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We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled
to two Majorana bound states confined at the ends of a one-dimensional topological superconductor
nanowire. By tuning the magnetic flux threading through the ring, the model system we consider
can be switched into states with or without zero-energy modes when the nanowire is in its topological
phase. We find that the Fano profile in the conductance spectrum due to the interference between
bound and continuum states exhibits markedly different features for these two different situations,
which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as
a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana
bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when
the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a
QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by
checking the energy spectrum.

Keywords quantum dot, Majorana bound states, Fano profile, QD–Kitaev ring, topologically trivial
and nontrivial
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1 Introduction

Because of the growing interest in both fundamental
physics and their potential applications in topological
quantum computation, Majorana fermions or Majorana
bound states (MBSs) have attracted much attention in
recent years (for recent reviews, see Refs. [1–3]). After
remaining elusive for about three quarters of a century,
Majorana fermions, which are their own antiparticles as
originally discussed in the context of nuclear and par-
ticle physics, are beginning to reveal their presence in
solid state systems as emergent excitations obeying non-
Abelian statistics. Many theoretical proposals have pre-
sented a variety of realizations for Majorana fermions,
including systems of one-dimensional (1D) p-wave super-
conductors or two-dimensional (2D) p+ ip superconduc-
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tors using topological insulators or conventional semicon-
ductors [4–9], ultracold atoms [10–13], superfluid He-3
[14–16], and chains of magnetic atoms on superconduct-
ing substrates [17–20], etc. MBSs are predicted to ex-
ist at the ends of a semiconductor nanowire with strong
spin-orbit coupling (SOC) (for example in InAs or InSb),
external Zeeman field, and superconductivity induced by
contacting with an s-wave superconductor [8, 21]. A
variety of detection schemes are experimentally imple-
mented for their detection and plausible signatures of
MBSs, such as the conductance peak at zero bias [22–25]
and the fractional Josephson effect [26–28], have been
reported, yet, the “smoking gun” evidence for MBSs re-
mains out of reach.

Model systems based on hybrid structures are explored
intensively as well for the existence of Majorana fermions
or MBSs, of which a very appealing type involves a quan-
tum dot (QD) coupled to MBSs. These hybrid systems
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facilitate the study and the understanding of MBSs from
their coupling to other systems. Extensive efforts are
directed at probing their transport properties such as
conductance spectrum, quantum interference, and cur-
rent noise for many different QD–MBS(s) configurations
[29–36], whose characteristic features are often used to
implicate the existence of MBS. Ref. [37] reports the non-
Abelian operations on Majorana fermions using Coulomb
blockaded QDs. Recently, a ring system consisting of a
topological superconductor nanowire and normal metal-
lic lead has been proposed to probe the quantum non-
locality of Majorana fermions [38]. The conductance of
this ring system shows a 4π-period as a function of the
threaded magnetic flux. Ref. [39] predicts the conduc-
tance of a QD–MBS system reduces to e2/(2h) in the
topologically nontrivial state, compared to e2/h in the
trivial state. An MBS–QD–MBS system is also investi-
gated in [39]. However, the Fano effect and the change in
periodicity in the conductance profile are not discussed,
which will be covered and explained in detail in this pa-
per.

In this work, we investigate electronic transport prop-
erties inside an analogous ring system composed of a QD
coupled to two MBSs located at the ends of a 1D topo-
logical superconductor nanowire (TSNW). The ring ge-
ometry for our model system is shown in Fig. 1, whose
conductance through the QD is obtained with the help
of the nonequilibrium Green’s function method. We find
that it shows 2π periodicity when the wave function over-
lap between the two MBSs is zero (as for a nanowire with
infinite length). For a nanowire with finite length where
the MBSs display a nonzero overlap, the periodicity be-
comes 4π. The model system we consider is found to
have zero-energy modes in the topologically nontrivial

Fig. 1 Schematic setup of the QD–MBSs ring system dis-
cussed in this paper. There are two Majorana bound states
γ1 and γ2 confined at the two ends of a 1D topological su-
perconductor nanowire (TSNW). A QD is coupled to these
two MBSs; thus, the QD and the nanowire constitute a ring.
Here, λ1 = |λ1|eiϕ/4, λ2 = |λ1|e−iϕ/4, |λ1| and |λ2| are the
coupling strength, while ϕ is the phase resulting from the
magnetic flux threading through the ring. Two normal metal-
lic leads L and R are attached to the QD with coupling
strength tL and tR so that the transport properties through
the system can be detected.

phase only when the threading magnetic flux takes on
the values of ϕ = Φ/Φ0 = (2n + 1)π. Otherwise, there
are no zero modes in this system. Owing to quantum
interference between bound and continuum states, the
conductance spectrum for electrons transporting through
the system displays two Fano resonance peaks, which
are symmetrically placed with respect to the eV = 0.0
line when ϕ = (2n + 1)π. When ϕ takes other values,
the corresponding Fano lineshape becomes asymmetri-
cal. We discuss our model system from both the Dirac
fermion representation as well as the Majorana fermion
representation. A phenomenological explanation for the
above-mentioned characteristics is provided by mapping
the ring system into a QD-Kitaev ring system and with
the different features verified by checking their corre-
sponding energy spectrum.

This paper is organized as follows. In Section 2, the
model Hamiltonian of a QD coupled to two MBSs is in-
troduced and the conductance formula calculated by us-
ing nonequilibrium Green’s functions are presented. Nu-
merically computed results for transport properties and
discussions on the effects of the threaded magnetic flux
are presented in Section 3. Finally, a brief summary is
provided in Section 4.

2 Our model and the conductance formula

As shown in Fig. 1, the ring model we consider in this
paper is composed of a QD coupled to two MBSs (γ1 and
γ2) located at the ends of a 1D TSNW. Through the two
metal leads connected to the QD, we can detect transport
properties of the system, whose conductance spectrum
can be tuned by changing the threading magnetic flux.
The Hamiltonian takes the following form

H = HLeads +HQD +HMBS +HDM +HT , (1)

where HLeads in Eq. (1) represents the noninteracting
electron gas in the left (L) and right (R) leads,

HLeads =
∑

k,α=L,R

ϵkαc
†
kαckα, (2)

where c†kα and ckα are the creation and annihilation oper-
ators with energy ϵkα for the continuum in lead α. HQD

in Eq. (1) is the Hamiltonian of the quantum dot,

HQD = ϵdd
†d, (3)

holding a single state at energy ϵd, with d† (d) being its
creation (annihilation) operator. The one-level model
is assumed for simplicity. It can be easily extended to
realistic cases involving more levels when needed. The
term in Eq. (1)

HMBS = iϵMγ1γ2, (4)
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describes the coupling between the two MBSs γ1 and γ2
with their overlap parameterized by ϵM . HDM denotes
the linear coupling between the QD and the two MBSs
according to

HDM = (λ∗
1d

† − λ1d)γ1 + i(λ∗
2d

† + λ2d)γ2, (5)

with the coupling parameters λ1 = |λ1|eiϕ/4, λ2 =
|λ2|e−iϕ/4, where |λ1| and |λ2| denote the respective cou-
pling strength, and ϕ = Φ/Φ0 with Φ0 = h/(2e) is the
phase factor resulting from the threading magnetic flux.
The last term in Eq. (1)

HT =
∑
kα

(tαc
†
kαd+ h.c.), (6)

represents the tunneling coupling between the QD and
lead α with strength tα.

The two MBSs γ1 and γ2 in Eq. (4) can be represented
by their equivalent Dirac fermion operators according to
γ1 = (f† + f)/

√
2 and γ2 = i(f† − f)/

√
2, which trans-

forms the terms containing MBSs in the Hamiltonian
Eq. (1)

HMBS = ϵM

(
f†f − 1

2

)
, (7)

HDM =
1√
2
(λ∗

1 − λ∗
2)d

†f† +
1√
2
(λ1 − λ2)fd

+
1√
2
(λ∗

1 + λ∗
2)d

†f +
1√
2
(λ1 + λ2)f

†d. (8)

The current from the lead α (α = L or R) to the
central QD system is then given by

Iα = −e⟨Ṅα⟩ =
ie
~
⟨[
∑
k

c†kαckα,H]⟩

=
ie
~
∑
k

[tα⟨c†kαd⟩ − t∗α⟨d†ckα⟩]. (9)

On introducing the relevant Green functions,
G<

d,c†kα

(t, t′) = i⟨c†kα(t′)d(t)⟩ and G<
ckα,d†(t, t

′) =

i⟨d†(t′)ckα(t)⟩, the above current becomes

Iα =
e

~
∑
k

[tαG
<

d,c†kα

(t, t)− t∗αG
<
ckα,d†(t, t)]

=
2e

~
ℜ[tα

∑
k

G<

d,c†kα

(t, t)]

=
2e

h
ℜ
∫

dωtα
∑
k

G<

d,c†kα

(ω). (10)

Employing the method of nonequilibrium Green’s func-
tions, the above equation reduces to

Iα=
−2e

h

∫
dωΓαℑ

[
1

2
G<

d,d†(ω)+f(ω−µα)G
r
d,d†(ω)

]
,

(11)

where Γα = 2πiv|tα|2 in the wide band approximation
with v being the density of states in the leads. ℜ(.) and
ℑ(.) respectively denote the real and imaginary parts of
(.). f(ω − µα) is the Fermi-Dirac distribution with µα

the chemical potential for lead α. In the steady state,
the current formula can be further simplified to

I=
−2e

h

×
∫

dω[f(ω−µL)−f(ω−µR)]
ΓLΓR

ΓL + ΓR
ℑ[Gr

d,d†(ω)],

from which, the zero-temperature conductance is found
to be

G =
−2e2

h

ΓLΓR

ΓL + ΓR
ℑ[Gr

d,d†(ω)]|ω=eV , (12)

where we have set µL = eV and µR = 0. Thus
the calculation of conductance requires the retarded dot
Green function Gr

d,d†(ω), which after some mathematical
derivations is found to take the following form

Gr
d,d†(ω) = [ω − ϵd +

iΓ
2

−A(ω)−B(ω)]−1, (13)

where

A(ω) = K(|λ1|2 + |λ2|2 +
2ϵM
ω

|λ1||λ2| cos ϕ
2
),

B(ω) =
K2(|λ1|4+|λ2|4−2|λ1|2|λ2|2 cosϕ)

ω+ϵd+
iΓ
2 −K(|λ1|2+|λ2|2− 2ϵM

ω |λ1||λ2| cos ϕ
2 )

,

with K and Γ being defined as K = ω
ω2−ϵ2M

and Γ =

ΓL + ΓR.
Even without carrying out direct numerical computa-

tion, the above formula [Eqs. (12) and (13)] already show
that conductance is a periodic function of magnetic flux
ϕ with 2π period when the overlap of the two MBSs is
zero, i.e., when ϵM = 0. The period changes to 4π when
ϵM is nonzero. In the next section, we will present the
detailed numerical results for the transport properties of
our model system containing a QD coupled to MBSs.

3 Numerical results and discussion

For simplicity, throughout this paper, we set ϵd = 0 and
assume that the QD is symmetrically coupled to the two
MBSs, i.e., with |λ1| = |λ2|. Figure 2 shows the con-
ductance as a function of bias voltage eV . The dot-lead
couplings is set to be symmetric ΓL = ΓR, and we take
Γ = ΓL + ΓR as the energy unit. The QD–MBSs cou-
plings are set to be small λ1 = λ2 = 0.1Γ and ϵM = 0.5Γ
for the overlap coupling between the two MBSs. When
the magnetic flux changes, conductance changes accord-
ingly in a periodic fashion with the period being 4π. The
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Fig. 2 Conductance (in units of e2/h) as a function of bias voltage eV with different magnetic flux phase ϕ when ϵM = 0.5Γ.
Other parameters: |λ1| = |λ2| = 0.1Γ.

asymmetric Fano lineshape is clearly seen. More specif-
ically, at ϕ = 0.0, 2π, and 4π, only one Fano resonance
shows up at around eV = ϵM or −ϵM , and the minimum
conductance is suppressed to be zero. For other values
of ϕ, however, two Fano resonances appear at around
eV = ±ϵM in the conductance spectra, and the minima
do not fall all the way to zero. At odd integer multiples of
the threaded magnetic flux ϕ = (2n+ 1)π, the two Fano
resonances assume the same lineshape and are symmet-
rical about the eV = 0.0 line. On the other hand, from
the figure we can see that tuning the magnetic flux also
leads to the swapping of the two resonance peaks.

The Fano resonances originate from the interference
between electrons traversing in different paths when they
travel from the left lead to the right lead. As the QD is
strongly coupled to the leads, the phases of those elec-
trons through the QD without going into the nanowire
will not have distinct changes. However, those going into
the nanowire will experience a swift phase changing (al-
most a π phase changing). Thus the electrons through
different paths will interfere with each other from de-
structively to constructively or vice versa over a small
range of the parameter, which results in the asymmetric
Fano lineshapes.

It is predicted [39] when the nanowire is in topological
phase, the conductance will fall to e2/(2h) at eV = 0.0 if
ϵM = 0.0 (namely when the two MBSs do not overlap).
The results from our model are presented in Fig. 3. It is
interesting to note that at ϕ = π and ϕ = 3π, conduc-
tance reduces to e2/(2h) at eV = 0.0 while for other val-
ues of ϕ, conductance is suppressed to zero at eV = 0.0.
As ϵM becomes smaller and smaller, the two Fano res-

onances in Fig. 2 get closer and closer until they even-
tually merge into one resonance for ϵM = 0 at zero bias
voltage. Most notably, the periodicity of conductance as
a function of ϕ is 2π, instead of 4π as shown in Fig. 2. In
order to investigate the period change, we choose a spe-
cific value for eV , for example at eV = 0.2Γ, and study
the period of conductance under different choices of ϵM ,
as shown in Fig. 4. The period remains 2π when the
nanowire is infinitely long, namely, ϵM is zero. However,
the period changes to 4π when ϵM deviates from zero for
a nanowire with finite length.

In the following, by analyzing the Hamiltonian, we
will discuss these different features of the system in de-
tail from both the Dirac fermion representation and the
Majorana fermion representation.

3.1 Dirac fermion representation

The MBSs γ1 and γ2 can be expressed in terms of the
regular Dirac fermions operators γ1 = (f† + f)/

√
2 and

γ2 = i(f†−f)/
√
2. If the QD is symmetrically coupled to

the MBSs, our model system can be easily transformed
into a double-QD model under certain circumstances as
shown in Fig. 5.

(i) Case ϕ = 2n × 2π. When ϕ takes an even integer
multiple of 2π, the term describing the coupling between
the QD and MBSs HDM can be simplified according to

HDM =
√
2|λ1| cos(nπ)d†f +

√
2|λ1| cos(nπ)f†d, (14)

in terms of the usual coupling between Dirac fermions.
The complete Hamiltonian thus is the same as the Hamil-
tonian of a QD with energy level ϵd coupled to another
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Fig. 3 Conductance (in units of e2/h) as a function of bias voltage eV with different magnetic flux phase ϕ when ϵM = 0.0.
Other parameters: |λ1| = |λ2| = 0.1Γ.

Fig. 4 Conductance(in units of e2/h) at eV = 0.2Γ as a
function of the magnetic flux phase ϕ with different coupling
strength between the two MBSs. When ϵM = 0.0, the pe-
riod of conductance is 2π; while for non-zero ϵM , the period
changes to 4π. Other parameters: |λ1| = |λ2| = 0.1Γ.

QD with energy level ϵM , as shown in Fig. 5(a). The cou-
pling strength between these two QDs is

√
2|λ1| cos[nπ].

Figure 5(a) shows clearly that the conductance profiles
for these two models display the same behaviors when
their respective parameters are the same.

(ii) Case ϕ = (2n+1)×2π. In this case, HDM reduces
to

HDM =
√
2i|λ1| sin

[
(n+

1

2
)π

]
fd

−
√
2i|λ1| sin

[
(n+

1

2
)π

]
d†f†, (15)

where f† and f can be taken as the annihilation and

creation operators of the holes. We can make a trans-
formation by setting f† → h and f → h†, according to
which HDM becomes

HDM =
√
2i|λ1| sin

[(
n+

1

2

)
π

]
h†d

−
√
2i|λ1| sin

[(
n+

1

2

)
π

]
d†h. (16)

The same transformation reduces the Hamiltonian MBSs
HMBS = ϵM (f†f− 1

2 ) to −ϵM (h†h− 1
2 ). Putting all these

terms together, we observe that when ϕ = (2n+1)× 2π,
the system is equivalent to a model in which a QD with
energy level ϵd is coupled to another QD with energy
level −ϵM , and their coupling strength is

√
2i|λ1| sin[(n+

1/2)π] as shown in Fig. 5(b). The conductance profiles of
both models show Fano resonances at around ω = −ϵM .

(iii) Case ϕ = (2n + 1)π. When ϕ = (2n + 1)π, we
have

HDM =
√
2i|λ1| sin

[
(2n+ 1)π

4

]
fd

−
√
2i|λ1| sin

[
(2n+ 1)π

4

]
d†f†

+
√
2|λ1| cos

[
(2n+ 1)π

4

]
d†f

+
√
2|λ1| cos

[
(2n+ 1)π

4

]
f†d. (17)

By introducing the same operators for the holes as in the
transformation above for the case of ϕ = (2n+ 1)× 2π,

Qi-Bo Zeng, et al., Front. Phys. 12(4), 127302 (2017)
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Fig. 5 (a, b) When ϕ takes an even integer multiple of 2π, the QD–MBSs ring system can be transformed equivalently
to a QD–QD model. (c) When ϕ = (2n+ 1)π, the system cannot be transformed into a double-QD model. The parameters
here are the same as in Fig. 2.

the Hamiltonian HDM becomes

HDM =
√
2i|λ1| sin

[
(2n+ 1)π

4

]
h†d

−
√
2i|λ1| sin

[
(2n+ 1)π

4

]
d†h

+
√
2|λ1| cos

[
(2n+ 1)π

4

]
d†f

+
√
2|λ1| cos

[
(2n+ 1)π

4

]
f†d, (18)

and HMBS reduces to −1
2ϵMh†h− 1

2ϵM + 1
2ϵMf†f+ 1

2ϵM
in this case, which resembles the system of a QD with
two energy levels ±ϵM . The complete system thus is
transformed into a model in which a QD with an energy
level ϵd is coupled to another QD with two energy lev-
els ±ϵM . However, these two models are inequivalent,
as shown from the conductance profiles in Fig. 5(c).
Although they show similar behaviors of two Fano reso-
nances at around ±ϵM , the difference between these two
models is significant. The conductance in the QD–MBSs
system is not suppressed to zero at Fano resonance, while
the conductance in the QD–QD system is suppressed to
zero.

The reason for the differences between these two mod-
els originates from the special characteristics of the
MBSs, which at the ends of the TSNW can be repre-

sented by γ1 = (f† + f)/
√
2 and γ2 = i(f† − f)/

√
2.

The Majorana operators are self-adjoint, namely γ†
i = γi

(i = 1, 2) and thus they represent mixtures of particle
and hole states. If we replace d†f† by d†h, we will destroy
the MBSs and render them into Dirac fermions. Thus, at
ϕ = (2n+1)π, the QD–MBSs ring system is inequivalent
to a double-QD system. From the three typical cases con-
sidered above, we observe that when ϕ = 2nπ, there will
be no Majorana zero energy modes. For ϕ = (2n+ 1)π,
on the other hand, zero energy modes will show up. The
electronic transport properties show different behaviors
for these two different situations, based on which one can
distinguish the whether there are zero energy modes (or
MBSs) in this system.

In addition, the mapping into the QD–QD model also
allows for an explanation of the different period for con-
ductance as a function of the threading magnetic flux
ϕ. As shown above, when the overlap between the two
MBSs changes from zero to finite values, the period of
conductance changes from 2π to 4π. According to the
QD–QD models, the two cases of ϕ = 2n × 2π and
ϕ = (2n + 1) × 2π cannot be mapped to the same QD–
QD model when ϵM is nonzero as the energy level of the
equivalent QD is ϵM for ϕ = 2n × 2π but is −ϵM for
ϕ = (2n + 1) × 2π. Thus, the period of conductance is
4π. However, for the special case of ϵM = 0.0, the above
two limits are mapped onto the same QD–QD models
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and the period of conductance becomes 2π.

3.2 Majorana fermion representation

Now we replace the superconductor nanowire by a Kitaev
chain [40], which is composed of spinless fermions in a
1D lattice, as described below

HK =
∑
j

[
−µ

(
c†jcj −

1

2

)
− t(c†jcj+1 + h.c.)

+∆(c†j+1c
†
j + h.c.)

]
, (19)

with t being the hopping amplitude between the lattice
sites and ∆ being the pairing amplitude. The Hamilto-
nian for the QD and the coupling between the QD and
the Kitaev chain are

HQD = ϵdd
†d, (20)

HDK = λ1c
†
1d+ λ∗

1d
†c1 + λ2c

†
Nd+ λ∗

2d
†cN , (21)

with c1 and cN the operators for the first and the last
lattice site, respectively. Introducing Majorana opera-
tors cj = 1√

2
(γj,1 + iγj,2) and d = 1√

2
(η1 + iη2), we can

express the Hamiltonian as

HK = i
∑
j

[−µγj,1γj,2 + (t+∆)γj,2γj+1,1

+(−t+∆)γj,1γj+1,2] , (22)
HQD = iϵdη1η2 + ϵd, (23)

HDK = −i|λ1| sin
(
ϕ

4

)
η1γ1,1 + i|λ1| cos

(
ϕ

4

)
η1γ1,2,

−i|λ1| cos
(
ϕ

4

)
η2γ1,1 − i|λ1| sin

(
ϕ

4

)
η2γ1,2

+i|λ2| sin
(
ϕ

4

)
η1γN,1 + i|λ2| cos

(
ϕ

4

)
η1γN,2

−i|λ2| cos
(
ϕ

4

)
η2γN,1 + i|λ2| sin

(
ϕ

4

)
η2γN,2.

(24)

The redundancy of ϵd in HQD could be discarded. This
allows for the analysis of the system with different
threading magnetic flux from the Majorana fermion per-
spective. Figure 6(a) shows the schematic setup of the
Kitaev chain. When the chain is in the topologically triv-
ial phase, MBSs in the chain are all paired. If the chain
is in the nontrivial phase, unpaired MBSs will appear at
the ends of the chain, namely γ1,1 and γN,2 or γ1,2 and
γN,1, would become unpaired. The complicated coupling
between the QD and the Kitaev chain is shown in Fig.
6(b).

(i) Case ϕ = 2n × 2π. The Hamiltonian HDK could

Fig. 6 (a) Schematic illustration of a Kitaev chain. The
red dot represents the Majorana bound states, the heavy
black line indicates the coupling between γj,1 and γj,2, the
light black line describes the coupling between γj,2 and γj+1,1

, and the solid purple line represents the coupling between γj,1
and γj+1,2; (b) The Kitaev chain and the MBSs η1 and η2
from the QD are coupled in a complicated way. The dashed
purple line here shows the couplings between the MBSs from
the QD and the MBSs from the chain; (c) When ϕ = 2n×2π,
the Kitaev chain and the MBSs from the QD can form a Ki-
taev ring with the same coupling pattern as in the chain;
(d) When ϕ = (2n+1)×2π, the chain and the QD also form
a Kitaev ring with the same coupling pattern in the chain.

be written as

HDK = |λ1| cos(nπ)(iη1γ1,2)− |λ1| cos(nπ)(iη2γ1,1)
+|λ2| cos(nπ)(iη1γN,2)− |λ2| cos(nπ)(iη2γN,1),

(25)

in this case. We see that when ϕ = 2n × 2π, the MBSs
from the QD are coupled to the chain in the same pattern
as the MBSs on the chain. Thus the QD and the Kitaev
chain constitutes a Kitaev ring. If γ1,1 and γN,2 at the
ends of the chain are unpaired, then from Eq. (25), we
observe that they could be paired with η2 and η1 from
the QD, respectively. If γ1,2 and γN,1 are unpaired, they
will instead be paired with η1 and η2, respectively. So
the whole QD-Kitaev chain system will have no unpaired
MBSs or zero-energy modes even though the nanowire is
in topologically nontrivial state, as shown in Fig. 6(c).

(ii) Case ϕ = (2n + 1) × 2π. In this case, the Hamil-
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tonian HDK becomes

HDK = −|λ1| sin
(
n+

1

2

)
π(iη1γ1,1)

−|λ1| sin
(
n+

1

2

)
π(iη2γ1,2)

+|λ2| sin
(
n+

1

2

)
π(iη1γN,1)

+|λ2| sin
(
n+

1

2

)
π(iη2γN,2). (26)

Equation (26) shows the same coupling pattern as that
of the MBSs on the chain; thus, the QD and the Kitaev
chain also constitute a ring system. However, in this
case γ1,1 is paired with η1 and γN,2 is paired with η2
when γ1,1 and γN,2 are unpaired in the chain. On the
other hand, when γ1,2 and γN,1 are unpaired, they will
be coupled with η2 and η1, respectively, as shown in Fig.
6(d). Compared to the ϕ = 2n × 2π case, we observe
that η1 and η2 are coupled with the different MBSs from
the chain. The conductance profiles of these two situa-
tions are different as we discussed earlier [see Figs. 5(a)
and (b)]. This is the manifestation of the non-Abelian
statistics abided by Majorana fermions.

(iii) Case ϕ = (2n + 1)π. Substituting ϕ = (2n + 1)π
into HDK , we can see that γ1,1, γ1,2, γN,1 and γN,2 are
coupled to η1 and η2 with the same coupling strength,
as shown in Fig. 6(b). The coupling pattern between
the MBSs from the QD and from the chain is different

from the pairing pattern for those MBSs inside the chain.
The unpaired MBSs at the ends of the chain cannot be
paired with the MBSs from the QD definitively; thus,
the chain plus the QD does not constitute a Kitaev ring
with all the MBSs paired up. As a result, the QD–MBSs
ring system has unpaired MBSs or zero-energy modes in
the topologically nontrivial state and is distinct from the
other two cases.

When ϕ takes other values apart from the three typical
cases discussed above, the Hamiltonian HDK takes the
same form as shown in Eq. (24), except that for this gen-
eral case of ϕ the coupling amplitudes between MBSs are
different. For example, if sin ϕ

4 > cos ϕ
4 , the coupling be-

tween γ1,1 (γ1,2) and η1 (η2) would be stronger, while the
coupling between γN,2 (γN,1) and η1 (η2) will be weaker.
Thus, the unpaired MBSs at the ends of the Kitaev chain
could always be paired up with one of the MBSs from
the QD through stronger coupling amplitudes. Thus, the
Kitaev ring can be formed, and all the MBSs would be
paired up. As a result, there are unpaired MBSs or zero-
energy modes in this QD–MBSs ring system only when
ϕ = (2n+ 1)π.

We can further verify our above understanding by in-
vestigating the energy spectrum of the system. In Fig.
7(a), we show the energy spectrum as a function of µ for
the QD-Kitaev ring system with ∆ = 0.8, t = 1, and
ϕ = π. No zero mode in the gapped region is found un-
der the condition |µ| > 2t, but zero modes show up when
µ is smaller. The Kitaev chain is in a topologically non-

Fig. 7 (a) The energy spectrum of the QD-Kitaev ring system as a function of µ when ∆ = 0.8, t = 1 and ϕ = π.
The other three pictures show the spectrum of the QD-Kitaev ring system as a function of magnetic flux ϕ with different
parameters: (b) ∆ = 0.8, µ = 0.5, t = 1, |λ1| = |λ2| = 1; (c) ∆ = 0.2, µ = 0, t = 0.2, |λ1| = |λ2| = 0.1; (d) ∆ = 0.2,
µ = 0.3, t = 0.2, |λ1| = |λ2| = 0.1. The zero-energy modes only appear when ϕ = (2n+ 1)π, otherwise the energy spectrum
are always gapped.
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Fig. 8 Energy spectrum of the QD-Kitaev ring system. Here ∆ = 0.8, t = 1 and |λ1| = |λ2| = 1. When ϕ = π and 3π,
the zero-energy modes appear only if µ < |2t|. If ϕ takes other values, the spectrum is always gapped except at the points
|µ| = 2t.

trivial state only under the condition |µ| < 2t, which is
consistent with previous results [1, 37]. Figures 7(b), (c),
and (d) show the energy spectrum of the QD-Kitaev ring
system as a function of the threaded magnetic flux for
different parameters. It shows that zero modes exist only
under the condition ϕ = (2n+1)π when the Kitaev chain
is in the nontrivial state, otherwise the energy spectrum
will be gapped.

In Fig. 8, we show the energy spectrum of the QD-
Kitaev ring system as a function of µ with different
threaded magnetic flux. The spectrum possesses the sim-
ilar properties as the Kitaev chain. When ϕ = (2n+1)π
(ϕ = π and 3π in Fig. 8), zero-energy modes show up in
the QD-Kitaev ring system when |µ| < 2t, namely when
the nanowire is in its topologically nontrivial phase. If
the threaded magnetic flux takes other values, the en-
ergy spectrum is always gapped except at the zero-energy
points |µ| = 2t, which are trivial as they are not robust
against perturbations.

4 Summary

We study the properties of electron transport through
a QD coupled to two MBSs system in a ring configu-
ration. The MBSs at the two ends of a topological su-
perconductor nanowire (TSNW) are strongly influenced
by the threaded magnetic flux. When ϕ = 2n × 2π (or

(2n+1)×2π), the QD–MBSs ring system can be mapped
into an equivalent QD–QD system, in which the QD in
the ring system is coupled to another QD with energy
levels ϵM (or −ϵM ), where ϵM denotes the overlap be-
tween the two MBSs. When ϕ = (2n+1)π, however, the
system cannot be mapped into a QD–QD model. The
conductance spectra for these two situations are very
different. With appropriate parameters, the conduc-
tance shows one asymmetric Fano lineshape at around
ω = ϵM (or −ϵM ) and the minimum of conductance at
the resonance is suppressed to zero when ϕ = 2n×2π [or
(2n+1)×2π]. When ϕ = (2n+1)π, two Fano resonances
appear with the same size at around ω = ±ϵM and the
minima of the resonances do not decrease all the way to
zero. These distinctive features indicate whether there
are Majorana zero-energy modes in the system.

It is also interesting to note that the conductance of
the QD-two MBSs ring system shows different periodic-
ity for different coupling strength ϵM of the two MBSs.
If the nanowire is infinitely long, i.e., ϵM = 0.0, the pe-
riodicity of conductance is 2π. However, the periodicity
changes to 4π when ϵM deviates from zero as in a fi-
nite length nanowire. We also investigate the transport
properties of this QD-two MBSs ring system within the
Majorana fermion representation by taking the electron
on the QD as the superposition of two MBSs and sub-
stituting the TSNW by a Kitaev chain. We observe that
when ϕ ≠ (2n+1)π, the unpaired MBSs from the Kitaev

Qi-Bo Zeng, et al., Front. Phys. 12(4), 127302 (2017)
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chain are separately paired with one of the MBSs from
the QD and thus constitutes a Kitaev ring in which all
the MBSs are paired. Thus, there is no unpaired MBSs
for this case. However, when ϕ = (2n+1)π, the unpaired
MBSs at the ends of the Kitaev chain cannot be paired
up with MBSs from the QD definitely. Thus, there are
unpaired MBSs or zero-energy modes in the the QD–
MBSs ring system. The calculation of energy spectrum
of the QD-Kitaev ring system shows that zero-energy
modes only exist under the condition ϕ = (2n + 1)π,
while for all other ϕ the system is always gapped except
at two nontopological zero points. The understanding
gained from our work will be helpful for the ongoing ex-
periments aimed at uncovering MBSs or Majorana zero
mode through transport detections.
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