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Fermion particle pair production in strong SU(2)-gauge chromoelectric fields is studied using the
Boltzmann–Vlasov equation in a classical way. The existence of a preproduction process in a classical
description is shown using the distribution evolution of non-Abelian particle production. It is interest-
ing to find that the distribution of the particle number density is centered on two islands and shows a
split on the color charge sphere as it evolves, ultimately reaching a steady state that is related to the
amplitude and variation of the field.
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1 Introduction

Experiments on high-energy collisions of heavy ions,
which are thought to produce a quark–gluon plasma, are
conducted in both the Relativistic Heavy Ion Collider
and Large Hadron Collider. Modeling this plasma using
full quantum field theory has been proven particularly
difficult. Because it is hard to deal with particles of dif-
ferent colors for different flavors under gauge invariance
and renormalization, an appropriate approximation the-
ory is urgently needed. Thus, a series of works has been
conducted using effective classical theories [1–8], as sum-
marized in Ref. [9], and has been expanded to problems
of particle production.

For the problem of particle production, Schwinger de-
veloped a proper time method to calculate the particle
production via a tunneling mechanism in quantum elec-
trodynamics (QED) theory [10]. For the QED case, Daw-
son et al. studied particle production using a semiclas-
sical approach based on the Boltzmann–Vlasov (B–V)
transport equation with an instantaneous source term
[11, 12] and compared the B–V results with numerical
simulations of the full quantum treatment. We have also
studied the relevant pair production problem in the QED
case, e.g., [13–16]. In addition, we recently studied the
nonperturbative signatures in particle momentum spec-
tra of pair production by solving the quantum Vlasov
equation or using the Dirac–Heisenberg–Wigner formal-

ism, especially for general elliptically polarized fields [17–
19]. On the other hand, naturally, the problem of parti-
cle production is expected to be expanded to the quan-
tum chromodynamics case. For example, soft gluon pro-
duction [20] and quark–antiquark production [21] in a
constant chromoelectric background field were studied
by Nayak and his coauthor. Recently, Dawson et al.
studied this problem including the backreaction effects
[22]. They have also studied the Casimir dependence of
the transverse distribution in non-Abelian particle pro-
duction [23]. Similar work in the SU(2) case has also
been performed by Skokov and Lev́ai using the Wigner
function formalism [24].

It is also necessary and meaningful to study the pro-
cess of non-Abelian particle production. Using the B–V
equation as an approximate theory will simplify the cal-
culation and also give a clear physical picture. Further,
in our paper, Wong’s equations in Ref. [25] are used as
the equations of motion. Because non-Abelian particle
production is related to the Casimir invariants, we will
give the distribution of particle production on the color
charge sphere in the SU(2) case. Further, we will discuss
the evolution of the distribution in different background
fields. Finally, we will give the total number of particles
produced.

For simplicity, we treat the particles as point particles
with classical color, and we ignore the backreaction effect
because it is an order lower than that of the background
field [22] assuming the low density approximation. Note
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that in realistic situations, the collision effect should be
taken into account. However, in our classical calculation
using a simple or/and insufficiently realistic model, the
preproduction process we found, which is our main point,
still exhibits some interesting features. It is helpful to
deepen the understanding of the relevant problem. On
the other hand, we will also use the Schwinger source
when introducing different fields, as in Ref. [26], because
the field can be regarded as varying sufficiently slowly.

The paper is organized as follows. In Section 2, we in-
troduce Wong’s equation in semiclassical transport the-
ory. In Section 3, we define the distribution function
with the measures in phase space. In Section 4, we de-
rive the B–V equation and introduce a classical source
term. In Section 5, we give the numerical methods and
numerical results for a special case. Further, in the final
section, we summarize our numerical results and present
our conclusions. In the Appendix, we give some deriva-
tion of Wong’s equations and the solution of the B–V
equation using the method of characteristics.

2 Wong’s equations in semiclassical theory

A theory describing the Yang–Mills (YM) field and
isotopic-spin-carrying particles in the classical limit was
derived by Wong in Ref. [25]. Within a microscopic de-
scription, the trajectories in space are known exactly and
read as

m
dx̂µ

dt = p̂µ, (1)

m
dp̂µ
dt = gQ̂aFµν

a (x̂)p̂ν , (2)

m
dQ̂a

dt = gfabcAb
µ(x̂)Q̂

cp̂µ, (3)

where
F a,µν(x) = ∂µAa,ν(x)− ∂νAa,µ(x)

+gfabcAb,µ(x)Ac,ν(x) (4)
is a general YM field and satisfies

Da,c
µ (x)F c,µν(x) = ⟨Ja,ν(x)⟩. (5)

After some approximation and introduction of the proper
time τ for particles, the equations read

m
dxµ

dτ = pµ, (6)

m
dpµ
dτ = gQaFµν

a pν , (7)

m
dQa

dτ = gfabcAb
µQ

cpµ. (8)

The equations are obtained by the substitutions x̂µ →
xµ, p̂µ → pµ, Q̂a → Qa, and will be used as the leading
order of motion for point particles in soft gauge fields.

3 Microscopic distribution function

To describe the ensemble of particles in phase space, it
is convenient to define a distribution function, which de-
pends on the entire set of coordinates, x,p,Q. Here,
we introduce the one-particle distribution functions
f(x,p,Q) and n(x,p,Q); then the color current density
energy-momentum tensor and particle number density
are given by

tµν(x) =

∫
dPdQpµpνf(x,p,Q), (9)

jµa (x) =

∫
dPdQpµQaf(x,p,Q), (10)

n(x) =

∫
dPdQf(x,p,Q), (11)

where

dP = d4pθ(p0)δ(p
2 −m2), (12)

dQ = d3QcRδ(QaQ
a − q2) (13)

are the momentum measure and SU(2) group measure,
respectively, which constrain the mass-on-shell condi-
tion, positive energy, and conservation of the group
Casimirs. Further, cR and q2 are parameters related
to particles and their representations. Here, unlike the
case in Ref. [1], we just define one distribution function
for both particles and antiparticles in the SU(2) gauge,
which are distinguished by the color charge Q. From
Wong’s equations in the SU(2) case, we can write Q in
spherical coordinates as

Q1 = J sin θ cosϕ, (14)
Q2 = J sin θ sinϕ, (15)
Q3 = J cos θ, (16)

and we can find that cR = 2/(
√
3π), q2 = 3/4, and

J =
√
3/2 in Refs. [9, 22].

4 Boltzmann–Vlasov equation with a classical
source term

4.1 Boltzmann–Vlasov equation

The B–V equation can be derived by considering the
total derivative of the distribution function f(x,p,Q).
Considering the proper time τ , we have

m
df(x,p,Q)

dτ = pµBµ[A](τ)f(x,p,Q), (17)

where Bµ[A](τ) = Dµ[A] − gQ · Fµν(τ)∂pν is the B–V
differential operator, and Dµ[A] = ∂µ−gA(τ) ·Q×∂Q is
a color-covariant derivative operator. Thus, if we require
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that p be on-shell and Q satisfy the Casimir relation, the
B–V equation is given by

pµB[A](τ)f(x,p,Q) = ptC(x,p,Q). (18)

Here we ignore collision effects, and C(x,p,Q) is a source
term. Inserting Eqs. (6)–(8) into Eq. (17), the B–V equa-
tion becomes(
pµ

∂

∂xµ
+ gQaFµν

a pν
∂

∂pµ
+ fabcA

b
µQ

c ∂

∂Qa

)
f(x,p,Q)

= ptC(x,p,Q). (19)

4.2 Particle production

By using the one-loop approximation of quantum field
theory, the particle production rate for fermions [20] is

dNq,q̄

dtd3xd2pT
=− 1

4π3

3∑
j=1

|gλj | ln[1−exp(−π(p2T+m2)/|gλj |)],

(20)

where m is the mass of the quark, and λ1, λ2, and λ3 are
the gauge-invariant eigenvalues. All these calculations
are based on the Schwinger tunneling effect in a constant
chromoelectric field.

For classical particle production, we can make the re-
placement Ea(t)T a → E(t) ·Q and replace the sum by
integration of Q, as in Ref. [22]. For a chromoelectric
field that varies slowly, we can also obtain a Q-dependent
particle production rate C(x,p,Q), which is given by

C(x,p,Q) = |Q ·E(x)|R(x,p,Q)δ(pz), (21)

with

R(x,p,Q) = P (x,p,Q)S(x,p,Q), (22)

where

P (x,p,Q) = 1− 2f0(x,p,Q), (23)

and

S(x,p,Q) = 1− exp
(
−π(p2 +m2)

|gQ ·E(x)|

)
. (24)

Here f0(x,p,Q) is a special distribution function, which
is defined as f0(x,p,Q) ≡ f(x,p(pz = 0),Q). Note that
most of the particle production occurs at pz = 0 by Pauli
blocking at pz.

5 Numerical results

In this section, we give the numerical methods and re-
sults. To simplify the calculation, we choose the gauge

potential Aa,µ(x) in the z direction depending only on t
for all a = 1, 2, 3, which reads as

Aa,µ(t) = (0, 0, 0, Aa(t)). (25)

To calculate the distribution of particle production on
the Q sphere, we should solve the trajectory equations
numerically for the distribution function. Because no
particles are produced at t = 0, we set n(0, 0, Q) = 0.
We ignore the Pauli blocking effect in our calculation,
set g = 1, and use the unit m = 1. We consider only the
particles created with zero momentum in the z direction;
then the initial conditions are given as

t(τ0) = 0, pt(τ0) = m, (26)
z(τ0) = 0, pz(τ0) = 0. (27)

For the non-Abelian gauge vector potential, we set A =
(0, 0, 0) initially. We calculate both the constant and co-
sine chromoelectric fields after giving their amplitudes,
Econst and Ecos, respectively. We choose appropriate
constant fields with equal amplitude, and the frequency
of the cosine fields is 0.8 in units of m = 1.

We distribute the color charges on a Q sphere and
consider that the non-Abelian interaction occurs when Q
moves on the sphere according to Wong’s equations. We
take each degree of θ and ϕ on the Q sphere and calculate
the produced particle number density as time advances.
We take dτ = 0.0005 and choose τ0 = 0 to guarantee
that production occurs in the light cone. We also fix Q
at each step to guarantee that Wong’s equations will not
be violated.

After solving the trajectory equations numerically and
finding the distribution function, we can integrate out
the produced particle number density n(x,p,Q). Fur-
ther, especially for the SU(2) case, we can distribute
the color charges on the Q sphere and use θ and ϕ as
two parameters to show the distribution of the produced
particle number density in contour maps.

In our calculation, we find that the number density
is distributed in two islands on the Q sphere, which we
regard as a pair of conjugate particles. Further, the dis-
tribution on the islands is centrosymmetric. Then we
concentrate on describing the phenomena on one island.

In Fig. 1, the distribution of the number density is
initially centered on the island. As time advances, the
distribution center splits into two parts, which move to
each edge of the island. The distribution becomes steady
when the time is sufficiently long. In Fig. 2, we find that
the steady state that the distribution can reach is related
to the amplitude of the field. In a small-amplitude field,
the center will not split at all, but the split occurs when
the amplitude become larger. Further, the two parts
of the center are distributed closer to the edge as the
amplitude of the field increases.

Mo-Ran Jia, et al., Front. Phys. 12(5), 121101 (2017)
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Fig. 1 Contour of produced particle number density on Q sphere in a constant chromoelectric field at different time. The
color bar has been multiplied by 10−5.

Fig. 2 Contour of produced particle number density on Q sphere in constant chromoelectric fields at t = 20 for different
field amplitude of E1 = (1, 0.5, 0.25), E2 = (2, 1, 0.5), E3 = (3, 1.5, 0.75), E4 = (4, 2, 1), E5 = (8, 4, 2), and E6 = (16, 8, 4),
respectively. The color bar has been multiplied by 10−5.

In Fig. 3, we can also find the same phenomenon in a
slowly varying field. The difference is that a fluctuation
structure appears in the contour map as time advances.
Further, compared to the behavior under the constant

field, the two split parts are closer to the edge when they
reach the steady state. Figure 4 shows the contour maps
in cosine fields of different amplitudes; the results are the
same as those for the constant field except that a delicate

121101-4
Mo-Ran Jia, et al., Front. Phys. 12(5), 121101 (2017)



Research article

fluctuation structure exists.
Our calculated temporal evolution lasted until t = 70,

but we show only the contour maps that describe the
splitting process of the distribution center. In our calcu-
lated temporal evolution, we also find that the two parts
of the split distribution center are close to the edge but

never escape from the island. The calculation for fields of
different amplitude also shows this confinement behav-
ior. From Figs. 2 and 4, it seems that there is a critical
amplitude that leads to splitting of the distribution cen-
ter. Because it is hard to define the splitting strictly
in a classical calculation, we just choose some discrete

Fig. 3 The same as in Fig. 1 except in a cosine chromoelectric field.

Fig. 4 The same as in Fig. 2 except in a cosine chromoelectric field.

Mo-Ran Jia, et al., Front. Phys. 12(5), 121101 (2017)
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amplitudes.
In Fig. 5, we show the evolution of the total particle

number. We find that the total particle number increases
more quickly in the constant field than in the cosine field
when t < 8 but more slowly in the constant field than
in the cosine field when t > 8. Comparing Fig. 5 with
Figs. 1 and 3, we find that in the constant field, the
distribution reaches the steady state more quickly, but
the total particle number is less than that in the cosine
field.

In Fig. 6, we show the total particle number in fields
of different amplitude at t = 20, which is long enough
to form a steady distribution on the Q sphere. We find
that the total particle number increases at first but then
decreases as the amplitude grows in both the constant
and cosine fields. Further, we find that the largest total
particle number occurs in field E2, and the smallest total
particle number occurs in field E6, yet the distribution
center splits subtly in field E2 but obviously in field E6.
We also find that the total particle number in the con-

Fig. 5 Total produced particle number on Q sphere for
fermions as a function of t.

Fig. 6 Total produced particle number on Q sphere for
fermions as a function of fields amplitude at t = 20. The field
amplitudes Ei with i = 1 to i = 6 are the same as in Fig. 2.

stant field is less than that in the cosine field when the
same amplitudes are given.

6 Conclusion and discussion

It is interesting that when the distribution of particle
production on the Q sphere is calculated, the particle
number density is distributed over two islands and moves
on the Q sphere as it evolves. The distribution is initially
centered, splits into two parts that move to each edge of
the islands, and ultimately reaches a steady state. We
comprehend this as a preproduction process according
to the classical description, which means we can see that
non-Abelian production does not occur immediately but
in a process over time. Further, we regard the two cen-
trosymmetric islands as the color charge space of conju-
gated particles. From our calculation, we also find that
the steady state that the distribution can reach is related
to the amplitude and variation of the field in space-time.

There are two colors in the SU(2) case, and they are
related to one Casimir invariant (which could be de-
scribed by two parameters on a sphere). In our paper,
the color charges (Q) are included as the Darboux vari-
ables. We understand that the non-Abelian interaction
occurs as the color charge moves on the Q sphere. Be-
cause our calculation is based on a classical model, the
color charges vary continuously on the sphere. Further,
particle production is related not only to the particle
number but also to the splittings, in which the base col-
ors should be well defined.

The other important consideration is the Pauli block-
ing effect, which is not included in this work. In fact, we
made some calculations for this problem that included
the Pauli blocking effect and found that a similar pre-
production process exists. Certainly the difference in the
quantitative results obtained with and without the Pauli
blocking effect is worth studying further.

For future work, it is necessary to define the base color
properly and find the value of the critical amplitude that
leads to splitting. In addition, extending the problem to
the SU(3) case and comparing the results with those of
quantum field theory are also important and necessary.

Acknowledgements This work was supported by the Na-
tional Natural Science Foundation of China (NSFC) under Grant
No. 11475026. The computation was carried out at the HSCC of
the Beijing Normal University.

Appendix A Motion equations

To simplify the formalism, we choose a gauge and require
the field Aa,µ(x) in the z direction depending only on t
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for all a = 1, 2, 3, which reads as

Aa,µ(t) = (0, 0, 0, Aa(t)). (A1)

We can easily find the nonvanishing field terms when
µ = z, ν = t or µ = t, ν = z, which give

F a
t,z(t) = −F a

z,t(t) = −∂tA
a(t) ≡ Ea(t). (A2)

From Eq. (5), the nonvanishing terms are

∂tF
a,tz(t) = −∂Ea(t) ≡ Ja,z(t), (A3)

gfabcAb
ztF

a,zt(t) = gfabcAb
ztE

c(t) ≡ Ja,t(t). (A4)

Writing these equations in vector notation yields

∂tA(t) = −E(t), (A5)
∂tE(t) = −Jz(t), (A6)
gA(t)×E(t) = J t(t), (A7)

and from Eqs. (A5)–(A7), we have

∂tJ
t(t) + gA(t)× Jz(t) = 0. (A8)

Inserting these equations into Eqs. (6)–(8), Wong’s equa-
tions can be obtained as

m
dt(τ)

dτ = pt(τ), (A9)

m
dz(τ)

dτ = pz(τ), (A10)

m
dpt(τ)

dτ = gQ(τ) ·E(τ)pz(τ), (A11)

m
dpz(τ)

dτ = gQ(τ) ·E(τ)pt(τ), (A12)

m
dQ(τ)

dτ = gA(τ)×Q(τ)pz(τ). (A13)

By taking a dot product with Q(τ) in Eq. (A13), we can
easily see that Q2 is a conserved quantity. Further, by
taking a dot product with A(τ) in Eq. (A13), we obtain

mA(τ) · dQ(τ)

dτ = 0. (A14)

Recalling that

pt(τ)E(τ) = −m
dt
dτ

A(t)

dt = −m
dA(τ)

dτ , (A15)

Eq. (A12) can be written as a total derivative,

m
d
dτ [p

z(τ) + gQ(τ) ·A(τ)] = 0 (A16)

so that pz(τ)+gQ(τ)·A(τ) ≡ P z is a constant of motion.

Appendix B Solution of the B–V equation

We could solve the B–V equation by using the method of
characteristics. If we integrate the source over a classical
particle path trajectory from τ0 to τ , and require the
field in the z direction and take the pz distribution only,
then the distribution function f(t, pz,Q) reads as

f(t, pz,Q) = f(t(τ0), p
z(τ0),Q(τ0))

+
1

m

τ∫
τ0

dτ ′pt(τ ′)C(t(τ ′), pz(τ ′),Q(τ ′)),

(B1)

where t(τ ′), pz(τ ′),Q(τ ′) are the solutions of the tra-
jectory equations for values between τ0 and τ , where
the path length is real and τ > 0, which means that
the integration is in the light cone as time advances.
Because no particles are present at t = 0, and thus
f0(0, p

z(τ0),Q(τ0))) = 0, Eq. (B1) becomes

f(t, pz,Q) =
1

m

τ∫
τ0

dτ ′pt(τ ′)C(t(τ ′), pz(τ ′),Q(τ ′)).

(B2)

Inserting the classical source term, we have

f(t, pz,Q) =
1

m

τ∫
τ0

dτ ′pt(τ ′)|gQ(τ ′) · E(τ ′)|

×R(τ ′,Q(τ ′))δ(pz(τ ′)); (B3)

considering Eqs. (A12) and (B1) and integrating over
pz(τ ′), we find

f(t(τ),Q(τ)) =
∑

R(τn,Q(τn))θ(t(τn))θ(t− t(τn)),

(B4)

where τn are the solutions of

P z + [Q ·A−Q(τ ′) ·A(τ ′)] = 0, (B5)

using the relation θ(0) = 1
2 . Solving Eq. (B4) and defin-

ing f0(t, 0,Q) ≡ f(t, pz,Q) gives

f0(t,Q) =
S(t,Q)/2 +

∑
τ ′
n
R(τ ′n,Q(τ)n′))

1 + S(t,Q)
, (B6)

which completes the solution of f(t, p,Q) using the
method of characteristics. In the special case, once the
trajectory equations are solved, the special distribution
function can easily be calculated. By substituting the

Mo-Ran Jia, et al., Front. Phys. 12(5), 121101 (2017)
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results into Eqs. (9)–(11), the needed current energy,
pressures, and number density are obtained:

Jz(t) =

∫
dPdQpzQf0(t,Q), (B7)

J t(t) =

∫
dPdQptQf0(t,Q), (B8)

e(t) =

∫
dPdQpt

2
f0(t,Q), (B9)

pz(t) =

∫
dPdQptpzf0(t,Q), (B10)

n(t) =

∫
dPdQf0(t,Q). (B11)
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