivity of the cochlea, we consider here the hierarchy of
levels in the cochlea. As depicted in Fig. 1, hair cells are
coupled into subunits via the sallets and further cou-
pled to the basilar membrane. We consider here the
collective behavior of oscillators coupled hierarchically,
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Fig. 1 Hierarchy of levels of description in the cochlea. On
top of hair cells are stereocilia (hairs) grouped in an arrow-
shaped hair bundle. Hair bundles from neighboring hair cells
are coupled to a common sallet or to the tectorial membrane
[20], while the bottom of hair cells are connected to the thick
basilar membrane. Previous models considered either a hair
bundle [18] or a sallet [19] as a single nonlinear oscillator. We
are interested here in a two-levels description where the oscil-
lators (hair cells) are coupled not only locally into a subunit
(the group under the same sallet) but also on a larger scale
(via the basilar and tectorial membranes).

as shown schematically in Fig. 1. In this scenario, a
hair cell or hair bundle is modeled as a single oscillator
that is coupled viscously and elastically to its neighbor-
ing hair cells underneath the tectorial membrane (the
sallet; see Fig. 1) [23]. Such a set of coupled cells de-
fines a subunit. We further couple each hair cell to the
neighboring subunits to account for the connection to
the basilar membrane. For example, the basal segment
of the bobtail lizard papilla reveals a tectorial membrane
with an ensemble of about 80 sallets, where each sallet
covers about 10 to 25 hair cells [24].

We therefore consider successively two levels of de-
scription. First, we focus on a subunit consisting of
N globally coupled oscillators representing the hair cells
coupled by the tectorial membrane or a sallet. At this in-
termediate level, and in the absence of an external signal,
we observe that the subunit can undergo an explosive
synchronization transition when the coupling strength is
varied. We also study the response of the subunit for
some fixed coupling strength slightly below the critical
value by applying an external forcing. Second, we study
a higher-level model of the cochlea in which hair cells are
coupled to neighboring sallets.

A key factor in our model is the complex coupling
strength, which includes both real and imaginary parts
representing both viscous and elastic coupling separately
[19], in contrast to previous models with only a real
coupling strength [20, 22]. In this framework, the real
and imaginary parts of the coupling strength reflect the
interactions of the amplitude and phase, respectively.
We find, surprisingly, that the competition between the
real and imaginary parts of the coupling may lead to an
explosive synchronization transition, which is currently
a very hot topic [25–34]. Moreover, we find that this

abrupt synchronization transition is very good for the
implementation of sensitive frequency-selectivity, thus
providing a new mechanism for signal amplification and
selectivity in the cochlea.

The paper is organized as follows. In Section 2, we
present a model of an isolated subunit consisting of N
globally coupled cells and show that it can undergo ex-
plosive synchronization. In Section 3, we apply an ex-
ternal stimulus to the subunit, and we observe that syn-
chronization is concomitant with frequency locking to
the external stimulus. In Section 4, we present a numer-
ical exploration of a complete model of coupled subunits.
Finally, discussions and conclusions are presented in Sec-
tion 5.

2 Isolated subunit

The hair bundles in the cochlea can be modeled as os-
cillators undergoing a Hopf bifurcation [9]. On the level
of an individual subunit, hair bundles are both elasti-
cally and viscously coupled [19–21]. Considering that
hair cells in one subunit are very similar and the cou-
pling among them is homogeneous, we may treat them
as all-to-all (globally) coupled and consider a mean field
coupling. The following equation for the reduced vari-
able zj describing the displacement and velocity of the
tip of the j-th hair bundle has been derived [19]:

żj = (µj+ iωj)zj−Bj |zj |2zj+kj(dR+ idI)(z̄−zj), (1)

where N represents the number of oscillators; j =
1, 2, · · · , N ; ωj is the natural angular frequency of the
j-th oscillator; µj is a parameter representing the nondi-
mensional distance from the Hopf bifurcation onset; Bj
describes the intrinsic nonlinearity of the oscillator; dI
and dR are proportional to the elastic and viscous cou-
pling constant [19], respectively; kj describes the rela-
tive coupling strength of the j-th oscillator; and z̄ =
1
N

∑N
j=1 zj is the centroid, defined as the average of

zj over all the oscillators. For an isolated oscillator
(kj = 0), the stationary solution zj = 0 is stable for
µj < 0; in contrast, when µj > 0, zj oscillates in a
limit cycle corresponding to a spontaneous otoacoustic
emission [7]. Unless stated otherwise, we use N = 101
oscillators throughout this paper. We have checked that
the results do not qualitatively depend on N unless N is
too small.

A key feature of Eq. (1) is that its coupling consists
of both a real part dR and an imaginary part dI. To
study the collective behavior described by Eq. (1), we
introduce the real, positive order parameter R = |z̄|, to-
gether with the phase ψ of the centroid, as Reiψ = z̄ [35].
A high (low) value of R implies that the oscillators are
well (poorly) synchronized. Moreover, R represents the
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amplitude of the oscillation of the centroid, i.e., for the
synchronized state, it gives the amplitude of the oscilla-
tion.

For the sake of simplicity, all the oscillators are as-
sumed to be described by the same parameters, µj = µ,
Bj = B, and kj = k. Oscillators in the group differ only
in their natural angular frequencies {ωj}, 1 ≤ j ≤ N ,
for which we choose a symmetrical distribution around
a central frequency ω0. Because Eq. (1) is invariant un-
der any phase shift, including zj 7→ zje−iω0t, we further
choose ω0 = 0 without loss of generality. The results
reported in this article were obtained by choosing a uni-
form distribution of width 2π∆ with ∆ = 0.1 Hz, or,
when further indicated, a deterministic set of angular
frequencies equispaced by 2π∆/(N − 1) in the interval
−π∆ and +π∆, which we call a linear distribution. In
the rest of this article, we choose µ = 1, B = 1, and
dR = 0.15, as in Refs. [19, 21]. Eq. (1) is numerically in-
tegrated using the fourth-order Runge–Kutta algorithm.
We typically allowed a relaxation time of 40 000 time
units to avoid transient behaviors. We define the time
average, ⟨X⟩T , of any quantity X as

⟨X⟩T =
1

T

∫ t+T

t

X(τ)dτ,

and we choose an integration time T = 20 000; this is
sufficiently large compared to the largest period in the
system, which we approximate as the smallest angular
frequency in the distribution of the natural angular fre-
quencies {ωj}, i.e., T ≫ 2(N − 1)/∆.

As the coupling k is increased, we expect the oscil-
lators to synchronize; i.e., we expect R to take large
values. We approximate R by its time-averaged value
⟨|z̄|⟩T . The initial conditions are chosen such that all
the oscillators have an initial radius √

µ = 1 and ini-
tial phases randomly distributed in the interval [0, π2 ].
Figure 2 shows the dependence of R on the coupling
strength k for several values of the imaginary part of the
coupling, dI, which reveals a change in the order of the
transition. The results shown in the main part of Fig. 2
were obtained by starting a simulation of the model (1)
with random initial conditions for each set of values of
dI and k. For small |dI|, the transition looks continu-
ous, whereas large values of |dI| — corresponding to a
large elastic coupling — yield a discontinuous transition
to synchronization. Note that the sign of dI does not
matter here, as Eq. (1) can be complex conjugate pro-
vided the distribution of frequencies {ωj} is symmetrical
around ω0 = 0. The way that the system switches from
a second- to a first-order transition when the parameters
are varied is the subject of a separate publication [36]. In
Ref. [36], the discontinuous transition is shown to result
from the coexistence of a particular synchronized state
together with the trivial incoherent state in a range of

Fig. 2 Order parameter R as a function of coupling
strength k for different values of |dI| ranging from left to right
between −1.2 (+) and −0.2 (◦) with steps of 0.2. Inset: con-
tinuation analysis for dI = −1.2. Increasing k (red dashed
line) and decreasing k (continuous black line) by steps of
0.05 show a bistable region between kc ≈ 0.65 and k′

c ≈ 3.25.
Eq. (1) has been solved numerically with dR = 0.15, B = 1
and µ = 1.

parameters (k and dI) in which the latter is linearly sta-
ble. In contrast to the paradigmatic Kuramoto model
[37], this particular state observed at the synchroniza-
tion transition contains a finite, nonvanishing number
of synchronized oscillators; hence, it results in a first-
order transition. In the following, we choose dI = −1.2,
which corresponds to a first-order transition to synchro-
nization, also called explosive synchronization [25–34].
Adiabatically increasing the coupling k by small steps,
δk = 0.01, and adiabatically decreasing k by the same
steps, we find a hysteresis region where bistability is ob-
served (inset of Fig. 2). In this region, the system can
be either synchronized or nonsynchronized depending on
the initial conditions.

For each oscillator, we write zj = rjeiθj and introduce
the effective angular frequency of the oscillator as the
time-averaged time derivative of its phase θj [25]:

ωeff
j = ⟨θ̇j⟩T =

θj(t+ T )− θj(t)

T
. (2)

The distribution of ωeff
j can be characterized by its mean,

ωeff = 1
N

∑N
j=1 ω

eff
j , and its standard deviation σ. Figure

3 shows the evolution of the average and standard devi-
ation of the set of effective frequencies {ωeff

j } as a func-
tion of the decreasing coupling k. For large coupling,
k > k′′c ≈ 0.71, the standard deviation of the effective
frequency vanishes, and R is large, which implies that
all the oscillators are fully frequency-synchronized. For
small coupling, k < kc = 0.658, there is no synchro-
nization, and the oscillators all have different effective
frequencies, which are nothing but their natural angular
frequencies shifted by the imaginary part of the coupling:
ωeff
j = ωj − kdI. Thus, the standard deviation has the
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Fig. 3 Dependence of frequencies on the coupling strength
where the “circles”, “squares”, and “triangles” represent ωeff,
σ and Ω, respectively. The average of effective angular fre-
quencies ωeff over the set of oscillators is discontinuous at
the transition k = kc. For k > kc, its standard deviation σ
increases suddenly, then decrease continuously and vanishes
above k′′

c ≈ 0.71, which signals the frequency synchroniza-
tion. The inset shows order parameter R in the same region:
the abrupt transition occurs at kc = 0.658.

same constant value, 2π∆/(2
√
3), as the distribution of

natural angular frequencies, and the average evolves lin-
early with the coupling strength k.

We also computed the angular frequency Ω of the cen-
troid, defined as the time derivative of the phase ψ of the
centroid, by using the same averaging procedure as in
Eq. (2). The phase of the order parameter is a nonlinear
function of the phases of the individual oscillators, so Ω
behaves differently from ωeff, unless the oscillators are
fully frequency-synchronized. As seen in Fig. 3, for large
coupling, k > k′′c , Ω is equal to the average effective an-
gular frequency. For intermediate values of the coupling
strength k, the order of magnitude of Ω is unchanged at
around 10−1.

Let us now describe qualitatively the existence of the
bistable region in Fig. 2. We begin by rewriting Eq. (1)
for each oscillator, zj , in terms of its amplitude, rj , and
phase, θj :
ṙj = (ū− r2j )rj + k̄R cos(ψ − θj + α),

θ̇j = ωj − k̄ sinα+ k̄
R

rj
sin(ψ − θj + α) (3)

for j = 1, 2, · · · , N , where we have introduced the no-
tation k̄ = k

√
d2R + d2I , α = arctan(dI/dR), and µ̄ =

µ− k̄ cosα [recall that z̄ = R exp(iψ)].
The difference between the instantaneous angular fre-

quencies of two distinct oscillators i and j thus reads

θ̇i−θ̇j = (ωi−ωj)−k̄R
[

sin(ψ−θj+α)
rj

− sin(ψ−θi+α)
ri

]
,

(4)

which allows us to discuss the two regimes.

First, we can easily see that R = 0 will give a trivial
incoherent state of the system. In such a state, each
oscillator rotates freely on a circle of radius µ̄ with its
natural angular frequency shifted by kdI, so not a single
pair of oscillators will synchronize. For small coupling
strength, k ≪ 1, the second term on the right-hand side
of Eq. (4) can be neglected, and θ̇i− θ̇j ≈ ωi−ωj ̸= 0, so
the phase difference θi−θj increases with time for any set
of initial conditions. This is the case for nearly all (i, j),
which implies that R is close to zero in the steady-state
regime.

Moreover, if one then increases the coupling strength k
but still sets the initial state totally randomly to ensure
that R is close to zero, from Eq. (4), we can see that it
has the same effect as a small k, which means that the
second term can still be neglected initially. As long as the
incoherent state is linearly stable under this k value, we
can be sure that R does not increase significantly while
Eq. (1) evolves, and hence we have a nearly zero R. We
define the linear stability boundary as k′c [36].

However, for the same k value, if we set the initial state
in such a way that R is quite large, we can no longer
neglect the second term, which can be large enough to
balance the frequency difference ωi − ωj , in order to en-
sure a constant phase difference θi − θj for some pairs
of oscillators that have similar natural frequencies. This
synchronization state can exist as long as there is a large
enough synchronized cluster for such k. This can give
another critical coupling strength, kc [36].

In cases such as the classical Kuramoto model [37],
kc > k′c, so a k value slightly larger than k′c will first cause
a small synchronization cluster, and then the cluster size
will increase up to the system size when k reaches kc. In
this case, the transition to synchronization is continuous.
On the other hand, kc < k′c leads to a bistable regime. In
this case, when k is decreased around kc, the system will
suddenly jump from a high R state down to the steady
incoherent state with R ≈ 0, giving a discontinuous or
first-order transition, or explosive synchronization. Pre-
vious theoretical results for a similar system [36] showed
that kc can be smaller than k′c if |dI/dR| is large enough,
as seen in Fig. 2.

3 Forced subunit

An interesting corollary of the discontinuous transition
is the remarkable frequency selectivity of the cochlea.
To address this problem, we now consider a slightly sub-
critical regime by choosing a coupling strength slightly
below the critical value [16], k < kc, and study the effect
of external monochromatic forcing with amplitude f and
frequency ωf. This forcing, feiωft, which represents the
effect of an incoming sound wave, is assumed to act addi-
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tively and with the same strength on all the oscillators:

żj = (µ+ iωj)zj−B|zj |2zj+k(dR+ idI)(z̄−zj)+feiωft.

(5)

Our key observation is that synchronization can be
achieved if k < kc, provided that the angular frequency
of the external stimulus lies within some range, which
depends on its amplitude. For fixed values of the external
stimulus amplitude f and coupling coefficient k, varying
the angular frequency ωf reveals two distinct solutions
with either a large or a small value of the order parameter
R. Figure 4 shows the boundary delimiting the region of
(ωf, f) where a large R solution is observed. This region
shrinks when k is increased below kc.

For a given value of the coupling strength k, the os-
cillators are synchronized inside the tongue in Fig. 4 for
a sufficiently large forcing amplitude, whereas they are
not synchronized outside this tongue for a lower forc-
ing amplitude. Thus, the minimum forcing fmin at the
tip of the tongue represents the sensitivity to a weak
signal. We find that the sensitivity depends on the cou-
pling strength k and that the system can detect weaker
signals when k is closer to the critical value kc; i.e., fmin
decreases as the coupling strength k increases toward kc.
Focusing on the dependence of fmin on k, we observe that
when the coupling strength k is increased toward kc, the
minimum amplitude fmin required to synchronize the os-
cillators decreases linearly toward 0 for k = kc, as shown
in the inset of Fig. 4. This property can be used to obtain
a more accurate estimate of kc than that obtained from
Fig. 2 by performing a linear fit of fmin as a function of
k.

Fig. 4 When an external monochromatic stimulus of am-
plitude f and angular frequency ωf is applied to the en-
semble of N = 101 oscillators with a coupling strength
k < kc = 0.658, a synchronized solution is observed above
a critical curve that depends on k. Inset: Minimal value of
the amplitude of the forcing fmin as a function of coupling
strength k.

Is the synchronized solution phase-locked with the ex-
ternal signal? To answer this question, we measure the
amplitude Q of the Fourier mode of z̄ at the forcing fre-
quency ωf as follows:

Q =

∣∣∣∣∣ 1T
∫ t+T

t

z̄(t)e−iωftdt
∣∣∣∣∣ . (6)

Figure 5 shows that the dependences of Q and R on the
forcing frequency are very similar. We further checked
that the ratio Q2/⟨R2(t)⟩, which measures the fraction
of energy located at the forcing frequency, always equals
1 in the synchronized region within a 1% error. Ad-
ditionally, we can check whether a single oscillator is
frequency-locked with the external forcing. We define
the fraction ρlock = N lock/N , where N lock is the num-
ber of oscillators that is frequency-locked with the ex-
ternal stimulus. As seen in Fig. 5, this fraction is close
to zero in the nonsynchronized state, whereas it is large
in the synchronized solution. Alternatively, we can use
ρlock to define the synchronized region in Fig. 4, which
gives the same boundary as that obtained by using R or
Q. Thus, the synchronized solution observed inside the
tongue in Fig. 4 is frequency-locked to the forcing stim-
ulus. We will further refer to the synchronized region
as an Arnol’d tongue [15], by analogy with the case of
a single forced nonlinear oscillator. We should empha-
size that the phase-locked area of the tongue in Fig. 4 is
induced by the external driving. We denote a point on
the boundary line in Fig. 4 as (ωb

f , f
b). It has two states,

synchronized and nonsynchronized states. When f > fb,
the synchronized state is stable, whereas the nonsynchro-
nized state is unstable. When f < fb, the nonsynchro-
nized state is stable, whereas the synchronized state is
unstable. This is how signal detection is guaranteed. On
the other hand, from Fig. 5, we see that even in the area
of the tongue, the fraction of synchronized oscillators is
about 75% but not 100%, implying that 25% of the os-
cillators are still in the nonsynchronized state. In this
sense, we can understand the signal frequency selectiv-
ity.

Another observation is that the frequency ωmin at the
tip of the tongue, which is the frequency that is the eas-
iest to force, is in the range [8–9] × 10−2. This is much
larger than the smallest natural angular frequency in the
distribution {ωj}, which is 6.3 × 10−3 for N = 101. In
fact, ωmin is on the order of the angular frequency Ω that
would be obtained in the absence of external forcing.

We now ask how the number of oscillators in the sys-
tem, N , influences our results. Figure 6(a) shows that in
the synchronized state, the order parameter Rs shows lit-
tle variation and depends linearly on 1/N . In contrast, in
the nonsynchronized state, Rns, as well as the minimum
amplitude fmin, decreases significantly in proportion to
1/N as N increases; see Figs. 6(b) and (c). Thus, for a
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Fig. 5 Order parameter R and amplitude Q of the mean
field at the forcing frequency depend on the angular frequency
ωf of the external stimulus. R and Q are both non-zero and
vanishing for the same values of ωf, so the synchronized so-
lution is frequency-locked to the external stimulus. Fraction
ρlock of locked oscillators shows the same behavior. N = 101,
coupling strength k = 0.655 < kc and stimulus amplitude
f = 0.014 are fixed.

Fig. 6 (a) The value Rs of the order parameter in the
synchronized state (ωf = 0.075, f = 0.014) depends slightly
on N . (b) On the contrary, its value Rns in the non-
synchronized state (ωf = 0.060, f = 0.014) decreases notice-
ably, as does the minimal forcing amplitude fmin (c). For all
plots, k = 0.655.

realistic subunit in the cochlea system, which is typically
composed of dozens to hundreds of hair cells, finite size
effects may be relevant.

From Eq. (5), we can derive the dynamical equation

of the mean field z̄(t):

˙̄z = (µ+ iΩ̄)z̄ − 1

N

N∑
j=1

|zj |2zj + feiωf , (7)

where we have written Ω̄ ≡ 1
Nz̄

∑N
j=1 ωjzj . In the syn-

chronized state, oscillators are populated around the
mean field; hence, the amplitude |zj | ≈ R. We can write
|zj |2 = R2+δj with δj ≪ 1, so we have 1

N

∑N
j=1 |zj |2zj =

R2z̄ + ξz̄ with ξz̄ ≡ 1
N

∑N
j=1 δjzj and ξ ≪ 1. Because

{ωj} is symmetrical around 0, Ω̄ has a small modulus
and can be approximated to the leading order by the
small mean field frequency Ω. Eq. (7) then reads

˙̄z = (µ+ iΩ −R2)z̄ − ξz̄ + feiωft. (8)

To find a 1 : 1 frequency-locked solution [22, 39], we fur-
ther impose the condition that the mean field frequency
Ω equals the forcing frequency ωf up to a slowly vary-
ing phase ψ′, Ωt = ωft + ψ′, so Eq. (8) can be further
rewritten as

Ṙ = R(µ−R2)− ξR+ f cosψ′,

ψ̇′ = Ω − ωf −
f

R
sinψ′. (9)

For weak external forcing, i.e., when f is small compared
to µ3/2, and neglecting ξ, the synchronized solution has
an amplitude R ≃ √

µ [39], and it is frequency-locked
to the external forcing if ψ̇′ = 0, with a constant phase
difference ψ′ given by f sinψ′ = (ω0−ω)

√
µ, if and only if

the forcing amplitude f is larger than √
µ|ω0−ω|, which

defines the tongue in Fig. 4.

4 Coupled subunits

In the previous section, we studied synchronization and
frequency locking within a subunit that represented a
set of hair cells under a sallet (green arrow in Fig. 1).
We now add another level to the hierarchy and study an
assembly of M different subunits (red arrow in Fig. 1).
Within each subunit, we consider, as before, mean-field
coupling between oscillators, whereas the subunits are
themselves coupled to their nearest neighbors by the sub-
units mean fields. Each subunit contains N oscillators
and is characterized by its natural frequency distribu-
tion. We use the same uniform distribution inside a sub-
unit as in the previous sections but shift the average
natural frequency from one subunit to another. These
average natural frequencies are linearly distributed so
that the complete set of frequencies {ωlj} reads

ωlj = ωl +
2j −N − 1

N − 1
π∆, ω̄l = lδω. (10)
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The indices j = 1, 2, · · · , N and l = 1, 2, · · · ,M indicate
the j-th oscillator in the l-th subunit. δω is the difference
between the average natural frequencies of two neighbor-
ing subunits [38]. We choose to distribute the average
frequencies ωl linearly, but a more realistic logarithmic
spacing can be considered as well and does not change
our results.

The dynamics of the j-th oscillator in the l-th subunit
is given by

żlj = (1 + iωlj)zlj − |zlj |2zlj + kin(dR + idI)[(z̄l − zlj)

+kout(z̄l+1 + z̄l−1 − 2zlj)] + feiωft. (11)

The mean field z̄l is defined locally in each subunit l
as z̄l ≡ 1

N

∑N
j=1 zlj . The coupling strength within a

subunit is denoted as kin, whereas the coupling between
neighboring subunits is denoted as kout. In our numerical
simulations, we used M = 10 subunits, δω = 0.5, and
Dirichlet-type boundary conditions for the first (l = 0)
and last (l =M) subunits.

We first study the unforced case (f = 0) and ask how
the synchronization transition of a subunit is altered by
the coupling to neighboring subunits. We find that a
nonzero positive kout does not affect the nature of the
transition observed in a single subunit, but it reduces the
critical value of kin at which it occurs. Figure 7 shows
the (kin, kout) parameter plane, where explosive synchro-
nization occurs in the subunit l = 4. Similar behavior
is observed in the other subunits. This relationship be-
tween the critical kout and kin can be briefly explained
as follows. kin quantifies the strength of the restoring
force that brings oscillator zlj to the value z̄l, i.e., that
synchronizes the oscillator in subunit l with the average
frequency of the subunit. The role of kout is to synchro-
nize the oscillator with its two neighboring subunits. In
other words, because each individual oscillator is coupled
to its subunit (by kin) and to its two neighboring subunits
(by kout), all the oscillators are synchronized to a com-
mon frequency, i.e., their average frequency. Therefore,
kin and kout have the same role in the synchronization
process, and increasing either one or the other has the
same effect, which is exactly what we observe in Fig. 7.

We then consider an incoming sound wave (f > 0)
and focus on how the number of oscillators in a subunit,
N , affects signal detection. We choose kin = 0.6 and
kout = 0.2 in the nonsynchronized region of the coupling
parameter space (Fig. 7) and measure the local order pa-
rameter Rl = |z̄l| in the subunit l as a function of the
frequency ωf of the incoming sound wave. The upper
panels of Fig. 8 show the results for l = 4, 5, 6, and 7
(corresponding to ω̄l values of 2.0 to 3.5) with N = 11
[Fig. 8(a)] and N = 101 [Fig. 8(b)]. As in the case of a
single subunit, the resonance of the subunit occurs at a
forcing frequency close to the average of the natural fre-
quency distribution of the subunit, although it is shifted

Fig. 7 Phase diagram in the (kin, kout) coupling parameter
space for the subunit l = 4.

Fig. 8 Dependence of Rl on the frequency of the external
signal, for four adjacent subunits l = 4 (blue), 5 (green), 6
(red), 7 (cyan). Forcing amplitude f = 0.1, and coupling
coefficient kin = 0.6 and kout = 0.2. First column (a, c):
N = 11 oscillators per subunit. Second column (b, d): N =
101 per subunit. First line (a, b) and second line (c,d) show
the situations without noise (σ = 0) and with noise (σ = 0.1),
respectively.

slightly upward. The resonance peak is sharp, which in-
dicates good frequency selectivity. We also observe that
the signal-to-noise ratio is enhanced when N is increased,
mainly because the value of R away from the resonance
is lower when N is larger, as seen in Fig. 6. The be-
havior of the system is easily deduced from the behavior
of the M subunits composing it, and our model predicts
a discrete set of resonances at frequencies given by the
distribution of the average frequencies in each subunit.

Noise is always unavoidable in realistic situations. To
probe the robustness of our model (11) to noise, we added
a noise term to the external force and replaced feiωft with
feiωft + ξ(t), where ξ(t) is a Gaussian white noise with
complex values and strength σ: ξ(t) = ξ1(t) + iξ2(t),
where ⟨ξd(t)⟩ = 0, and ⟨ξd(t)ξd′(t′)⟩ = σ2δd,d′δ(t − t′)
∀d, d′ ∈ {1, 2}. We find that when σ is reasonably small,
the results are the same, indicating that our model (11)
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is robust against noise. Figures 8(c) and (d) show the
results for σ = 0.1; the main features of Figs. 8(a) and (b)
still appear, although the signal-to-noise ratio is reduced.
Increasing the noise amplitude σ increases the baseline
and reduces the signal-to-noise ratio.

5 Discussion and conclusions

In summary, we investigated a model of globally coupled
oscillators having two different layers of organization in-
spired by the known structure of the cochlea. Our results
show that the synchronization of single oscillators can be
concomitant with phase-locking to an external stimulus,
provided that the coupling is strong enough and the ex-
ternal stimulus is powerful enough. In this situation, the
selectivity is high and increases with the number of oscil-
lators at the level of the subunit, whereas the number of
discrete frequencies that are detectable is directly related
to the number of subunits.

The results obtained with our simple model may give
interesting insight about the properties of the transduc-
tion process. In particular, we found that, as the number
of oscillators in a subunit increases, both fmin — which is
related to the minimum amplitude of the incoming sound
to be detected — and Rns — which is related to the noise
level that should be overcome by the output signal — de-
crease as 1/N . This indicates that larger organs, or more
precisely larger subunits, are not only sensitive to weaker
acoustical signals, but also have a better signal-to-noise
ratio. This property is conserved considering that the
organ is composed of coupled subunits.
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