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Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific
research and industrial application. An important branch of LIBS research in Asia, the development of
data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics
of spectral data are briefly introduced. Next, two aspects of research on and problems with data
processing methods are described: i) the basic principles of data preprocessing methods are elaborated
in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis
methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future
development of data processing methods for LIBS is also proposed.
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1 Introduction

Laser-induced breakdown spectroscopy (LIBS) is an ana-
lytical type of atomic emission spectroscopy. Since LIBS
was first proposed by Breech and Cross [1] in 1962, it has
attracted increasing attention from researchers. Because
of its unique features such as little or no sample prepara-
tion, remote detection, and rapid online analysis, LIBS
has been applied in many fields such as industrial produc-
tion [2], environmental monitoring [3], medical science
[4], food security [5], the military [6], and space explo-
ration [7]. Furthermore, it has shown great potential for
application in many other fields [8, 9].

However, compared with conventional chemical analy-
sis methods, LIBS has two main drawbacks: i) detection
sensitivity: the limit of detection (LOD) of LIBS is at
the parts per million level [10]; ii) quantitative accuracy:
it is currently difficult to limit the analytical relative er-
ror (RE) to less than 2% [11]. To improve the sensitivity
and accuracy of LIBS analysis, approaches such as ex-
perimental parameter optimization [12], control of the
physical properties of laser-induced plasma [13], varying
the mode and environment of the interaction between the
laser and the material [14–18], and improving instrument
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performance [19] are adopted by researchers. However,
hardware upgrades are costly and limit the further de-
velopment of LIBS. In contrast, the intrinsic signal can
be obtained by noise reduction and correction processes.
In fact, the data processing approach can not only im-
prove the signal-to-noise ratio (SNR), but also reduce the
signal fluctuations, contributing to the improvement of
the detection sensitivity, stability, and reproducibility of
LIBS [20]. Because of its unique features such as intel-
ligence, speed, automatic operation, and cost-efficiency,
data processing has become an important branch of LIBS
research.

Currently, LIBS is being developed rapidly in Asia [21].
In 2014, the eighth international conference on LIBS was
held at Tsinghua University. In 2015, the Asian Sympo-
sium on LIBS (ASLIBS) was held at Huazhong Univer-
sity of Science & Technology. ASLIBS (2015) focused on
new principles and methods of LIBS and novel industrial
applications. All of these events show that LIBS re-
search in Asia has become important worldwide. Research
on data processing methods in Asia has made tremen-
dous progress in the past ten years. Here the research
progress in Asia and problems with LIBS data processing
methods are reviewed and described, and future prospects
for LIBS data processing methods are discussed.

2 Basic theories

2.1 Fundamentals

A typical LIBS system is shown in Fig. 1. The laser
beam from a Q-switched Nd:YAG laser was focused
onto the sample surface by a lens. When the sample
surface was ablated by the high-energy-density pulsed
laser, the materials in the ablation area were vaporized
and ionized, and plasmas were produced immediately.
The plasmas contained a large number of atoms, ions,
and free electrons. Early in the process, the electron
bremsstrahlung and ion–electron recombination radia-
tion, which are radiated in a continuous spectrum and
produce a continuous background, were strong [22]. To

Fig. 1 Schematic diagram of a typical LIBS system.

reduce the effect of the continuous background, a digital
delay generator was adopted to trigger the laser pulses
and control the gate delays and widths of the charge-
coupled device. As the laser continued heating the sam-
ple, the high-temperature, high-particle-density plasma
expanded outward. In this process, the particles in the
plasmas absorbed the laser energy and underwent pho-
toionization and thermal ionization. Collisions among
particles induced further ionization. Then the plasma
plume reached local thermal equilibrium. In the plasma
cooling process, atoms and ions in the excited state tran-
sitioned down to lower energy levels and radiated pho-
tons; then spectral emission was observed. The plasma
emission was collected by a light collector, coupled into
an optical fiber, and then transmitted to a spectrome-
ter. Finally, the spectral data were analyzed by a com-
puter. From the wavelengths and intensities of the spec-
tral lines, the elements and their concentrations in sam-
ples can be deduced.

2.2 Characteristics of spectral data

• Matrix effect
It has been found that the forms of chemical com-

pounds and the bulk sample composition strongly af-
fect the emission signals, which is called the “matrix ef-
fect” [23]. The matrix effect leads to sample stoichiome-
try problems in the laser ablation process and variation
of the ablation rate. The matrix effect always affects the
characteristics of the laser-induced plasma, including the
plasma temperature, total number density, and electron
density.
• Self-absorption effect

Because the atoms at the plasma periphery are usu-
ally at a low energy level, the emission light from the
plasma center could be reabsorbed by the same type of
atoms at the periphery of the plasma, which is called
the “self-absorption effect” [24]. The self-absorption ef-
fect weakens the peak of a spectral line, so the line’s
intensity is usually lower than its expected value.
• Spectral noise

Noise is unavoidable during spectrum acquisition.
Many factors contribute to noise in the spectrum, such
as photon shot noise, the dark current of the detector,
thermal noise caused by carrier motion, and natural light
[25]. Noise in the spectrum is characterized by a wide dis-
tribution and stochastic volatility. It leads to a low SNR,
which affects the analytical sensitivity and stability.
• Spectral broadening

Ideally, the characteristic spectral line should be an
infinitely narrow spectral line without broadening. In
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the process of actual measurement, however, the spec-
tral lines from plasma are broadened (by Stark broaden-
ing, Doppler broadening, and natural broadening) and
observed by a spectrometer. Because of spectral broad-
ening, the observed spectral lines undergo interference
with lines close to them [26]. This interference eventu-
ally affects the accuracy of the analytical results.

In summary, interference is caused by four factors in
LIBS measurement: i) laser instability: the fluctuation
of the laser energy will affect the stability of the interac-
tion between the laser and the sample; ii) the interaction
between the laser and the sample: this process is affected
by the composition and structure of the sample, which is
also related to the matrix effect, continuous background
radiation, and self-absorption effect; iii) the ambient con-
ditions of plasma generation: the plasma generation and
evolution processes will vary with the ambient conditions
such as the gas, pressure, and temperature; iv) spectrum
acquisition: other noise will be introduced by natural
light, the plasma, and the detector during spectrum ac-
quisition. Thus, spectral signal distortion always exists
as a result of the factors described above. LIBS spectral
signal distortion results in a poor linear relationship be-
tween the concentration of an element and the spectral
line intensity, which reduces the accuracy, precision, and
stability of LIBS analysis.

3 Data processing methods

The effect of the interference signals on the results of
LIBS analysis can be effectively reduced by spectral
data preprocessing and analysis. Asian researchers have
made great progress in research on LIBS data process-
ing methods. China has contributed significantly to
the development of LIBS data processing methods in
Asia [11]. Sun’s group at Shenyang Institute of Au-
tomation, Chinese Academy of Sciences, conducted thor-
ough research on LIBS spectrum denoising, continu-
ous background subtraction, overlapping peak resolu-
tion, and self-absorption correction [25, 27–30]. Wang’s
group at Tsinghua University focused on improving the
quantitative performance of LIBS and proposed a set
of methods to reduce the measurement uncertainty us-
ing a so-called “spectrum standardization” process and
to improve measurement accuracy by combining the ad-
vantages of a statistics-based multivariate model and a
conventional physical-principle-based univariate model
[31–42]. Duan’s group at Sichuan University focused on
the material classification model and studied the per-
formance of the random forest (RF), support vector ma-
chine (SVM), and partial least squares discriminant anal-
ysis (PLS-DA) in LIBS qualitative analysis [43–46]. Lu’s
group at South China University of Technology studied

the principal component regression, partial least squares
regression model, and multivariate analysis methods in
coal analysis [47–50]. Research on LIBS data process-
ing methods also draws much attention in other Asian
countries. Jeong’s group at Gwangju Institute of Sci-
ence and Technology (Korea) focused on self-absorption
correction, spectrum standardization methods, and ma-
terial classification models [51–53]. Bahreini’s group at
the Laser and Plasma Research Institute of Shahid Be-
heshti University (Iran) studied the material classifica-
tion model and the possibility of its application to thy-
roidism diagnosis [54, 55].

There are two types of data processing methods: data
preprocessing methods and data analysis methods. Data
preprocessing methods are aimed at eliminating the ef-
fect of the interference information in the original spectra
and providing high-quality spectra for subsequent quali-
tative and quantitative analysis. There is a relationship
between the spectral line intensity and the concentra-
tion, which ideally are proportional. Data analysis meth-
ods are aimed at obtaining the relationship between the
spectral line intensity and the concentration; then the
elemental composition of the sample can be determined
qualitatively and quantitatively.

3.1 Data preprocessing methods

Data preprocessing can provide high-quality spectra,
which are effective for improving the analytical accu-
racy and precision of LIBS. Data preprocessing methods
are aimed at eliminating the effect of noise, continuous
background radiation, interference between overlapping
peaks, self-absorption, and spectral line intensity fluctu-
ation.

3.1.1 Denoising

Noise contributes to poor SNR of spectra and limits the
LOD in LIBS analysis. The effect of noise can be re-
duced by upgrading the hardware facilities, but hard-
ware upgrades are prohibitively expensive. Thus, denois-
ing based on data processing methods is an economic
and effective solution. With the development of more
sophisticated Fourier analysis, local characterization in
both the time and frequency domains has been improved
greatly by wavelet analysis, which is an effective noise
suppression approach for nonstationary signals such as
LIBS spectra. An increasing number of researchers are
introducing wavelet analysis to LIBS spectrum prepro-
cessing. Zhang et al. [27] proposed the double thresh-
old optimization model on the basis of wavelet semisoft
threshold denoising. The results showed that the LOD
values were reduced by more than 50%, and the SNR
values were improved by a factor of 2. Yuan et al. [40]
studied the performance of wavelet hard threshold de-
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noising, and the SNR values of the 247.86 nm C line
under air, argon, and helium ambient gases improved by
2, 2, and 3 times, respectively. Zhang et al. [25] used
entropy analysis to determine the optimal decomposition
level of wavelet threshold denoising, and the LOD val-
ues were reduced by more than 50% when the proposed
method was used.

3.1.2 Continuous background removal

The continuous background is distributed throughout
the spectral range. Although the continuous back-
ground decays quickly, and spectra with a high signal-to-
background ratio (SBR) can be obtained by controlling
the delay time and gate width of the detector, the ef-
fect of the continuous background cannot be eliminated
completely. By using data preprocessing methods, the
continuous background can be removed effectively, and
a higher SBR can be obtained. Sun and Yu [28] set
a proper threshold to find the reasonable minima and
then used polynomial functions to approximate the con-
tinuous background, realizing automatic estimation of
varying continuum background emission. By using the
proposed method, the correlation coefficient of the lin-
ear calibration curve of Si in Al alloy samples was im-
proved from 0.7837 to 0.8227. Yuan et al. [40] real-
ized continuous background removal by deducting the
low-frequency components of the spectrum after wavelet
transform, and the root mean square error of prediction
(RMSEP) was considered as the optimization goal. Zou
et al. [56] proposed a modified algorithm of background
removal in wavelet transform. The scaling factor γ was
introduced to modify the conventional algorithm. The
results showed that overfitting phenomena can be effec-
tively avoided and the accuracy of the regression model
can be improved by using the proposed method. Hu et al.
[57] studied the sliding window integral slope algorithm
for removing the continuous background. By using the
proposed method, the SBR values for lead and copper
were increased by 5.7 and 1.95 times, respectively. The
relative standard deviations (RSDs) were reduced by 2%
and 2.5%, respectively.

3.1.3 Spectral peak recognition and overlapping peak
resolution

Peak overlap leads to severe distortion of the intensi-
ties of spectral lines and results in low analytical accu-
racy and precision in LIBS. Thus, spectral peak recogni-
tion and overlapping peak resolution play an important
role in LIBS spectral data preprocessing research. Li
et al. [58] proposed a symmetrical zero-area transfor-
mation method for peak seeking. The experimental re-
sults showed that the proposed method possesses strong
adaptability to volatility. Its ability to recognize weak

peaks was close to, or even better than, that of artificial
recognition. Chen et al. [59] proposed an automatic peak
detection method based on continuous wavelet transform
to eliminate the effect of the background and noise. The
proposed method realized highly accurate peak detec-
tion and exhibited a strong ability to recognize overlap-
ping peaks. Zhang et al. [29] studied a method for re-
solving overlapping peaks using curve fitting. The pro-
posed method determined appropriate initial values for
curve fitting according to fractional differential theory,
and then the Levenberg–Marquardt method was used
to optimize the curve fitting. High efficiency and accu-
racy were obtained in both simulated and experimental
results. The ultimate aim of overlapping peak resolu-
tion and peak recognition is to provide spectral lines
with high quality for qualitative and quantitative anal-
ysis. Analytical line selection methods have also been
studied. Yang et al. [60] proposed a method that can
select analytical lines automatically according to the in-
trinsic characteristics of spectral lines such as the inten-
sity, wavelength, and width at half-height.

3.1.4 Self-absorption correction

Because of the self-absorption effect, the intensity of
spectral lines is lower than its expected value, which
contributes to the poor accuracy of quantitative anal-
ysis. The analytical accuracy can be improved to a cer-
tain extent by using data preprocessing method to cor-
rect the spectral line for self-absorption. The conven-
tional curve-of-growth method requires a large amount of
calculation and computational complexity, so its perfor-
mance is unsatisfactory [61]. Sun and Yu [30] proposed
an internal reference for self-correction (IRSAC) method,
which used a regressive algorithm to estimate and correct
the self-absorption. In et al. [51] introduced the spec-
tral line intensity ratio into the self-absorption correction
model. Ni et al. studied the very fast simulated anneal-
ing algorithm and proposed a self-absorption correction
algorithm based on multiparticle spectra [62]. The ac-
curacy of quantitative analysis in calibration-free LIBS
(CF-LIBS) can be improved effectively by self-absorption
correction. High-precision CF-LIBS analysis is generally
needed for commercialization of LIBS instruments. Data
preprocessing methods have been demonstrated to be a
good choice to correct the self-absorption owing to their
high efficiency and low cost.

3.1.5 Spectrum standardization

Spectrum standardization can be used to reduce the ef-
fect of spectral signal intensity fluctuations, and it has
become a routine tool in data preprocessing. The ba-
sic procedure in conventional spectrum standardization
methods is to select an internal reference line and nor-
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malize it, or standardize it, using spectral line intensity
ratios. The principle of this method is the use of the ratio
of two or more spectral lines’ intensities to compensate
for spectral line intensity fluctuations. Hou et al. [33]
proposed a combined atomic and ionic line algorithm
to improve data stability. Because the intensities of an
atomic line and an ionic line change in opposite direc-
tions in response to changes in the plasma temperature,
the signal fluctuation caused by the plasma temperature
variation can be compensated. In et al. [52] introduced
spectral line intensity ratios into the calibration model,
which can effectively eliminate the effect of the spectral
line intensity fluctuation on the analysis results.

To reduce the effect of signal fluctuation further, Wang
et al. [31] proposed a new spectrum standardization
method. The basic principle of the method is as fol-
lows. Assuming there exists a “standard state” charac-
terized by a standard plasma temperature, electron num-
ber density, and total number density, the standardiza-
tion model can be obtained by converting the spectral
line intensity to the intensity in the standard state. To
avoid the complicated calculation of the plasma temper-
ature and electron number density, Li et al. [32] pro-
posed a simplified spectrum standardization method in
which Taylor expansion is applied to compensate for the
fluctuations caused by variations in the plasma temper-
ature, electron number density, and total number den-
sity. On the basis of the simplified spectrum standard-
ization method, Li et al. [37] studied the performance of
a combination PLS and spectrum normalization model
that used the information of multiple lines in quantita-
tive analysis. Compared with the simplified standard-
ization model, the PLS-based spectrum normalization
model can improve the RSD, the standard error, R2,
the RMSEP, and the maximum relative error (MRE) by
about 38%, 38%, 0.6%, 11%, and 38%, respectively. In
contrast to conventional spectrum standardization meth-
ods, complicated calculation is avoided, the effect of sig-
nal fluctuations is effectively reduced, and the stability of
LIBS analysis is improved by using the “standard state”
method.

Because the formation mechanisms of interference in-
formation in LIBS spectra are complex, it is difficult to
completely eliminate the effect of the interference infor-
mation. Thus, to further improve the quality of spectra
using data preprocessing methods, the formation mech-
anism of plasma should be considered.

3.2 Data analysis methods

Data analysis is demonstrated to be of crucial impor-
tance in LIBS analysis. It is well known that there is
much elemental information in LIBS spectra. The aim of
data analysis methods is to obtain the key information on

the elemental composition of samples with higher accu-
racy and precision. There are two types of data analysis
methods: qualitative analysis and quantitative analysis.
Many types of analytical models are established in data
analysis methods to realize qualitative and quantitative
analyses.

3.2.1 Qualitative analysis

The aim of qualitative analysis is to identify and clas-
sify samples without providing accurate concentrations
of the constituent elements. The most common qual-
itative analysis is classification, including unsupervised
pattern recognition and supervised pattern recognition.
The most commonly used unsupervised pattern recogni-
tion method is principal component analysis (PCA) [63].
Commonly used supervised pattern recognition methods
include PLS-DA [64], SVM [65], RF [43], and artificial
neural network (ANN) [66].
• Principal component analysis

PCA is a multivariate statistical analysis method that
can be used to extract the important variables by linear
transformation. The spectral lines in LIBS spectra rep-
resent many variables. PCA can be used in LIBS data
analysis to extract the most important variables that can
describe the spectral characteristics. Liu et al. [67] clas-
sified four plastic materials (high-density polyethylene,
low-density polyethylene, polyethylene terephthalate,
and nylon) using PCA combined with cross-validation.
• Partial least squares discriminant analysis

PLS-DA is a discriminant analysis method based on
PLS. Discriminant analysis determines how to classify
the samples on the basis of several measured variables.
PLS-DA is similar to PCA, but PLS-DA is a supervised
pattern recognition method, which means that a learning
process is necessary before unknown samples can be iden-
tified. Gazmeh et al. [54] discriminated healthy and car-
ious tooth tissues using PLS-DA. The proposed method
yielded 100% accuracy for prediction of unknown sam-
ples of dentin and enamel. The classification of unknown
samples requires only a few seconds after the model is
constructed.
• Support vector machine

SVM is a trainable learning machine based on statis-
tical learning theory and the structural risk minimum
principle. It has many advantages for resolving small
sample sizes and nonlinear and high-dimensional pat-
tern recognition, so it is widely applied in LIBS data
analysis. Yu et al. [68] identified 11 types of plastics
with SVM and obtained an average correct identifica-
tion rate of 98.73%. Liang et al. [45] classified nine
types of round steel using a multiclassification method
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based on SVM. The basic principle of the classification
model is as follows. The samples are first classified by a
one-against-all model, and if all the samples are classified
successfully, the classification process is complete; if the
one-against-all model fails to classify all the samples, the
one-against-one model is used to classify the unclassified
samples further.

PLS-DA and SVM are linear and nonlinear analytical
methods, respectively. Some researchers have compared
the performance of the two methods in LIBS data anal-
ysis. Tian et al. [69] investigated the identification of
geological cuttings using PLS-DA and SVM. The exper-
imental results showed that SVM performs significantly
better than PLS-DA, with a correct classification rate of
91.67% as compared to 68.34% and an unclassified rate of
3.33% as compared to 28.33%. Zhu et al. [46] compared
the performance of PLS-DA and SVM in sedimentary
rock classification. The experimental results suggested
that SVM outperforms PLS-DA, with a correct classifi-
cation rate of 93.1% as compared to 91.9%. Because of
the nonlinear relationships in LIBS spectra, the nonlin-
ear SVM method is more suitable for LIBS spectral data
analysis than PLS-DA.
• Random forest

RF is a classifier with multiple decision trees. The
output is determined by the mode of the outputs of the
decision trees. It has specific features such as the ability
to handle a large number of input variables, a fast learn-
ing process, and high classification accuracy. RF has
also been applied in LIBS spectral data analysis. Sheng
et al. [43] studied the identification and discrimination
of ten iron ore grades using RF. The experimental results
showed that the average predicted accuracy rate of RF
is 100%, whereas that of SVM is 96%.

Under some circumstances, better results will be
achieved by combining two or more algorithms. Wang
et al. [70] classified seven types of plastics using a model
combining PCA and an ANN, and obtained a classifi-
cation accuracy of 97.5%. Tian et al. [69] used a com-
bined PLS-DA and SVM model to classify geological cut-
ting samples. Compared with the results obtained using
SVM alone, the correct classification rate improved to
95% from 91.67%. Selecting the analytical lines by an-
alyzing the correlation between elements in a sample is
an effective auxiliary method. Lee et al. [53] determined
the input variables of the classification model by inten-
sity correlation analysis of the emission lines. The re-
sults were consistent with those of PCA and PLS-DA,
which showed that correlation analysis was helpful for
constructing a simple and efficient classification model.

Table 1 summarizes the features of algorithms ex-
ploited for qualitative analysis in LIBS.

A large number of variables are represented in LIBS
spectral data, and the relationship among them is gen-
erally nonlinear. There are two key tasks for achieving
high classification accuracy: construction of the identi-
fication model and determination of the input variables.
Pattern recognition methods have become relatively ma-
ture. The model should be constructed on the basis of
pattern recognition and take into account the character-
istics of LIBS spectra. The efficiency and accuracy of the
model are affected by the input variables. Determining
the input variables on the basis of the physical character-
istics of the laser-induced plasma is the key to improving
the performance of the model.

3.2.2 Quantitative analysis

To determine the elemental concentrations by analyzing
the intensity of spectral lines is the core of LIBS quan-

Table 1 Algorithms exploited for qualitative analysis in LIBS.

Algorithm Features Performance Reference

PCA Unsupervised; intuitive;
data dimension reduction

4 kinds of plastics: more than 75% average accuracy [67]

PLS-DA Supervised; linear;
reduce the multicollinearity effect

dentin and enamel: 100% average predicted accuracy [54]

SVM Supervised; nonlinear;
small sample and high dimensional
pattern recognition

Round steel: 92.78% average accuracy
Sedimentary rocks: 93.1% average accuracy
11 kinds of plastics: 98.73% average accuracy
Geological cuttings: 91.67% average accuracy

[45]
[46]
[68]
[69]

RF Supervised; a large number of input
variables processing capacity;

fast learning process

Iron ore: 100% average predicted accuracy [43]

PCA+ANN Supervised; self-learning;
calculation reduction;
nonlinear problem processing

7 kinds of plastics: 97.5% average accuracy [70]

PLS-DA+SVM Supervised; simple combination of
PLS-DA and SVM

geological cuttings: 95% average accuracy [69]
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titative analysis. Quantitative analysis methods include
calibration-free [71] and calibration-curve methods.

CF-LIBS is based on plasma spectroscopy theory,
which makes it possible to deduce the elemental com-
position quantitatively without a standard sample. It is
the ideal method in practical applications. Because of
the assumption of optical thinness and the uncertainty
of concentration normalization and parameter calcula-
tion, the precision of CF-LIBS is unsatisfactory. Self-
absorption correction is one of main bottlenecks in CF-
LIBS. Sun and Yu [30] proposed the IRSAC method.
Compared with conventional CF-LIBS, the accuracy of
quantitative analysis with IRSAC was better and the cal-
culation was simpler, but the proposed method can be
utilized only as a semiquantitative method owing to the
limited analysis precision. To further improve the accu-
racy of CF-LIBS, it is necessary to study the physical
mechanism of self-absorption, on the basis of which the
uncertainty of theoretical calculations can be reduced.

Calibration-curve methods can be used to construct
the mapping relationships between the elemental concen-
trations and spectral line intensities for standard sam-
ples. This method includes univariate analysis and mul-
tivariate analysis. Univariate analysis is a conventional
analysis method including standard calibration [72] and
internal calibration [73]. Because the influence of the
matrix effect cannot be eliminated by univariate analy-
sis, the analytical accuracy is limited. The effect of the
nonlinear relationships among the variables of the spec-
tral data can be reduced by multivariate analysis, in-
cluding multiple linear regression (MLR) [74], PLS [75],
dominant-factor-based PLS [34], support vector regres-
sion (SVR) [76], ANN [77], RF [44], and relevance vector
machine (RVM) [78].
• Multiple linear regression

MLR is a conventional multivariate analysis method.
Because of the limited number of independent variables,
MLR is suitable only when the mapping relationships be-
tween independent variables and dependent variables are
linear and there is no multicollinearity between the in-
dependent variables. Yao et al. [49] analyzed unburned
carbon in fly ash using internal calibration and MLR.
Using the MLR can reduce the influence of the matrix
effect to a certain extent and improve the performance
of the quantitative analysis model compared to that ob-
tained using univariate analysis.
• Partial least squares (PLS)

PLS is a multiple-statistic data analysis method that
was developed on the basis of PCA. When the princi-
pal components are extracted using PLS, the correla-
tions among the dependent and independent variables
are taken into account, realizing data structure simpli-

fication, correlation analysis among the variables, and
regression modeling. When conventional PLS methods
were introduced to the analysis of coal [40, 50], metal
[79], plants [80], and fertilizer [48], quantitative analysis
results with high accuracy were obtained. Zou et al. [81]
used a genetic algorithm (GA) to select the variables and
constructed a GA-PLS model. For most of the elements
in soil, the prediction ability of the GA-PLS model was
better than that of PLS methods.
• Dominant-factor-based PLS

Basically, PLS is only a linear correlation statistical
regression method that ignores the physical background.
Further, a univariate model provide more robust results
over a wider range owing to its grounding in physical
principles, but its quantitative performance is not as
good as that of a multivariate model because only a few
spectral lines are used for analysis. To combine the ad-
vantages of these two methods, Wang et al. [35, 36]
proposed the dominant-factor-based PLS model. A mul-
tivariate model was established on the basis of the domi-
nant factor model and the physical background, possibly
considering nonlinearity [36], and PLS was used to com-
pensate for the residual errors of the dominant factor
model and further improve its performance. The results
showed that both the measurement reproducibility and
accuracy were greatly improved when this model was ap-
plied to coal analysis [34, 38, 42].
• Support vector regression

SVR is an SVM method that can realize linear re-
gression by constructing a linear decision function in a
higher-dimensional feature space according to structural
risk minimization. The fit and complexity of the train-
ing samples are considered in SVR. Wang et al. [82]
studied the quantitative analysis models of MLR, neural
network regression, and SVR on the basis of an analysis
of the heavy metal Ni in water. The experimental results
showed that the SVR model exhibited the best perfor-
mance. The average RSD and average relative error were
both less than 3%. The performance of SVM and PLS
has also been compared. Shi et al. [83] and Zhang et al.
[84] both studied the performance of SVR and PLS in
quantitative analysis. The experimental results showed
that the effect of self-absorption can be effectively elim-
inated by using SVR; thus, more accurate quantitative
analysis can be obtained.
• Artificial neural networks

The model constructed by an ANN is based on a simu-
lation of the human neural network, which is suitable for
establishing the nonlinear relationships among the inde-
pendent and dependent variables. Nonlinear effects such
as the self-absorption and matrix effects can be corrected
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to a certain extent by using an ANN. Sun et al. [85] stud-
ied the effect of different inputs on the performance of
the ANN model and compared it with the internal stan-
dard method. The experimental results showed that the
RSD values for Mn and Si decreased to less than 8%
from more than 10% when the ANN model was used.
Li et al. [86] proposed a multi-spectral-line calibration
method based on ANN, which used the intensity ratios
of multiple spectral lines of interest and matrix elements
to train an ANN. Shen et al. [87] used a GA to opti-
mize the weights and thresholds of an ANN. Compared
with the results obtained using a back-propagation ANN
model, the MRE values for Ba and Ni in soil decreased
to 4.15% and 6.06% from 7.91% and 10.5%, respectively,
when the neural–genetic method was used. A large num-
ber of training samples and long training time are needed
in ANN modeling, which is also sensitive to the incom-
pleteness and error of the samples, so the application of
ANN in on-line analysis is limited.
• Random forest

RF regression is based on the multivariate regression
tree. It has a high noise tolerance, which can be useful
for reducing overfitting phenomena. Zhang et al. [44]
studied the performance of the RF regression model in
quantitative analysis of multiple elements in steel. The
RF regression model outperformed PLS and SVM mod-

els, with an RMSE of 0.69 as compared to 1.76 or 0.726,
respectively. High precision and a faster learning process
can be obtained by using an RF regression model. There-
fore, RF has great potential for use in LIBS quantitative
analysis.
• Relevance vector machine

RVM is a sparse probabilistic model that is similar to
SVM. The calculation of the kernel function is much sim-
pler when RVM is used than when SVM is used. Yang
et al. [78] studied an RVM quantitative analysis model.
The experimental results showed that the RVM model
had strong generalization ability. The RMSE was 0.71%
when RVM was used, whereas it was 0.92%, 1.31%,
and 1.39% when PLS, ANN, and SVM, respectively,
were used. RVM can yield higher accuracy and bet-
ter robustness than PLS, ANN, and the standard SVM
model.

Table 2 summarizes the features of algorithms ex-
ploited for quantitative analysis in LIBS.

Because of the effect of factors such as the self-
absorption and matrix effects, poor accuracy is a prob-
lem for both CF-LIBS and standard calibration methods.
During the development of LIBS data analysis methods,
researchers selected or constructed models suitable for
LIBS analysis, for instance: i) the dominant-factor-based
PLS model, which combines the advantages of the uni-

Table 2 Algorithms exploited for quantitative analysis in LIBS.

Algorithm Features Performance Reference

MLR Multivariate analysis;
simple and convenient;
linear problem

C (one kind of coal): R2 = 0.994, AE = 0.04 ∼ 0.78%;
C (different kinds of coal): R2 = 0.981, AE = 0.23 ∼ 0.85%

[49]

PLS Data structure simplification;
correlation analysis;
reduce the multicollinearity effect

Fertilizer sample:
P2O5: RSD=2.55%,AE=0.31%;K2O:RSD=0.92%,AE=0.63%
Ash in coal: RSD = 8.5%, LOD = 1.73%

[48]
[50]

Dominant factor
based on PLS

Nonlinear transformation;
residual errors compensation;
physical mechanism consideration;

Brass sample:
Cu: R2 = 0.999, RMSEP = 2.33%, RMSE = 1.27%
Cu: R2 = 0.999, RMSEP = 1.97%, RMSE = 1.05%

[35]
[36]

SVR High dimensional feature space;
structural risk minimization;
fit and complexity consideration

Sedimentary rock sample:
Si:RMSEP = 1.0352%; Ca:RMSEP = 1.4541%;
Mg:RMSEP = 0.3237%; Fe:RMSEP = 0.4157%;
Slag sample:
F2O3: RMSE=2.43%;TiO2: RMSE=7.83%;CaO:RMSE=6.22%;

[83]
[84]

ANN Simulating human neural network;
self-learning;
correcting nonlinear effects

Steel sample:
Cr: RMSECV = 0.01%, ARSD = 6.4%, MRSD = 7.4%;
Ni: RMSECV = 0.023%, ARSD = 12.9%, MRSD = 20.1%;

[86]

RF Multivariate regression tree;
high noise-tolerance;
fast learning process;

Steel sample:
Si: RMSEP = 1.8657%; Mn: RMSEP = 0.8324%;
Cr: RMSEP = 0.7395%; Ni: RMSEP = 0.6892%;

[44]

RVM Sparse probabilistic;
calculation simplified;
strong robustness;

High-alloy steel sample:
Cr: RMSE = 0.71%, MRE = 4.01%;
Ni: RMSE = 0.92%, MRE = 4.98%;
Mn: RMSE = 1.54%, MRE = 6.21%;

[78]
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variate and multivariate models, can be used to obtain
better results than PLS; ii) analysis models such as SVR
and ANN, which consider the self-absorption and matrix
effects, can be used to improve the analytical accuracy
notably; iii) RF and RVM, which were recently intro-
duced to LIBS analysis, have more potential for LIBS
data analysis. Two key factors determine the perfor-
mance of the quantitative analysis model: the input of
the model and the model parameters. If the full spec-
trum is selected as the input, too much interference infor-
mation will be introduced, which will increase the com-
putational complexity and affect the analytical accuracy.
Thus, the input of the model should be selected reason-
ably. Because the complexity, computation time and the
performance of analysis model are mainly determined by
the model parameters, when selecting the model param-
eters, nonlinear effects such as the self-absorption and
matrix effects in LIBS should be considered.

4 Conclusions

Data processing, which is an indispensable part of LIBS
analysis, is an effective method for improving the accu-
racy and precision. This paper reviews research progress
on two aspects of LIBS data processing: data prepro-
cessing methods and data analysis methods. In research
on both of these aspects, researchers in Asia have made
great progress.

Although the performance of LIBS can be improved
to a certain extent by using data processing methods,
a performance gap still exists between LIBS and con-
ventional analysis methods. The potential for improv-
ing the accuracy and precision of LIBS can be revealed
by using data processing methods. Data preprocessing
methods should take into account the formation mech-
anism of laser-induced plasma and the characteristics
of spectral data, as well as the processing of spectral
data using appropriate mathematical methods. Data
analysis methods should construct a simple and efficient
model that considers nonlinear factors such as the self-
absorption and matrix effects. The market for applica-
tions of LIBS techniques has recently broadened both
in Asia and worldwide. To realize commercialization of
LIBS, its accuracy, precision, and repeatability must be
further improved.
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