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1 Introduction

Charm baryon spectroscopy provides an excellent ground
for studying the dynamics of light quarks in the envi-
ronment of a heavy quark. In the past decade, many
new excited charmed baryon states have been discov-
ered by BaBar, Belle, CLEO and LHCb. B decays and
the e+e− → cc̄ continuum are both very rich sources
of charmed baryons. Many efforts have been made to
identify the quantum numbers of these new states and
understand their properties.

Consider the strong decays ΣQ → ΛQπ and Ξ
′∗
Q →

ΞQπ, where Q = c, b. The mass differences between Σc

and Λc and between Ξ
′∗
c and Ξc in the charmed baryon

sector were found to be large enough that the strong
decays of Σc and Ξ

′∗
c are kinematically allowed. Conse-

quently, the charmed baryon system offers a unique and
excellent laboratory for testing the ideas and predictions
of heavy quark symmetry of the heavy quark and chi-
ral symmetry of the light quarks. These tests will have
interesting implications for the low-energy dynamics of
heavy baryons interacting with Goldstone bosons.

Theoretical interest in hadronic weak decays of
charmed baryons peaked around the early 1990s and
then faded away. To date, we still do not have a good
phenomenological model, not mentioning the quantum
chromodynamics (QCD)-inspired approach as in meson
decays, to describe the complicated physics of baryon
decays. We need cooperative efforts from both experi-
mentalists and theorists to make progress in this arena.

This review is essentially an update of Ref. [1], which
described charmed baryon physics around 2007. The out-
line of the content is the same as that of Ref. [1] except

c© The Author(s) 2015. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop



REVIEW ARTICLE

that we add discussions of the spectroscopy and lifetimes
of doubly charmed baryons.

Several excellent review articles on charmed baryons
can be found in Refs. [2–7].

2 Spectroscopy

2.1 Singly charmed baryons

The singly charmed baryon is composed of a charmed
quark and two light quarks. Each light quark is a triplet
of flavor SU(3). There are two different SU(3) multi-
plets of charmed baryons: a symmetric sextet 6 and an
antisymmetric antitriplet 3̄. The Λ+

c , Ξ+
c and Ξ0

c form
a 3̄ representation and they all decay weakly. The Ω0

c ,
Ξ′+

c , Ξ′0
c and Σ++,+,0

c form a 6 representation; among
them, only Ω0

c decays weakly. We follow the Particle Data
Group’s (PDG�s) convention [8] of using a prime to dis-
tinguish the Ξc in the 6 from that in the 3̄.

In the quark model, the orbital angular momentum of
the light diquark can be decomposed into L� = Lρ +Lλ,
where Lρ is the orbital angular momentum between the
two light quarks, and Lλ is the orbital angular momen-
tum between the diquark and the charmed quark. Al-
though the separate spin angular momentum S� and or-
bital angular momentum L� of the light degrees of free-
dom are not well defined, they are included for guid-
ance from the quark model. In the heavy quark limit,
the spin of the charmed quark Sc, and the total angu-
lar momentum of the two light quarks J� = S� + L�,
are separately conserved. The total angular momentum
is given by J = Sc + J�. It is convenient to use S�,
L�, and J� to enumerate the spectrum of states. More-
over, one can define two independent relative momenta,
pρ = 1√

2
(p1 −p2) and pλ = 1√

6
(p1 +p2− 2pc), from the

two light quark momenta p1, p2 and the heavy quark
momentum pc. Denoting the quantum numbers Lρ and
Lλ as the eigenvalues of L2

ρ and L2
λ, respectively, the

ρ-orbital momentum Lρ describes relative orbital exci-

Fig. 1 Singly charmed baryon where Lρ describes relative orbital
excitation of the two light quarks and Lλ the orbital excitation
of the center of the mass of the two light quarks relative to the
charmed quark.

tations of the two light quarks, and the λ-orbital mo-
mentum Lλ describes orbital excitations of the center of
mass of the two light quarks relative to the heavy quark
(see Fig. 1). The p-wave heavy baryon can be in either
the (Lρ = 0, Lλ = 1) λ-state or the (Lρ = 1, Lλ = 0) ρ-
state. The orbital λ-state (ρ-state) is clearly symmetric
(antisymmetric) under the interchange of p1 and p2. In
the following, we use the notation BcJ�

(JP ) (B̃cJ�
(JP ))

to denote the states that are symmetric (antisymmetric)
in the orbital wave functions under the exchange of two
light quarks. The lowest-lying orbitally excited baryon
states are the p-wave charmed baryons, the quantum
numbers of which are listed in Table 1.

The next orbitally excited states are the positive-
parity excitations with Lρ + Lλ = 2. There exist mul-
tiplets (e.g., Λc2 and Λ̂c2) with the symmetric orbital
wave function, corresponding to Lλ = 2, Lρ = 0 and
Lλ = 0, Lρ = 2 (see Table 2). We use a hat to distinguish
them. Because the orbital Lλ = Lρ = 1 states are an-
tisymmetric under the interchange of two light quarks,
we use a tilde to denote them. Moreover, the notation
B̃L�

cJ�
(JP ) is reserved for tilde states in the 3̄, as the quan-

tum number L� is needed to distinguish different states.
The observed mass spectra and decay widths of

charmed baryons are summarized in Table 3 (see also
Fig. 2). Note that except for the parity of the lightest
Λ+

c and the heavier one Λc(2880)+, none of the other JP

Table 1 The p-wave charmed baryons denoted by BcJ�
(JP ) and B̃cJ�

(JP ) where J� is the total angular momentum of the two light
quarks. The orbital ρ-states with Lρ = 1 and Lλ = 0 have odd orbital wave functions under the permutation of the two light quarks
and are denoted by a tilde.

State SU(3) S� L�(Lρ, Lλ) J
P�
� State SU(3) S� L�(Lρ, Lλ) J

P�
�

Λc1(
1
2

−
, 3

2

−
) 3̄ 0 1 (0,1) 1− Σc0( 1

2

−
) 6 1 1 (0,1) 0−

Λ̃c0(
1
2

−
) 3̄ 1 1 (1,0) 0− Σc1( 1

2

−
, 3
2

−
) 6 1 1 (0,1) 1−

Λ̃c1(
1
2

−
, 3

2

−
) 3̄ 1 1 (1,0) 1− Σc2( 3

2

−
, 5
2

−
) 6 1 1 (0,1) 2−

Λ̃c2(
3
2

−
, 5

2

−
) 3̄ 1 1 (1,0) 2− Σ̃c1( 1

2

−
, 3
2

−
) 6 0 1 (1,0) 1−

Ξc1( 1
2

−
, 3

2

−
) 3̄ 0 1 (0,1) 1− Ξ′

c0( 1
2

−
) 6 1 1 (0,1) 0−

Ξ̃c0(
1
2

−
) 3̄ 1 1 (1,0) 0− Ξ′

c1( 1
2

−
, 3
2

−
) 6 1 1 (0,1) 1−

Ξ̃c1( 1
2

−
, 3

2

−
) 3̄ 1 1 (1,0) 1− Ξ′

c2( 3
2

−
, 5
2

−
) 6 1 1 (0,1) 2−

Ξ̃c2( 3
2

−
, 5

2

−
) 3̄ 1 1 (1,0) 2− Ξ̃′

c1( 1
2

−
, 3
2

−
) 6 0 1 (1,0) 1−
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Table 2 The first positive-parity excitations of charmed baryons denoted by BcJ�
(JP ), B̂cJ�

(JP ) and B̃L�
cJ�

(JP ). Orbital Lρ = Lλ = 1
states with antisymmetric orbital wave functions are denoted by a tilde. States with the symmetric orbital wave functions Lρ = 2 and
Lλ = 0 are denoted by a hat. For convenience, we drop the superscript L� for tilde states in the sextet.

State SU(3) S� L�(Lρ, Lλ) J
P�
� State SU(3) S� L�(Lρ, Lλ) J

P�
�

Λc2(
3
2

+
, 5
2

+
) 3̄ 0 2 (0,2) 2+ Σc1(

1
2

+
, 3
2

+
) 6 1 2 (0,2) 1+

Λ̂c2(
3
2

+
, 5
2

+
) 3̄ 0 2 (2,0) 2+ Σc2(

3
2

+
, 5
2

+
) 6 1 2 (0,2) 2+

Λ̃c1(
1
2

+
, 3
2

+
) 3̄ 1 0 (1,1) 1+ Σc3(

5
2

+
, 7
2

+
) 6 1 2 (0,2) 3+

Λ̃1
c0(

1
2

+
) 3̄ 1 1 (1,1) 0+ Σ̂c1(

1
2

+
, 3
2

+
) 6 1 2 (2,0) 1+

Λ̃1
c1(

1
2

+
, 3
2

+
) 3̄ 1 1 (1,1) 1+ Σ̂c2(

3
2

+
, 5
2

+
) 6 1 2 (2,0) 2+

Λ̃1
c2(

3
2

+
, 5
2

+
) 3̄ 1 1 (1,1) 2+ Σ̂c3(

5
2

+
, 7
2

+
) 6 1 2 (2,0) 3+

Λ̃2
c1(

1
2

+
, 3
2

+
) 3̄ 1 2 (1,1) 1+ Σ̃c0( 1

2

+
) 6 0 0 (1,1) 0+

Λ̃2
c2(

3
2

+
, 5
2

+
) 3̄ 1 2 (1,1) 2+ Σ̃c1(

1
2

+
, 3
2

+
) 6 0 1 (1,1) 1+

Λ̃2
c3(

5
2

+
, 7
2

+
) 3̄ 1 2 (1,1) 3+ Σ̃c2(

3
2

+
, 5
2

+
) 6 0 2 (1,1) 2+

Ξc2(
3
2

+
, 5
2

+
) 3̄ 0 2 (0,2) 2+ Ξ′

c1(
1
2

+
, 3
2

+
) 6 1 2 (0,2) 1+

Ξ̂c2(
3
2

+
, 5
2

+
) 3̄ 0 2 (2,0) 2+ Ξ′

c2(
3
2

+
, 5
2

+
) 6 1 2 (0,2) 2+

Ξ̃c1(
1
2

+
, 3
2

+
) 3̄ 1 0 (1,1) 1+ Ξ′

c3(
5
2

+
, 7
2

+
) 6 1 2 (0,2) 3+

Ξ̃1
c0(

1
2

+
) 3̄ 1 1 (1,1) 0+ Ξ̂′

c1(
1
2

+
, 3
2

+
) 6 1 2 (2,0) 1+

Ξ̃1
c1(

1
2

+
, 3
2

+
) 3̄ 1 1 (1,1) 1+ Ξ̂′

c2(
3
2

+
, 5
2

+
) 6 1 2 (2,0) 2+

Ξ̃1
c2(

3
2

+
, 5
2

+
) 3̄ 1 1 (1,1) 2+ Ξ̂′

c3(
5
2

+
, 7
2

+
) 6 1 2 (2,0) 3+

Ξ̃2
c1(

1
2

+
, 3
2

+
) 3̄ 1 2 (1,1) 1+ Ξ̃′

c0( 1
2

+
) 6 0 0 (1,1) 0+

Ξ̃2
c2(

3
2

+
, 5
2

+
) 3̄ 1 2 (1,1) 2+ Ξ̃′

c1(
1
2

+
, 3
2

+
) 6 0 1 (1,1) 1+

Ξ̃2
c3(

5
2

+
, 7
2

+
) 3̄ 1 2 (1,1) 3+ Ξ̃′

c2(
3
2

+
, 5
2

+
) 6 0 2 (1,1) 2+

Fig. 2 Charmed baryons and their excitations [8].
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Table 3 Mass spectra and widths (in units of MeV) of charmed baryons. Experimental values are taken from the Particle Data Group
[8]. For the widths of the Σc(2455)0/++ and Σc(2520)0/++ baryons, we have taken into account the recent Belle measurement [11] for
average. The width of Ξc(2645)+ is taken from Ref. [12]. For Ξc(3055)0 , we quote the preliminary result from Belle [13].

State JP S� L� J
P�
� Mass Width Decay modes

Λ+
c

1
2

+
0 0 0+ 2286.46 ± 0.14 weak

Λc(2595)+
1
2

−
0 1 1− 2592.25 ± 0.28 2.59 ± 0.56 Λcππ, Σcπ

Λc(2625)+
3
2

−
0 1 1− 2628.11 ± 0.19 < 0.97 Λcππ, Σcπ

Λc(2765)+ ?? ? ? ? 2766.6 ± 2.4 50 Σcπ,Λcππ

Λc(2880)+
5
2

+
? ? ? 2881.53 ± 0.35 5.8 ± 1.1 Σ

(∗)
c π,Λcππ, D0p

Λc(2940)+ ?? ? ? ? 2939.3+1.4
−1.5 17+8

−6 Σ
(∗)
c π,Λcππ, D0p

Σc(2455)++ 1
2

+
1 0 1+ 2453.98 ± 0.16 1.94+0.08

−0.16 Λcπ

Σc(2455)+
1
2

+
1 0 1+ 2452.9 ± 0.4 < 4.6 Λcπ

Σc(2455)0
1
2

+
1 0 1+ 2453.74 ± 0.16 1.87+0.09

−0.17 Λcπ

Σc(2520)++ 3
2

+
1 0 1+ 2517.9 ± 0.6 14.8+0.3

−0.4 Λcπ

Σc(2520)+
3
2

+
1 0 1+ 2517.5 ± 2.3 < 17 Λcπ

Σc(2520)0
3
2

+
1 0 1+ 2518.8 ± 0.6 15.3+0.3

−0.4 Λcπ

Σc(2800)++ ?? ? ? ? 2801+4
−6 75+22

−17 Λcπ,Σ
(∗)
c π,Λcππ

Σc(2800)+ ?? ? ? ? 2792+14
− 5 62+60

−40 Λcπ,Σ
(∗)
c π,Λcππ

Σc(2800)0 ?? ? ? ? 2806+5
−7 72+22

−15 Λcπ,Σ
(∗)
c π,Λcππ

Ξ+
c

1
2

+
0 0 0+ 2467.8+0.4

−0.6 weak

Ξ0
c

1
2

+
0 0 0+ 2470.88+0.34

−0.80 weak

Ξ′+
c

1
2

+
1 0 1+ 2575.6 ± 3.1 Ξcγ

Ξ′0
c

1
2

+
1 0 1+ 2577.9 ± 2.9 Ξcγ

Ξc(2645)+
3
2

+
1 0 1+ 2645.9+0.5

−0.6 2.6 ± 0.5 Ξcπ

Ξc(2645)0
3
2

+
1 0 1+ 2645.9 ± 0.9 < 5.5 Ξcπ

Ξc(2790)+
1
2

−
0 1 1− 2789.9 ± 3.2 < 15 Ξ′

cπ

Ξc(2790)0
1
2

−
0 1 1− 2791.8 ± 3.3 < 12 Ξ′

cπ

Ξc(2815)+
3
2

−
0 1 1− 2816.6 ± 0.9 < 3.5 Ξ∗

cπ,Ξcππ, Ξ′
cπ

Ξc(2815)0
3
2

−
0 1 1− 2819.6 ± 1.2 < 6.5 Ξ∗

cπ,Ξcππ, Ξ′
cπ

Ξc(2930)0 ?? ? ? ? 2931 ± 6 36 ± 13 ΛcK

Ξc(2980)+ ?? ? ? ? 2971.4 ± 3.3 26 ± 7 ΣcK, ΛcKπ, Ξcππ

Ξc(2980)0 ?? ? ? ? 2968.0 ± 2.6 20 ± 7 ΣcK, ΛcKπ, Ξcππ

Ξc(3055)+ ?? ? ? ? 3054.2 ± 1.3 17 ± 13 ΣcK, ΛcKπ, DΛ

Ξc(3055)0 ?? ? ? ? 3059.7 ± 0.8 7.4 ± 3.9 ΣcK, ΛcKπ, DΛ

Ξc(3080)+ ?? ? ? ? 3077.0 ± 0.4 5.8 ± 1.0 ΣcK, ΛcKπ, DΛ

Ξc(3080)0 ?? ? ? ? 3079.9 ± 1.4 5.6 ± 2.2 ΣcK, ΛcKπ, DΛ

Ξc(3123)+ ?? ? ? ? 3122.9 ± 1.3 4.4 ± 3.8 Σ∗
cK, ΛcKπ

Ω0
c

1
2

+
1 0 1+ 2695.2 ± 1.7 weak

Ωc(2770)0
3
2

+
1 0 1+ 2765.9 ± 2.0 Ωcγ

quantum numbers given in Table 3 has been measured.
One has to rely on the quark model to determine the
spin-parity assignments.

In the following, we discuss some of the excited
charmed baryon states:

2.1.1 Λc states

The lowest-lying p-wave Λc states are Λ̃c0(1
2

−),
Λc1(1

2

−
, 3

2

−), Λ̃c1(1
2

−
, 3

2

−) and Λ̃c2(3
2

−
, 5

2

−). The
doublet Λc1(1

2

−
, 3

2

−) is formed by Λc(2595)+ and
Λc(2625)+ [14]. The allowed strong decays are

Λc1(1/2−) → [Σcπ]S , [Σ∗
cπ]D and Λc1(3/2−) →

[Σcπ]D, [Σ∗
cπ]S,D, [Λcππ]P . This explains why the width

of Λc(2625)+ is narrower than that of Λc(2595)+. Be-
cause of isospin conservation in strong decays, Λ+

c1 is not
allowed to decay into Λ+

c π0.
Λc(2765)+ is a broad state first seen in Λ+

c π+π− by
CLEO [15]. However, it is still not known whether it is
a Λ+

c or a Σ+
c and whether the width might be due to

overlapping states. The Skyrme model [16] and the quark
model [17, 18] suggest a JP = 1

2

+ Λc state with a mass of
2742 and 2775 MeV, respectively. Therefore, Λc(2765)+

could be the first positive-parity excitation of Λc. In the

101406-4 Hai-Yang Cheng, Front. Phys. 10(6), 101406 (2015)
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diquark model, it has also been proposed to be either
the first radial (2S) excitation of the Λc with JP = 1

2

−

containing the light scalar diquark or the first orbital ex-
citation (1P ) of the Σc with JP = 3

2

− containing the
light axial vector diquark [19].

The state Λc(2880)+, first observed by CLEO [15]
in Λ+

c π+π−, was also seen by BaBar in the D0p spec-
trum [20]. Belle studied the experimental constraint on
the JP quantum numbers of Λc(2880)+ [21] and found
that JP = 5

2

+ is favored by the angular analysis of
Λc(2880)+ → Σ0,++

c π± together with the ratio Σ∗π/Σπ,
which was measured to be

R ≡ Γ(Λc(2880) → Σ∗
cπ

±)
Γ(Λc(2880) → Σcπ±)

= (24.1 ± 6.4+1.1
−4.5)%. (2.1)

In the quark model, the candidates for the parity-even
spin- 5

2 state are Λc2(5
2

+), Λ̂c2(5
2

+), Λ̃1
c2(

5
2

+), Λ̃2
c2(

5
2

+),
and Λ̃2

c3(
5
2

+) (see Table 2). The first four candidates,
with J� = 2, decay to Σcπ in an F wave and to Σ∗

cπ in
F and P waves. Neglecting the P -wave contribution for
the moment,

Γ (Λc2(5/2+) → [Σ∗
cπ]F )

Γ (Λc2(5/2+) → [Σcπ]F )
=

4
5

p7
π(Λc(2880) → Σ∗

cπ)
p7

π(Λc(2880) → Σcπ)

=
4
5
× 0.29 = 0.23 , (2.2)

where the factor of 4/5 follows from heavy quark symme-
try. At first glance, this appears to be in good agreement
with experiment. However, the Σ∗

cπ channel is available
via a P -wave and is enhanced by a factor of 1/p4

π relative
to the F -wave one. However, heavy quark symmetry can-
not be applied to calculate the contribution of the [Σ∗

cπ]F
channel to the ratio R, as the reduced matrix elements
for the P -wave and F -wave modes differ. In this case, one
has to rely on a phenomenological model to compute the
ratio R. As for Λ̃2

c3(
5
2

+), it decays to Σ∗
cπ, Σcπ and Λcπ

all in F waves. Further,

Γ
(
Λ̃2

c3(5/2+) → [Σ∗
cπ]F

)

Γ
(
Λ̃2

c3(5/2+) → [Σcπ]F
) =

5
4

p7
π(Λc(2880) → Σ∗

cπ)
p7

π(Λc(2880) → Σcπ)

=
5
4
× 0.29 = 0.36 . (2.3)

Although this deviates from the experimental measure-
ment (2.1) by 1σ, it is a robust prediction. This has mo-
tivated us to conjecture that the first positive-parity ex-
cited charmed baryon Λc(2880)+ could be an admixture
of Λc2(5

2

+), Λ̂c2(5
2

+) and Λ̃2
c3(

5
2

+) [10].

It is worth mentioning that the Peking group [22] has
studied the strong decays of charmed baryons on the
basis of the so-called 3P0 recombination model. For the
Λc(2880), the Peking group found that (i) Λc(2880) can-
not be a radial excitation, as its decay into D0p is pro-
hibited in the 3P0 model if Λc(2880) is the first radial
excitation of Λc, and (ii) the states Λc2(5

2

+), Λ̃1
c2(

5
2

+)
and Λ̂c2(5

2

+) are excluded, as they do not decay to D0p

according to the 3P0 model. Moreover, the predicted ra-
tios Σ∗

cπ/Σcπ are either too large or too small compared
to experiment, for example,

Γ (Λc2(5/2+) → Σ∗
cπ)

Γ (Λc2(5/2+) → Σcπ)
= 89 ,

Γ
(
Λ̂c2(5/2+) → Σ∗

cπ
)

Γ
(
Λ̂c2(5/2+) → Σcπ

) = 0.75 . (2.4)

Both symmetric states Λc2 and Λ̂c2, are thus ruled out.
Hence, it appears that Λ̃2

c3(
5
2

+) dictates the inner struc-
ture of Λc(2880).1) However, there are several problems
with this assignment: (i) the quark model indicates a
Λc2(5

2

+) state around 2910 MeV, which is close to the
mass of Λc(2880), whereas the mass of Λ̃2

c3(
5
2

+) is even
higher [17, 18], (ii) Λ̃2

c3(
5
2

+) can decay to an F -wave Λcπ,
and this has not been seen by BaBar and Belle, and (iii)
the calculated width, 28.8 MeV, is too large compared
to the measured one, 5.8±1.1 MeV. One may argue that
the 3P0 model’s prediction can easily differ from the ex-
perimental measurement by a factor of 2–3 owing to its
inherent uncertainties [22].

Interestingly, the quantum numbers JP = 5
2

+ for the
Λc(2880) were correctly predicted on the basis of the
diquark concept in Refs. [24, 25] before the Belle exper-
iment.

The highest state Λc(2940)+ was first discovered by
BaBar in the D0p decay mode [20] and confirmed by
Belle in the decays Σ0

cπ
+, Σ++

c π−, which subsequently
decay into Λ+

c π+π− [21]. Its spin-parity assignment is
quite diverse. For example, it has been argued that
Λc(2940)+ is the radial excitation of Λc(2595) with JP =
1
2

−, but the predicted mass is too large by the order of
40 MeV. Alternatively, it could be the first radial exci-
tation of Σc (not Λc!) with JP = 3/2+ [26]. The latter
assignment has the advantage that the predicted mass is
in better agreement with experiment. Because the mass
of Λc(2940)+ is barely below the threshold of D∗0p, this
observation motivated the authors of Ref. [27] to suggest

1) It has been argued in Ref. [23] that in the chiral quark model Λc(2880) favors to be the state |Λc
2S+1LσJP 〉 = |Λc

2Dλλ
3
2

+〉 with

Lρ = 0 and Lλ = 2 rather than |Λc
2DA

5
2

+〉 with Lρ = Lλ = 1 as the latter cannot decay into D0p. However, this is not our case

as Λ̃2
c3(

5
2

+
) does decay to D0p and can reproduce the measured value of R.

Hai-Yang Cheng, Front. Phys. 10(6), 101406 (2015) 101406-5



REVIEW ARTICLE

an exotic molecular state of D∗0 and p with a binding en-
ergy of the order of 6 MeV and JP = 1

2

− for Λc(2940)+.
The quark potential model predicts a 5

2

− Λc state at 2900
MeV and a 3

2

+ Λc state at 2910 MeV [17, 18]. A similar
result of 2906 MeV for 3

2

+ Λc was also obtained in the
relativistic quark model [28].

2.1.2 Σc states

The highest isotriplet charmed baryons, Σc(2800)++,+,0,
which decay to Λ+

c π, were first measured by Belle [29]
with widths of the order of 70 MeV. The possible
quark states are Σc0(1

2

−), Σc1(1
2

−
, 3

2

−), Σ̃c1(1
2

−
, 3

2

−),
and Σc2(3

2

−
, 5

2

−). The states Σc1 and Σ̃c1 are ruled out
because their decays to Λ+

c π are prohibited in the heavy
quark limit. Now the Σc2(3

2

−
, 5

2

−) baryon decays primar-
ily into the Λcπ system in a D-wave, whereas Σc0(1

2

−)
decays into Λcπ in an S-wave. Because heavy hadron chi-
ral perturbation theory (HHChPT) implies a very broad
Σc0 with a width of the order of 885 MeV (see Section
3.2 below), this p-wave state is also excluded. There-
fore, Σc(2800)++,+,0 are likely to be either Σc2(3

2

−) or
Σc2(5

2

−) or a mixture of the two. In the quark-diquark
model [26], both of them have very close masses com-
patible with experiment. Given that for light strange
baryons, the first orbital excitation of the Σ also has
the quantum numbers JP = 3/2− (see Fig. 2), we will
advocate a Σc2(3/2−) state for Σc(2800).

2.1.3 Ξc states

The states Ξc(2790) and Ξc(2815) form the doublet
Ξc1(1

2

−
, 3

2

−). Because the diquark transition 1− → 0++π

is prohibited, Ξc1(1
2

−
, 3

2

−) cannot decay to Ξcπ. The
dominant decay modes are [Ξ′

cπ]S for Ξc1(1
2

−) and
[Ξ∗

cπ]S for Ξc1(3
2

−).
Many excited charmed baryon states Ξc(2980),

Ξc(3055), Ξc(3080), and Ξc(3123) have been seen at B

factories [12, 30, 31]. Another state Ξc(2930)0, which
is omitted from the PDG summary table, has been
seen only by BaBar in the Λ+

c K− mass projection of
B− → Λ+

c Λ̄−
c K− [33]. However, as we shall see be-

low, it may form a sextet with Σc(2800) and Ωc(3050).
The states Ξc(2980), Ξc(3055), Ξc(3080), and Ξc(3123)
could be the first positive-parity excitations of the Ξc.
The study of Regge phenomenology is very useful for
the JP assignment of charmed baryons [26, 34]. The
Regge analysis suggests that JP = 3/2+ for Ξc(3055)
and 5/2+ for Ξc(3080) [26]. From Table 5 below, we shall
see that Ξc(3080) and Λc(2880) form a nice JP = 5/2+

antitriplet.
In the relativistic quark–diquark model [26], Ξc(2980)

is a sextet JP = 1
2

+ state. According to Table 2, possible
candidates are Ξ′

c1(
1
2

+), Ξ̂′
c1(

1
2

+), Ξ̃′
c0(

1
2

+), and Ξ̃′
c1(

1
2

+).
As pointed out in Ref. [32], strong decays of these four
states, which were studied in Ref. [22] using the 3P0

model show that Ξ̃′
c1(

1
2

+) does not decay to Ξcπ and
ΛcK, and has a width of 28 MeV, consistent with exper-
iment. Therefore, the favored candidate for Ξc(2980) is
Ξ̃′

c1(
1
2

+), which has J� = L� = 1.
The possible quark states for the JP = 5

2

+ Ξc(3080)
baryon in an antitriplet are Ξc2(5

2

+), Ξ̂c2(5
2

+), Ξ̃1
c2(

5
2

+),
Ξ̃2

c2(
5
2

+), and Ξ̃2
c3(

5
2

+) (see Table 2). Because Ξc(3080) is
above the DΛ threshold, the two-body mode DΛ should
exist although it has not been searched for in the DΛ
spectrum. Recall that the neutral Ξc(3055)0 was ob-
served recently by Belle in the D0Λ spectrum [13]. Ac-
cording to the 3P0 model, the first four states are ex-
cluded as they do not decay into DΛ [22]. The only
remaining possibility is Ξ̃2

c3(
5
2

+). This is the analog of
Λ̃2

c3(
5
2

+) for Λc(2880). Nevertheless, the identification of
Ξ̃2

c3(
5
2

+) with Ξc(3080) encounters two potential prob-
lems: (i) its width is dominated by the Ξcπ and Λ+

c K

modes, which have not been seen experimentally, and
(ii) the predicted width of the order of 47 MeV [22] is
too large compared to the measured one, which is of the
order of 5.7 MeV.

2.1.4 Ωc states

Only two ground states have been observed thus far:
1/2+ Ω0

c and 3/2+ Ωc(2770)0. The latter was seen by
BaBar in the electromagnetic decay Ωc(2770) → Ωcγ

[39].

Molecular picture

Because Λc(2940)+ and Σc(2800) are barely below the
D∗0p and DN thresholds, respectively, it is tempting to
conjecture an exotic molecular structure of D∗0 and p

for the former and a molecular state of DN for the lat-
ter [27, 40–44]. Likewise, Ξc(2980) could be a molecular
state of DΛ.

A coupled-channel calculation of the baryon–meson
ND system has been performed to look for an isospin–
spin channel that is attractive enough to form a molec-
ular state [42, 45]. (I)JP = (0)1

2

− was found to be the
most attractive one, followed by (I)JP = (1)3

2

−. This
suggests that Σc(2800) might be an s-wave DN molec-
ular state with (I)JP = (0)1

2

− and Λc(2940) an s-wave
D∗N molecular state with (I)JP = (1)3

2

− (see Fig. 3

101406-6 Hai-Yang Cheng, Front. Phys. 10(6), 101406 (2015)
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of [45]). Another possibility is a DN molecular state
with (I)JP = (1)3

2

− for Σc(2800) and a D∗N state
with (I)JP = (0)1

2

− for Λc(2940). Because Σc(2800) has
isospin 1, and moreover, as we have noted in passing,
Σc(2800) will be too broad if it is assigned to JP = 1/2−,
we conclude that the second possibility is preferable (see
also [44]).

The possible spin-parity quantum numbers of the
higher excited charmed baryon resonances that have
been suggested in the literature are partially summarized
in Table 4. Some of the predictions are already ruled out
by experiment. For example, Λc(2880) has JP = 5

2

+, as
seen by Belle. More experimental studies are certainly to
pin down the quantum numbers.

Charmed baryon spectroscopy has been studied exten-
sively in various models. It appears that the spectroscopy
is well described by the heavy quark–light diquark pic-
ture elaborated by Ebert, Faustov, and Galkin (EFG)
[26] (see also Ref. [35]). As noted in passing, the quantum
numbers JP = 5

2

+ of Λc(2880) were correctly predicted
in a model based on the diquark idea before the Belle
experiment [24, 25]. Moreover, EFG have shown that all
the available experimental data on heavy baryons fit the
linear Regge trajectories nicely, namely, the trajectories
in the (J, M2) and (nr, M

2) planes for orbitally and ra-
dially excited heavy baryons, respectively,

J = αM2 + α0, nr = βM2 + β0, (2.5)

where nr is the radial excitation quantum number, α

and β are the slopes, and α0 and β0 are intercepts. The
linearity, parallelism, and equidistance of the Regge tra-
jectories were verified. The predictions of the spin-parity
quantum numbers of charmed baryons and their masses
in Ref. [26] can be regarded as a theoretical benchmark
(see Fig. 3).

Antitriplet and sextet states
The antitriplet and sextet states of charmed baryons

are listed in Table 5. To date, the following states

are established: the JP = 1
2

+, 1
2

−, and 3
2

−
3̄ states,

(Λ+
c , Ξ+

c , Ξ0
c), (Λc(2595)+, Ξc(2790)+, Ξc(2790)0), and

(Λc(2625)+, Ξc(2815)+, Ξc(2815)0), respectively, and the
JP = 1

2

+ and 3
2

+ 6 states, (Ωc, Σc, Ξ′
c) and (Ω∗

c , Σ
∗
c , Ξ

′∗
c ),

respectively. The mass difference mΞc − mΛc in the an-
titriplet states clearly lies between 180 and 200 MeV.
We note in passing that Ξc(3080) should carry the quan-
tum numbers JP = 5/2+. From Table 5, we see that
Ξc(3080) and Λc(2880) form a nice JP = 5/2+ antitriplet
as the mass difference between Ξc(3080) and Λc(2880)
is consistent with that observed in other antitriplets.
Likewise, the mass differences in the JP = 3/2− sextet
(Ωc(3050), Ξ′

c(2930), Σc(2800)) predicted by the quark–
diquark model are consistent with that measured in
JP = 1/2+ and 3/2+ sextets. Note that there is no
JP = 1

2

− sextet as the Σc(2800) with these spin-parity
quantum numbers will be too broad to be observed.

On the basis of the QCD sum rules, many charmed
baryon multiplets classified according to [6F (or 3̄F ),
J�, S�, ρ/λ)] were recently studied in Ref. [36]. Three sex-

Fig. 3 Singly charmed baryon states where the spin-parity quan-
tum numbers in red are taken from Ref. [26].

Table 4 Possible spin-parity quantum numbers for excited charmed baryon resonances.

Λc(2765) Λc(2880) Λc(2940) Σc(2800) Ξc(2930) Ξc(2980) Ξc(3055) Ξc(3080) Ξc(3123)

Capstick et al. [17, 18] 1
2

+ 3
2

+
, 5
2

− 3
2

−
, 5
2

−

B. Chen et al. [35] 1
2

+
(2S) 5

2

+
(1D) 1

2

−
(2P ) 1

2

+
(2S) 3

2

+
(1D) 5

2

+
(1D) 1

2

−
(2P )

H. Chen et al. [36] 1
2

+
, 1
2

− 1
2

−
, 3
2

− 1
2

−
, 3

2

− 5
2

−

Cheng et al. [10] 3
2

− 1
2

+ 5
2

+

Ebert et al. [26] 1
2

+
(2S) 5

2

+
(1D) 1

2

−
(2P ), 3

2

+
(2S) 1

2

−
, 3

2

−
(1P ) 1

2

−
, 3
2

−
, 5

2

− 1
2

+
(2S) 3

2

+
(1D) 5

2

+
(1D) 7

2

+
(1D)

Garcilazo et al. [28] 1
2

+ 1
2

−
, 3

2

− 3
2

+ 1
2

−
, 3
2

−

Gerasyuata et al. [37] 5
2

− 1
2

− 5
2

−

Liu et al. [38] 1
2

−
(1P ) 1

2

−
, 3
2

−
(1P ) 3

2

+
(1D) 1

2

+
(2S) 3

2

+
, 5

2

+
(1D)

Wilczek et al. [24, 25] 5
2

+

Zhong et al. [23] 1
2

−
(1P ) 3

2

+
(1D) 5

2

+
(1D) 1

2

−
, 5

2

−
(1P )
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Table 5 Antitriplet and sextet states of charmed baryons. The JP quantum numbers of Ξc(3080), Ξ′
c(2930), Σc(2800) are not yet

established and the Ωc(3/2−) state has not been observed. Mass differences ΔmΞcΛc ≡ mΞc −mΛc , ΔmΞ′
cΣc

≡ mΞ′
c
−mΣc , ΔmΩcΞ′

c
≡

mΩc − mΞ′
c

are in units of MeV.

JP States Mass difference Status

3̄ 1/2+ Λc(2287)+ , Ξc(2470)+ , Ξc(2470)0 ΔmΞcΛc = 183 estab

1/2− Λc(2595)+ , Ξc(2790)+ , Ξc(2790)0 ΔmΞcΛc = 198 estab

3/2− Λc(2625)+ , Ξc(2815)+ , Ξc(2815)0 ΔmΞcΛc = 190 estab

5/2+ Λc(2880)+ , Ξc(3080)+ , Ξc(3080)0 ΔmΞcΛc = 196 [26]

6 1/2+ Ωc(2695)0 , Ξ′
c(2575)

+,0, Σc(2455)++,+,0 ΔmΞ′
cΣc

= 124, ΔmΩcΞ′
c

= 119 estab

3/2+ Ωc(2770)0 , Ξ′
c(2645)

+,0, Σc(2520)++,+,0 ΔmΞ′
cΣc

= 128, ΔmΩcΞ′
c

= 120 estab

3/2− Ωc(3050)0 , Ξ′
c(2930)

+,0, Σc(2800)++,+,0 ΔmΞ′
cΣc

= 131, ΔmΩcΞ′
c

= 119 [26]

tets were proposed in this work: (Ωc(3250), Ξ′
c(2980),

Σc(2800)) for JP = 1/2−, 3/2− and (Ωc(3320), Ξ′
c(3080),

Σc(2890)) for JP = 5/2−. Note that Ξ′
c(2980) and

Ξ′
c(3080) were treated as p-wave baryons rather than the

first positive-parity excitations, as we have discussed be-
fore. The results for the multiplet [6F , 1, 0, ρ] led the au-
thors of Ref. [36] to suggest that there are two Σc(2800),
Ξ′

c(2980), and Ωc(3250) states with JP = 1/2− and
JP = 3/2−. The mass splittings are 14 ± 7, 12 ± 7,
and 10 ± 6 MeV, respectively. The predicted mass of
Ωc(1/2−, 3/2−) is around 3250 ± 200 MeV. Using the
central value of the predicted masses to label the states
in the multiplet [6F , 1, 0, ρ] (see Table I of Ref. [36]), one
obtains (Ωc(3250), Ξ′

c(2960), Σc(2730)) for JP = 1/2−

and (Ωc(3260), Ξ′
c(2980), Σc(2750)) for JP = 3/2−. One

can check that ΔmΞ′
cΣc = 230 ± 234 MeV, and ΔmΩcΞ′

c

is of the order of 285±250 MeV. Owing to the large theo-
retical uncertainties in the masses, it is not clear whether
the QCD sum rule calculations are compatible with the
mass differences measured in the JP = 1/2+ and 3/2+

sextets. In any event, it will be interesting to test these
two different model predictions for JP = 3/2− and 1/2−

sextets in the future.

2.2 Doubly charmed baryons

Evidence of doubly charmed baryon states has been re-
ported by SELEX in Ξcc(3520)+ → Λ+

c K−π+ [46]. Fur-
ther observation of Ξ+

cc → pD+K− was also announced
by SELEX [47]. However, none of the doubly charmed
states discovered by SELEX has been confirmed by FO-
CUS [48], BaBar [49], Belle [12] and LHCb [50], although
106 Λc events are produced in B factories, for example,
versus 1630 Λc events observed at SELEX.

The doubly charmed baryons Ξ(∗)++
cc , Ξ(∗)+

cc , Ω(∗)+
cc

with the quark contents ccu, ccd, ccs form an SU(3)
triplet. They have been studied extensively using many
different approaches: the quark model, light quark–
heavy diquark model, QCD sum rules, and lattice simu-

lation. The predicted doubly charmed baryon masses cal-
culated in various models are tabulated in Refs. [51, 52].
For recent QCD sum rule calculations, see e.g. [53–55].
Chiral corrections to the masses of doubly heavy baryons
up to N3LO were presented in Ref. [56].

Figure 4 shows the results of recent lattice studies of
doubly and triply charmed baryon spectra by different
groups: RQCD [57], HSC [58], Brown et al. [59], ETMC
[60], ILGTI [61], PACS-CS [62], Durr et al. [63], Briceno
et al. [64], Liu et al. [65], and Na et al. [66]. A new lat-
tice calculation of Ω(∗)

cc and Ωccc was available in Ref.
[67]. The various lattice results are consistent with each
other and they fall into the ranges

M(Ξcc) = 3.54–3.68 GeV,

M(Ξ∗
cc) = 3.61–3.72 GeV,

M(Ωcc) = 3.57–3.76 GeV,

M(Ω∗
cc) = 3.68–3.85 GeV, (2.6)

and

M(Ωccc) = 4.70–4.84 MeV. (2.7)

Although lattice studies suggest that the mass of the
low-lying Ξcc exceeds 3519 MeV, it is interesting to note
that the authors of [51] calculated the masses of doubly
and triply charmed baryons on the basis of the Regge
phenomenology and found M(Ξ+

cc) = 3520.2+40.6
−39.8 MeV,

in good agreement with SELEX.

3 Strong decays

Owing to the rich mass spectrum and relatively narrow
widths of the excited states, the charmed baryon sys-
tem offers an excellent ground for testing the ideas and
predictions of heavy quark symmetry and light flavor
SU(3) symmetry. The pseudoscalar mesons involved in
the strong decays of charmed baryons such as Σc → Λcπ

are soft. Therefore, heavy quark symmetry of the heavy
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Fig. 4 Doubly charmed low-lying baryon spectra taken from Ref. [57].

quark and chiral symmetry of the light quarks will have
interesting implications for the low-energy dynamics of
heavy baryons interacting with Goldstone bosons.

The strong decays of charmed baryons are most con-
veniently described by the HHChPT, into which heavy
quark symmetry and chiral symmetry are incorporated
[68–70]. Heavy baryon chiral Lagrangians were first con-
structed in Ref. [68] for strong decays of s-wave charmed
baryons and in Refs. [9, 14] for p-wave ones. Previous
phenomenological studies of the strong decays of p-wave
charmed baryons based on HHChPT can be found in
Refs. [9, 10, 14, 71, 72]. The chiral Lagrangian involves
two coupling constants, g1 and g2, for P -wave transitions
between s-wave and s-wave baryons [68]; six couplings,
h2 − h7, for the S-wave transitions between s-wave and
p-wave baryons; and eight couplings; h8 − h15, for the
D-wave transitions between s-wave and p-wave baryons
[9]. The general chiral Lagrangian for heavy baryons cou-
pled to pseudoscalar mesons can be expressed compactly
in terms of superfields. We will not write the relevant
Lagrangians here; instead the reader is referred to Eqs.
(3.1) and (3.3) of Ref. [9]. The partial widths relevant for
our purposes are [9]

Γ(Σ∗
c → Σcπ) =

g2
1

2πf2
π

mΣc

mΣ∗
c

p3
π,

Γ(Σc → Λcπ) =
g2
2

2πf2
π

mΛc

mΣc

p3
π,

Γ(Λc1(1/2−) → Σcπ) =
h2

2

2πf2
π

mΣc

mΛc1

E2
πpπ,

Γ(Σc0(1/2−) → Λcπ) =
h2

3

2πf2
π

mΛc

mΣc0

E2
πpπ,

Γ(Λc1(3/2−) → Σcπ) =
2h2

8

9πf2
π

mΣc

mΛc1(3/2)
p5

π,

Γ
(
Σc1(3/2−) → Σ(∗)

c π
)

=
h2

9

9πf2
π

m
Σ

(∗)
c

mΣc1(3/2)
p5

π,

Γ
(
Σc2(3/2−) → Λcπ

)
=

4h2
10

15πf2
π

mΛc

mΣc2

p5
π,

Γ
(
Σc2(3/2−) → Σ(∗)

c π
)

=
h2

11

10πf2
π

m
Σ

(∗)
c

mΣc2

p5
π,

Γ
(
Σc2(5/2−) → Σcπ

)
=

2h2
11

45πf2
π

mΣc

mΣc2

p5
π,

Γ
(
Σc2(5/2−) → Σ∗

cπ
)

=
7h2

11

45πf2
π

mΣ∗
c

mΣc2

p5
π, (3.1)

where fπ = 132 MeV. The dependence on the pion mo-
mentum is proportional to pπ, p3

π and p5
π for S-wave,

P -wave and D-wave transitions, respectively. It is obvi-
ous that the couplings g1, g2, h2, · · · , h7 are dimension-
less, whereas h8, · · · , h15 have canonical dimension E−1.

3.1 Strong decays of s-wave charmed baryons

Because the strong decay Σ∗
c → Σcπ is kinematically

prohibited, the coupling g1 cannot be extracted directly
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Table 6 Decay widths (in units of MeV) of s-wave charmed
baryons where the measured rates are taken from 2006 PDG [73].

Decay Expt. HHChPT

Σ++
c → Λ+

c π+ 2.23 ± 0.30 input

Σ+
c → Λ+

c π0 < 4.6 2.6 ± 0.4

Σ0
c → Λ+

c π− 2.2 ± 0.4 2.2 ± 0.3

Σc(2520)++ → Λ+
c π+ 14.9 ± 1.9 16.7 ± 2.3

Σc(2520)+ → Λ+
c π0 < 17 17.4 ± 2.3

Σc(2520)0 → Λ+
c π− 16.1 ± 2.1 16.6 ± 2.2

Ξc(2645)+ → Ξ0,+
c π+,0 < 3.1 2.8 ± 0.4

Ξc(2645)0 → Ξ+,0
c π−,0 < 5.5 2.9 ± 0.4

from the strong decays of heavy baryons. In the frame-
work of HHChPT, one can use some measurements as
input to fix the coupling g2, which, in turn, can be used
to predict the rates of other strong decays. Among the
strong decays Σ(∗)

c → Λcπ, Σ++
c → Λ+

c π+ is the most
well-measured. Hence, we shall use this mode to extract
the coupling g2. Using the 2006 data [73] Γ(Σ++

c ) =
Γ(Σ++

c → Λ+
c π+) = 2.23 ± 0.30 MeV, the coupling g2

is extracted as

|g2|2006 = 0.605+0.039
−0.043 . (3.2)

The predicted rates of other modes are shown in Ta-
ble 6. The agreement between theory and experiment
is clearly excellent, except that the predicted width for
Σ∗++

c → Λ+
c π+ is slightly too large.

Using the new data from the 2014 Particle Data Group
[8] in conjunction with the new measurements of the Σc

and Σ∗
c widths by Belle [11], we obtain the new aver-

age Γ(Σ++
c → Λ+

c π+) = 1.94+0.08
−0.16 MeV (see Table 3).

Therefore, the coupling g2 is reduced to

|g2|2015 = 0.565+0.011
−0.024 . (3.3)

From Table 7 we see that the agreement between the-
ory and experiment is further improved: The predicted
Ξc(2645)+ width is consistent with the first new mea-
surement by Belle [12], and the new calculated width for
Σ∗++

c → Λ+
c π+ is now in agreement with experiment. It

is also clear that the Σc width is smaller than that of Σ∗
c

by a factor of ∼ 7, although they will become the same
in the limit of heavy quark symmetry.

3.2 Strong decays of p-wave charmed baryons

Because Λc(2595)+ and Λc(2625)+ form the doublet
Λc1(1

2

−
, 3

2

−), it appears from Eq. (3.1) that the cou-
plings h2 and h8 can in principle be extracted from
Λc(2595) → Σcπ and from Λc(2625) → Σcπ, respec-
tively. Likewise, the information on the couplings h10 and
h11 can be inferred from the strong decays of Σc(2800)
identified with Σc2(3/2−). Couplings other than h2, h8,
and h10 can be related to each other via the quark model
[9].

Although the coupling h2 can be inferred from the two-
body decay Λc(2595) → Σcπ, this method is less accurate
because this decay is kinematically barely allowed or even
prohibited, depending on the mass of Λc(2595)+. For the
old mass measurement m(Λc(2595)) = 2595.4±0.6 MeV

Table 8 Decay widths (in units of MeV) of p-wave charmed
baryons where the measured rates are taken from 2006 PDG [73].

Decay Expt. HHChPT

[73] [10]

Λc(2595)+ → (Λ+
c ππ)R 2.63+1.56

−1.09 input

Λc(2595)+ → Σ++
c π− 0.65+0.41

−0.31 0.72+0.43
−0.30

Λc(2593)+ → Σ0
cπ+ 0.67+0.41

−0.31 0.77+0.46
−0.32

Λc(2593)+ → Σ+
c π0 1.57+0.93

−0.65

Λc(2625)+ → Σ++
c π− < 0.10 0.029

Λc(2625)+ → Σ0
cπ+ < 0.09 0.029

Λc(2625)+ → Σ+
c π0 0.041

Λc(2625)+ → Λ+
c ππ < 1.9 0.21

Σc(2800)++ → Λcπ, Σ
(∗)
c π 75+22

−17 input

Σc(2800)+ → Λcπ,Σ
(∗)
c π 62+60

−40 input

Σc(2800)0 → Λcπ,Σ
(∗)
c π 61+28

−18 input

Ξc(2790)+ → Ξ′0,+
c π+,0 < 15 8.0+4.7

−3.3

Ξc(2790)0 → Ξ′+,0
c π−,0 < 12 8.5+5.0

−3.5

Ξc(2815)+ → Ξ∗+,0
c π0,+ < 3.5 3.4+2.0

−1.4

Ξc(2815)0 → Ξ∗+,0
c π−,0 < 6.5 3.6+2.1

−1.5

Table 7 Decay widths (in units of MeV) of s-wave charmed baryons. Data are taken from 2014 PDG [8] together with the new
measurements of Σc, Σ∗

c [11] and Ξc(2645)+ widths [12]. Theoretical predictions of [74] are taken from Table IV of [75].

Decay Expt. HHChPT Tawfiq Ivanov Huang Albertus

[8] et al. [74] et al. [75] et al. [76] et al. [78]

Σ++
c → Λ+

c π+ 1.94+0.08
−0.16 input 1.51 ± 0.17 2.85 ± 0.19 2.5 2.41 ± 0.07

Σ+
c → Λ+

c π0 < 4.6 2.3+0.1
−0.2 1.56 ± 0.17 3.63 ± 0.27 3.2 2.79 ± 0.08

Σ0
c → Λ+

c π− 1.9+0.1
−0.2 1.9+0.1

−0.2 1.44 ± 0.16 2.65 ± 0.19 2.4 2.37 ± 0.07

Σc(2520)++ → Λ+
c π+ 14.8+0.3

−0.4 14.5+0.5
−0.8 11.77 ± 1.27 21.99 ± 0.87 8.2 17.52 ± 0.75

Σc(2520)+ → Λ+
c π0 < 17 15.2+0.6

−1.3 8.6 17.31 ± 0.74

Σc(2520)0 → Λ+
c π− 15.3+0.4

−0.5 14.7+0.6
−1.2 11.37 ± 1.22 21.21 ± 0.81 8.2 16.90 ± 0.72

Ξc(2645)+ → Ξ0,+
c π+,0 2.6 ± 0.5 2.4+0.1

−0.2 1.76 ± 0.14 3.04 ± 0.37 3.18 ± 0.10

Ξc(2645)0 → Ξ+,0
c π−,0 < 5.5 2.5+0.1

−0.2 1.83 ± 0.06 3.12 ± 0.33 3.03 ± 0.10
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Table 9 Decay widths (in units of MeV) of p-wave charmed baryons. Data are taken from 2014 PDG [8] together with the new
measurements of Σc, Σ∗

c [11] and Ξc(2645)+ widths [12]. Theoretical predictions of [74] are taken from Table IV of [75].

Decay Expt. HHChPT Tawfiq Ivanov Huang Zhu

[8] et al. [74] et al. [75] et al. [76] et al. [22]

Λc(2595)+ → (Λ+
c ππ)R 2.59 ± 0.56 input 2.5

Λc(2595)+ → Σ++
c π− 1.47 ± 0.57 0.79 ± 0.09 0.55+1.3

−0.55 0.64

Λc(2595)+ → Σ0
cπ+ 1.78 ± 0.70 0.83 ± 0.09 0.89 ± 0.86 0.86

Λc(2595)+ → Σ+
c π0 2.74+0.57

−0.60 1.18 ± 0.46 0.98 ± 0.12 1.7 ± 0.49 1.2

Λc(2625)+ → Σ++
c π− < 0.10 <∼ 0.028 0.44 ± 0.23 0.076 ± 0.009 0.013 0.011

Λc(2625)+ → Σ0
cπ+ < 0.09 <∼ 0.040 0.47 ± 0.25 0.080 ± 0.009 0.013 0.011

Λc(2625)+ → Σ+
c π0 <∼ 0.029 0.42 ± 0.22 0.095 ± 0.012 0.013 0.011

Λc(2625)+ → Λ+
c ππ < 0.97 <∼ 0.35 0.11

Σc(2800)++ → Λcπ, Σ
(∗)
c π 75+22

−17 input

Σc(2800)+ → Λcπ,Σ
(∗)
c π 62+60

−40 input

Σc(2800)0 → Λcπ,Σ
(∗)
c π 72+22

−15 input

Ξc(2790)+ → Ξ′0,+
c π+,0 < 15 16.7+3.6

−3.6

Ξc(2790)0 → Ξ′+,0
c π−,0 < 12 17.7+2.9

−3.8

Ξc(2815)+ → Ξ∗+,0
c π0,+ < 3.5 7.1+1.5

−1.5 2.35 ± 0.93 0.70 ± 0.04

Ξc(2815)0 → Ξ∗+,0
c π−,0 < 6.5 7.7+1.7

−1.7

[73], Λc(2595)+ → Σ++
c π−, Σ0

cπ
+ and Λc(2595)+ →

Σ+π0 are kinematically barely allowed. However, for the
new measurement by the CDF, m(Λc(2595)) = 2592.25±
0.28 MeV [79], only the last mode is allowed. Moreover,
the finite width effect of the intermediate resonant states
could become important [71].

We next turn to the three-body decays Λ+
c ππ of

Λc(2595)+ and Λc(2625)+ to extract h2 and h8. As shown
in Ref. [10], the 2006 data Γ(Λc(2595)) = 3.6+2.0

−1.3 MeV
[73] and for the Λc(2595) mass lead to the resonant rate
[10]

Γ(Λc(2593)+ → Λ+
c ππ)R = (2.63+1.56

−1.09)MeV, (3.4)

as shown in Table 9. Assuming the pole contributions to
Λc(2595)+ → Λ+

c ππ due to the intermediate states Σc

and Σ∗
c , the resonant rate for the process Λ+

c1
(2595) →

Λ+
c π+π− can be calculated in the framework of HHChPT

[9]. Numerically, we found

Γ(Λc(2595)+ → Λ+
c ππ)R

= 13.82h2
2 + 26.28h2

8 − 2.97h2h8,

Γ(Λc(2625)+ → Λ+
c ππ)R

= 0.617h2
2 + 0.136 × 106h2

8 − 27h2h8, (3.5)

where Λ+
c ππ = Λ+

c π+π− + Λ+
c π0π0. It is clear that the

limit on Γ(Λc(2625)) gives an upper bound on h8 of the
order of 10−3 (in units of MeV−1), whereas the decay
width of Λc(2595) is entirely governed by the coupling
h2. Specifically, we have [10]

|h2|2006 = 0.437+0.114
−0.102 ,

|h8|2006 < 3.65 × 10−3 MeV−1 . (3.6)

It has been noted [72] that the proximity of the
Λc(2595)+ mass to the sum of the masses of its decay
products will lead to an important threshold effect that
will lower the Λc(2595)+ mass by 2 − 3 MeV compared
to the observed mass. A more sophisticated treatment
of the mass lineshape of Λc(2595)+ → Λ+

c π+π− by the
CDF yields m(Λc(2595)) = 2592.25 ± 0.28 MeV [79],
which is 3.1 MeV smaller than the 2006 world average.
Therefore, the strong decay Λc(2595) → Λcππ is very
close to the threshold. With the new measurement of
m(Λc(2595)), we have (in units of MeV) [32]

Γ(Λc(2595)+ → Λ+
c ππ)R

= g2
2(20.45h2

2 + 43.92h2
8 − 8.95h2h8),

Γ(Λc(2625)+ → Λ+
c ππ)R

= g2
2(1.78h2

2 + 4.557× 106h2
8 − 79.75h2h8). (3.7)

By fitting to the measured M(pK−π+π+) −
M(pK−π+) mass difference distributions and using g2

2 =
0.365, CDF obtained h2

2 = 0.36±0.08 or |h2| = 0.60±0.07
[79]. This corresponds to a decay width Γ(Λc(2595)+) =
2.59±0.30±0.47 MeV [79]. For the width of Λc(2625)+,
CDF observed a value consistent with zero and therefore
calculated an upper limit of 0.97 MeV using a Bayesian
approach. From the CDF measurements Γ(Λc(2595)+) =
2.59 ± 0.56 MeV and Γ(Λc(2625)+) < 0.97 MeV, we ob-
tain

|h2|2015 = 0.63 ± 0.07 ,

|h8|2015 < 2.32 × 10−3 MeV−1 . (3.8)

Hence, the magnitude of the coupling h2 is greatly en-
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hanced from 0.437 to 0.63 . Our h2 differs slightly from
the value of 0.60 obtained by CDF. This is because the
CDF used |g2| = 0.604 to calculate the mass dependence
of Γ(Λ+

c ππ), whereas we used |g2| = 0.565.
The large difference between the values of the cou-

pling h2 obtained in 2006 and 2015 is ascribed to
the fact that the mass of Λc(2595)+ is 3.1 MeV
lower than the previous world average because of the
threshold effect. To illustrate this, we consider the
dependence of Γ(Λ+

c π+π−)/h2
2 and Γ(Λ+

c π0π0)/h2
2 on

ΔM(Λc(2595)) ≡ M(Λc(2595)+) − M(Λ+
c ) as depicted

in Fig. 5. Γ(Λ+
c ππ)/h2

2 at ΔM(Λc(2595)) = 305.79 MeV
is clearly smaller than that at 308.9 MeV. This explains
why h2 should become larger when ΔM(Λc(2595)) be-
comes smaller.

The Ξc(2790) and Ξc(2815) baryons form the doublet
Ξc1(1

2

−
, 3

2

−). The Ξc(2790) and Ξc(2815) widths pre-
dicted using the coupling h2 obtained from Eq. (3.8)
and assuming SU(3) flavor symmetry are shown in Ta-
ble 9. The predicted two-body decay rates of Ξc(2790)0

and Ξc(2815)+ clearly exceed the current experimental
limits because of the enhancement of h2 (see Table 9).
Hence, there is a tension for the coupling h2, as its
value extracted from from Λc(2595)+ → Λ+

c ππ will imply
Ξc(2790)0 → Ξ′

cπ and Ξc(2815)+ → Ξ∗
cπ rates slightly

above current limits. It is conceivable that SU(3) flavor
symmetry breaking can help account for the discrepancy.

Some information on the coupling h10 can be inferred
from the strong decays of Σc(2800). From Eq. (3.1) and
the quark model relation |h3| =

√
3|h2| from Ref. [9],

we obtain, for example, Γ(Σ++
c0 → Λ+

c π+) ≈ 885 MeV.
Hence, Σc(2800) cannot be identified with Σc0(1/2−).
Using the quark model relation h2

11 = 2h2
10 and the mea-

sured widths of Σc(2800)++,+,0 (Table 3), we obtain

|h10| = (0.85+0.11
−0.08) × 10−3 MeV−1 . (3.9)

Fig. 5 Calculated dependence of Γ(Λ+
c π0π0)/h2

2 (full curve)
and Γ(Λ+

c π+π−)/h2
2 (dashed curve) on m(Λc(2595)+) − m(Λ+

c ),
where we have used the parameters g2 = 0.565, h2 = 0.63, and
h8 = 0.85 × 10−3 MeV−1.

The quark model relation |h8| = |h10| then leads to

|h8| ≈ (0.85+0.11
−0.08) × 10−3 MeV−1 , (3.10)

which improves the previous limit (3.8) by a factor of
3. The calculated partial widths of Λc(2625)+ shown in
Table 9 are consistent with experimental limits.

4 Lifetimes

4.1 Singly charmed baryons

Among singly charmed baryons, the antitriplet states
Λ+

c , Ξ+
c , Ξ0

c , and the Ω0
c baryon in the sextet decay

weakly. In 2006, the world averages of their lifetimes were
[73]

τ(Λ+
c ) = (200 ± 6) × 10−15 s,

τ(Ξ+
c ) = (442 ± 26) × 10−15 s,

τ(Ξ0
c) = (112+13

−10) × 10−15 s,

τ(Ω0
c) = (69 ± 12)× 10−15 s. (4.1)

These results remain the same even in 2014 [8]. As we
shall see below, the lifetime hierarchy τ(Ξ+

c ) > τ(Λ+
c ) >

τ(Ξ0
c) > τ(Ω0

c) is understood qualitatively but not quan-
titatively in the operator product expansion (OPE) ap-
proach.

On the basis of the OPE approach to analysis of in-
clusive weak decays, the inclusive rate of the charmed
baryon is schematically represented by

Γ(Bc → f) =
G2

F m5
c

192π3
VCKM

·
(

A0 +
A2

m2
c

+
A3

m3
c

+ O(
1

m4
c

)
)

, (4.2)

where VCKM is the relevant Cabibbo-Kobayashi-
Maskawa matrix element. The A0 term comes from the
c quark decay and is common to all charmed hadrons.
There are no linear 1/mQ corrections to the inclusive de-
cay rate owing to the lack of gauge-invariant dimension-
four operators [81–84], a consequence known as Luke’s
theorem [85]. Nonperturbative corrections start at order
1/m2

Q and are model-independent. Spectator effects in
inclusive decays due to the Pauli interference and W -
exchange contributions account for the 1/m3

c corrections
and they have two noteworthy features: First, the es-
timate of the spectator effects is model dependent; the
hadronic four-quark matrix elements are usually eval-
uated by assuming the factorization approximation for
mesons and the quark model for baryons. Second, there
is a two-body phase-space enhancement factor of 16π2 for
spectator effects relative to the three-body phase space
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Table 10 Various contributions to the decay rates (in units of 10−12 GeV) of singly charmed baryons [86]. Experimental values are
taken from Ref. [8].

Γdec Γann Γint
− Γint

+ ΓSL Γtot τ(10−13 s) τexpt(10−13 s)

Λ+
c 1.006 1.342 −0.196 0.323 2.492 2.64 2.00 ± 0.06

Ξ+
c 1.006 0.071 −0.203 0.364 0.547 1.785 3.68 4.42 ± 0.26

Ξ0
c 1.006 1.466 0.385 0.547 3.404 1.93 1.12+0.13

−0.10

Ω0
c 1.132 0.439 1.241 1.039 3.851 1.71 0.69 ± 0.12

for heavy quark decay. This implies that spectator ef-
fects, which are of the order of 1/m3

c , are comparable to
and even exceed the 1/m2

c terms.
The total width of the charmed baryon Bc gener-

ally receives contributions from inclusive nonleptonic and
semileptonic decays: Γ(Bc) = ΓNL(Bc) + ΓSL(Bc). The
nonleptonic contribution can be decomposed into

ΓNL(Bc) = Γdec(Bc) + Γann(Bc) + Γint
− (Bc) + Γint

+ (Bc),

(4.3)

corresponding to the c-quark decay, W -exchange contri-
bution, and destructive and constructive Pauli interfer-
ence. The inclusive decay rate is known to be governed
by the imaginary part of an effective nonlocal forward
transition operator T . Therefore, Γdec corresponds to the
imaginary part of Fig. 6(a) sandwiched between the same
Bc states. At the Cabibbo-allowed level, Γdec represents
the decay rate of c → sud̄, and Γann denotes the con-
tribution from the W -exchange diagram cd → us. The
interference Γint

− (Γint
+ ) arises from destructive (construc-

tive) interference between the u (s) quark produced in c-
quark decay and the spectator u (s) quark in the charmed
baryon Bc. Note that the constructive Pauli interference
is unique to the charmed baryon sector, as it does not
occur in the bottom sector. From the quark content of
the charmed baryons, it is clear that at the Cabibbo-
allowed level, destructive interference occurs in Λ+

c and
Ξ+

c decays (Fig. 6(c)), whereas Ξ+
c , Ξ0

c and Ω0
c can have

constructive interference Γint
+ (Fig. 6(d)). Because Ω0

c

Fig. 6 Contributions to nonleptonic decay rates of charmed
baryons from four-quark operators: (a) c-quark decay, (b) W -
exchange, (c) destructive Pauli interference, and (d) constructive
interference.

contains two s quarks, it is natural to expect that
Γint

+ (Ω0
c) � Γint

+ (Ξc). The W -exchange contribution (Fig.
6(b)) occurs only for Ξ0

c and Λ+
c at the same Cabibbo-

allowed level. In the heavy quark expansion approach,
the above-mentioned spectator effects can be described
in terms of the matrix elements of local four-quark op-
erators.

The inclusive nonleptonic rates of charmed baryons
in the valence quark approximation and in the limit
ms/mc = 0 are expressed as [86]:

ΓNL(Λ+
c ) = Γdec(Λ+

c ) + cos θ2
CΓann + Γint

− + sin θ2
CΓint

+ ,

ΓNL(Ξ+
c ) = Γdec(Ξ+

c ) + sin θ2
CΓann + Γint

− + cos θ2
CΓint

+ ,

ΓNL(Ξ0
c) = Γdec(Ξ0

c) + Γann + Γint
+ ,

ΓNL(Ω0
c) = Γdec(Ω0

c) + 6 sin θ2
CΓann +

10
3

cos θ2
CΓint

+ ,

(4.4)

where θC is the Cabibbo angle.
The results of a model calculation in Ref. [86] are

shown in Table 10. The lifetime pattern

τ(Ξ+
c ) > τ(Λ+

c ) > τ(Ξ0
c) > τ(Ω0

c) (4.5)

clearly agrees with experiment. This lifetime hierarchy
is qualitatively understandable. The Ξ+

c baryon is the
longest-lived among charmed baryons because of the
smallness of W -exchange and partial cancellation be-
tween constructive and destructive Pauli interference,
whereas Ωc is the shortest-lived owing to the presence
of two s quarks in the Ωc, which greatly enhances the
contribution of Γint

+ . Because Γint
+ is always positive, Γint−

is negative, and the constructive interference has a larger
magnitude than the destructive interference, this ex-
plains why τ(Ξ+

c ) > τ(Λ+
c ). It is also clear from Table

10 that, although the qualitative feature of the lifetime
pattern is comprehensive, the quantitative estimates of
charmed baryon lifetimes and their ratios are still rather
poor.

4.2 Doubly charmed baryons

The inclusive nonleptonic rates of doubly charmed
baryons in the valence quark approximation and in the
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Table 11 Predicted lifetimes of doubly charmed baryons in units
of 10−13s.

Kiselev et al. Guberina et al. Chang et al. Karliner et al.

[87, 88] [89] [90] [52]

Ξ++
cc 4.6 ± 0.5 10.5 6.7 1.85

Ξ+
cc 1.6 ± 0.5 2.0 2.5 0.53

Ω+
cc 2.7 ± 0.6 3.0 2.1

limit ms/mc = 0 are expressed as

ΓNL(Ξ+
cc) = Γdec(Ξ+

cc) + cos θ2
CΓann + sin θ2

CΓint
+ ,

ΓNL(Ξ++
cc ) = Γdec(Ξ++

cc ) + Γint
− ,

ΓNL(Ω+
cc) = Γdec(Ω+

cc) + sin θ2
CΓann + cos θ2

CΓint
+ . (4.6)

Because Γint
+ is positive and Γint− is negative, it is obvi-

ous that Ξ++
cc is longest-lived, whereas Ξ+

cc (Ω+
cc) is the

shortest-lived if Γint
+ > Γann (Γint

+ < Γann). In general, we
have

τ(Ξ++
cc ) � τ(Ω+

cc) ∼ τ(Ξ+
cc). (4.7)

The predictions available in the literature are summa-
rized in Table 11. Note that the lifetime of Ξ+

cc was mea-
sured by SELEX to be τ(Ξ+

cc) < 0.33 × 10−13 s [46].
Because the mass splitting between Ξ∗

cc and Ξcc and
between Ω∗

cc and Ωcc is less than 100 MeV (see also Eq.
(2.6) for the lattice calculations),

mΞ∗
cc
− mΞcc = mΣ∗

c
− mΣc ≈ 65 MeV,

mΩ∗
cc
− mΩcc = mΩ∗

c
− mΩc ≈ 71 MeV, (4.8)

it is clear that only electromagnetic decays are allowed
for Ω∗

cc and Ξ∗
cc.

5 Hadronic weak decays

5.1 Nonleptonic decays

In contrast to the significant advances made over the
last 10 years or so in the study of hadronic weak de-
cays in the bottom baryon sector, progress in the arena
of charmed baryons, both theoretical and experimental,
has been very slow.

In the naive factorization approach, the coefficients a1

for the external W -emission amplitude and a2 for inter-
nal W -emission are given by (c1 + c2

Nc
) and (c2 + c1

Nc
),

respectively. However, we have learned from charmed
meson decays that the naive factorization approach
never works for the decay rate of color-suppressed de-
cay modes, although it usually works for color-allowed
decays. Empirically, it was learned in the 1980s that if
the Fierz-transformed terms characterized by 1/Nc are

dropped, the discrepancy between theory and experi-
ment is greatly reduced [91–93]. This leads to the so-
called large-Nc approach to describing hadronic D decays
[94]. Theoretically, explicit calculations based on QCD
sum-rule analysis [95–97] indicate that the Fierz terms
are indeed largely compensated by the nonfactorizable
corrections.

As the 1/Nc expansion method greatly reduces the dis-
crepancy between theory and experiment for charmed
meson decays, it is natural to ask if this scenario also
works in the baryon sector. This issue can be settled by
experimental measurement of the Cabibbo-suppressed
mode Λ+

c → pφ, which receives contributions only from
the factorizable diagrams. As pointed out in Ref. [98],
the rate predicted by the large-Nc approach is in good
agreement with the measured value. In contrast, its de-
cay rate predicted by the naive factorization approxima-
tion will be too small by a factor of 15. Therefore, the
1/Nc approach also works for the factorizable amplitude
of charmed baryon decays. This also implies that the in-
clusion of nonfactorizable contributions is inevitable and
necessary. If nonfactorizable effects amount to a redefini-
tion of the effective parameters a1, a2, and are universal
(i.e., channel-independent) in charm decays, then we still
have a new factorization scheme with the universal pa-
rameters a1, a2 to be determined from experiment.

It is known that for heavy mesons, the nonfactoriz-
able contributions will render color suppression of in-
ternal W -emission ineffective. However, W -exchange in
baryon decays is not subject to color suppression even
in the absence of nonfactorizable terms. A simple way to
see this is to consider the large-Nc limit. Although the
W -exchange diagram is down by a factor of 1/Nc relative
to the external W -emission one, this difference is com-
pensated by the fact that the baryon contains Nc quarks
in the limit of large Nc, thus allowing Nc different possi-
bilities for W exchange between heavy and light quarks
[100]. That is, the pole contribution can be as impor-
tant as the factorizable one. Experimental measurement
of the decay modes Λ+

c → Ξ0K+, Δ++K−, which pro-
ceed only through the W -exchange contributions, indi-
cates that W -exchange indeed plays an essential role in
charmed baryon decays.

Various theoretical approaches to weak decays of
heavy baryons have been investigated, including the cur-
rent algebra approach [101–117], factorization scheme,
pole model technique [98, 118–122], relativistic quark
model [100, 123], and quark diagram scheme [124, 125].
Model predictions of the branching fractions and decay
asymmetries can be found in Tables VI–VII of [1] for
Bc → B + P decays, Table VIII for Bc → B + V decays
and Table IX for Bc → B(3

2

+) + P (V ) decays.
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Table 12 Branching fractions of the Cabibbo-allowed two-body decays of Λ+
c in units of %. Data are taken from PDG [8] except that

the absolute branching fraction B(Λ+
c → pK−π+) = (5.0 ± 1.3)% is replaced by the new measurement of (6.84 ± 0.24+0.21

−0.27)% by Belle
[126].

Decay B Decay B Decay B
Λ+

c → Λπ+ 1.46± 0.13 Λ+
c → Λρ+ < 6.5 Λ+

c → Δ++K− 1.16 ± 0.07

Λ+
c → Σ0π+ 1.44± 0.14 Λ+

c → Σ0ρ+ Λ+
c → Σ∗0π+

Λ+
c → Σ+π0 1.37± 0.30 Λ+

c → Σ+ρ0 < 1.9 Λ+
c → Σ∗+π0

Λ+
c → Σ+η 0.75± 0.11 Λ+

c → Σ+ω 3.7±1.0 Λ+
c → Σ∗+η 1.16 ± 0.35

Λ+
c → Σ+η′ Λ+

c → Σ+φ 0.42± 0.07 Λ+
c → Σ∗+η′

Λ+
c → Ξ0K+ 0.53± 0.13 Λ+

c → Ξ0K∗+ 0.53± 0.19 Λ+
c → Ξ∗0K+ 0.36 ± 0.10

Λ+
c → pK̄0 3.2± 0.3 Λ+

c → pK̄∗0 2.1± 0.3 Λ+
c → Δ+K̄0 1.36± 0.44

5.2 Discussion

5.2.1 Λ+
c decays

Experimentally, nearly all the branching fractions of the
Λ+

c are measured relative to the pK−π+ mode. On the
basis of ARGUS and CLEO data, the PDG has made a
model-dependent determination of the absolute branch-
ing fraction, B(Λ+

c → pK−π+) = (5.0 ± 1.3)% [8]. Re-
cently, Belle reported a value of (6.84±0.24+0.21

−0.27)% [126]
from the reconstruction of D∗pπ recoiling against the Λ+

c

production in e+e− annihilation. Hence, the uncertain-
ties are much smaller, and, most importantly, this mea-
surement is model independent! More recently, BESIII
has also measured this mode directly with the prelimi-
nary result B(Λ+

c → pK−π+) = (5.84 ± 0.27 ± 0.23)%
[127]. Its precision is comparable to that of Belle’s re-
sult. Another approach is to exploit a particular decay,
B+ → pπ+π+Σ

−−
c , and its charge conjugate to measure

B(Λ+
c → pK−π+), also in a model independent manner

[128].
The branching fractions of the Cabibbo-allowed two-

body decays of Λ+
c are listed in Table 12. The central

values of data taken from the PDG [8] are scaled up
by a factor of 1.37 because of the new measurement of
B(Λ+

c → pK−π+) by Belle [126]. BESIII recently mea-
sured 2-body, 3-body, and 4-body decay modes of Λ+

c

with significantly improved precision [127]. For example,
the result B(Λ+

c → Λπ+) = (1.24±0.07±0.03)% obtained
by BESIII has much better precision than the value of
(1.07 ± 0.28)% quoted by the PDG [8].

Many of the Λ+
c decay modes such as Σ+K+K−, Σ+φ,

Ξ(∗)K(∗)+, and Δ++K− can proceed only through W -
exchange. Experimental measurement of them implies
the importance of W -exchange, which is not subject to
color suppression in charmed baryon decays.

Some Cabibbo-suppressed modes such as Λ+
c → ΛK+

and Λ+
c → Σ0K+ have been measured by Belle [129] and

BaBar [130], respectively. Their branching fractions are
of the order of 10−3−10−4. The first measured Cabibbo-
suppressed mode Λ+

c → pφ, is of particular interest be-
cause it receives contributions only from the factorizable
diagram and is expected to be color suppressed in the
naive factorization approach. A calculation in Refs. [131,
132] yields

B(Λ+
c → pφ) = 2.26 × 10−3a2

2,

α(Λ+
c → pφ) = −0.10 . (5.1)

From the experimental measurement B(Λ+
c → pφ) =

(11.2 ± 2.3) × 10−4 [8]2) , it follows that

|a2|expt = 0.70 ± 0.07 . (5.2)

This is consistent with the result obtained by the 1/Nc

approach, a2 = c2(mc) ≈ −0.59 .
All the models except that of Ref. [121] predict a pos-

itive decay asymmetry α for the decay Λ+
c → Σ+π0 (see

Table VII of Ref. [1]). Therefore, the measurement of
α = −0.45 ± 0.31 ± 0.06 by CLEO [133] is very surpris-
ing. If the negative sign of α is confirmed in the future,
this will imply that the s-wave and p-wave amplitudes for
this decay have opposite signs, contrary to the model ex-
pectation. The implication of this has been discussed in
detail in Refs. [98, 99]. Because the error of the previous
CLEO measurement is very large, it is crucial to more ac-
curately measure the decay asymmetry for Λ+

c → Σ+π0.

5.2.2 Ξ+
c decays

No absolute branching fractions have been measured.
The branching ratios listed in Tables VI and VIII of
Ref. [1] are those relative to Ξ+

c → Ξ−π+π+. Several
Cabibbo-suppressed decay modes such as pK̄∗0, Σ+φ,
Σ+π+π−, Σ−π+π+, and Ξ(1690)K+ have been observed
[8].

The Cabibbo-allowed decays Ξ+
c → B(3/2+) + P have

been studied and are believed to be forbidden, as they

2) We have scaled up the PDG number (8.7 ± 2.7) × 10−4 [8] by a factor of 1.37 for its central value.
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do not receive factorizable and 1/2± pole contributions
[100, 120]. However, the Σ∗+K̄0 mode was seen earlier by
FOCUS [134], and this may indicate the importance of
pole contributions beyond low-lying 1/2± intermediate
states.

5.2.3 Ξ0
c decays

No absolute branching fractions have been measured to
date. However, there are several measurements of the ra-
tios of branching fractions, for example [8],

R1 =
Γ(Ξ0

c → ΛK0
S)

Γ(Ξ0
c → Ξ−π+)

= 0.21 ± 0.02 ± 0.02,

R2 =
Γ(Ξ0

c → Ω−K+)
Γ(Ξ0

c → Ξ−π+)
= 0.297 ± 0.024 . (5.3)

The decay modes Ξ0
c → Ω−K+ and Σ+K− and

Σ+π− proceed only through W -exchange. The measured
branching ratio of Ω−K+ relative to Ξ−π+ implies that
the W -exchange mechanism plays a significant role. The
model of Körner and Krämer [100] predicts R2 = 0.33
(see Table IX of Ref. [1]), in agreement with experiment,
but its prediction R1 = 0.06 is too small compared to
the data.

5.2.4 Ω0
c decays

A unique feature of Ω0
c decays is that the decay Ω0

c →
Ω−π+ proceeds only via external W -emission, whereas
Ω0

c → Ξ∗0K̄0 proceeds via the factorizable internal W -
emission diagram. Various model predictions of Cabibbo-
allowed Ω0

c → B(3/2+) + P (V ) are listed in Table IX of
[1] with the unknown parameters a1 and a2. From the
decay Λ+

c → pφ we learn that |a2| = 0.70 ± 0.07. The
hadronic weak decays of the Ω0

c were recently studied in
great detail in Ref. [135], where most of the decay chan-
nels in Ω0

c decays were found to proceed only through the
W -exchange diagram; moreover, the W -exchange contri-
butions dominate in the rest of the processes, with some
exceptions. Observation of such decays would shed light
on the mechanism of W -exchange effects in these decay
modes.

5.3 Charm-flavor-conserving nonleptonic decays

There is a special class of weak decays of charmed
baryons that can be studied reliably, namely, heavy-
flavor-conserving nonleptonic decays. Some examples are
the singly Cabibbo-suppressed decays Ξc → Λcπ and
Ωc → Ξ′

cπ. The idea is simple: In these decays, only
the light quarks inside the heavy baryon will partici-

pate in weak interactions; that is, while the two light
quarks undergo weak transitions, the heavy quark be-
haves as a “spectator”. As the emitted light mesons are
soft, the ΔS = 1 weak interactions among light quarks
can be handled by the well known short-distance effec-
tive Hamiltonian. This special class of weak decays can
usually be calculated more reliably than the conventional
charmed baryon weak decays. The synthesis of the heavy
quark and chiral symmetries provides a natural setting
for investigating these reactions [136]. The weak decays
ΞQ → ΛQπ with Q = c, b were also studied in Refs.
[137–139].

The combined symmetries of heavy and light quarks
severely restrict the weak interactions allowed. In the
symmetry limit, it is found that B3̄ − B6 and B∗

6 − B6

nonleptonic weak transitions [136] cannot occur. Sym-
metries alone permit three types of transitions: B3̄ −B3̄,
B6 − B6 and B∗

6 − B6 transitions. However, in both
the MIT bag and diquark models, only B3̄ − B3̄ tran-
sitions have nonzero amplitudes. The general amplitude
for Bi → Bf + P is given by

M(Bi → Bf + P ) = iūf(A − Bγ5)ui, (5.4)

where A and B are the S- and P -wave amplitudes, re-
spectively. The S-wave amplitude can be evaluated us-
ing current algebra in terms of the parity-violating com-
mutator term. For example, the S-wave amplitude of
Ξ+

c → Λ+
c π0 is given by

A(Ξ+
c → Λ+

c π0) = − 1√
2fπ

〈Λ+
c ↑ |HPC

eff |Ξ+
c ↑〉, (5.5)

whereas the P -wave amplitude arises from the ground-
state baryon poles [136]:

B(Ξ+
c → Λ+

c π0)

=
g2

2fπ

mΞc + mΞ′
c

mΛc − mΞc2

〈Λ+
c ↑ |HPC

eff |Ξ+
c ↑〉 sinφ, (5.6)

where φ is the mixing angle of Ξc, and Ξ′
c and Ξc1, Ξc2

are their mass eigenstates. The matrix element 〈Λ+
c ↑

|HPC
eff |Ξ+

c ↑〉 was evaluated in Ref. [136] using two dif-
ferent models: the MIT bag model [140, 141] and the
diquark model.

The predicted rates are [136]

Γ(Ξ0
c → Λ+

c π−) = 1.7 × 10−15 GeV,

Γ(Ξ+
c → Λ+

c π0) = 1.0 × 10−15 GeV,

Γ(Ω0
c → Ξ′+

c π−) = 4.3 × 10−17 GeV, (5.7)

and the corresponding branching fractions are

B(Ξ0
c → Λ+

c π−) = 2.9 × 10−4,

B(Ξ+
c → Λ+

c π0) = 6.7 × 10−4,
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B(Ω0
c → Ξ′+

c π−) = 4.5 × 10−6. (5.8)

As stated above, the B6 − B6 transition Ω0
c → Ξ′+

c π−

vanishes in the chiral limit. It receives a finite factor-
izable contribution as a result of a symmetry-breaking
effect. At any rate, the predicted branching fractions
for the charm-flavor-conserving decays Ξ0

c → Λ+
c π− and

Ξ+
c → Λ+

c π0 are of the order of 10−3 − 10−4 and should
be readily accessible in the near future.

5.4 Semileptonic decays

Exclusive semileptonic decays of charmed baryons:
Λ+

c → Λe+(μ+)νe, Ξ+
c → Ξ0e+νe and Ξ0

c → Ξ−e+νe

have been observed experimentally. Their rates depend
on the Bc → B form factors fi(q2) and gi(q2) (i = 1, 2, 3),
which are defined as

〈Bf (pf )|Vμ − Aμ|Bc(pi)〉
= ūf (pf )[f1(q2)γμ + if2(q2)σμνqν + f3(q2)qμ

−(g1(q2)γμ + ig2(q2)σμνqν + g3(q2)qμ)γ5]ui(pi). (5.9)

These form factors have been evaluated using the non-
relativistic quark model [131, 132, 142–144, 151], MIT
bag model [142, 143], relativistic quark model [145, 149],
light-front quark model [146], and QCD sum rules
[147, 148, 150]. Experimentally, the only information
available to date is the form-factor ratio measured in
the semileptonic decay Λc → Λeν̄. In the heavy quark
limit, the six Λc → Λ form factors are reduced to two:

〈Λ(p)|s̄γμ(1 − γ5)c|Λc(v)〉 = ūΛ(FΛcΛ
1 (v · p)

+v/FΛcΛ
2 (v · p))γμ(1 − γ5)uΛc

. (5.10)

Assuming that the form factors exhibit dipole q2 behav-
ior, the ratio R = F̃ΛcΛ

2 /F̃ΛcΛ
1 is measured by CLEO to

be [152]

R = −0.31 ± 0.05 ± 0.04 . (5.11)

Various model predictions of the charmed baryon
semileptonic decay rates and decay asymmetries are
shown in Table 13. Dipole q2 dependence of the form
factors is assumed whenever the form factor momentum
dependence is not available in the model. Four differ-
ent sets of predictions for Λ+

c → ne+νe, which are not
listed in Table 13, were presented in the sum rule cal-
culations of Ref. [153]. The semileptonic decays of Ωc

were treated in Ref. [154] within the framework of a
constituent quark model. From Table 13, we see that
the computed branching fractions of Λ+

c → Λe+ν, which
fall in the range 1.4% ∼ 2.6% are slightly smaller than
the experimental values, (2.9 ± 0.5)% [(2.1 ± 0.6)%, of
the PDG [8]]. The branching fractions of Ξ0

c → Ξ−e+ν

and Ξ+
c → Ξ0e+ν are predicted to lie in the ranges

(0.8 − 2.0)% and (3.3 − 8.1)%, respectively, except that
the QCD sum rule calculation in Ref. [150] predicts a
much larger rate for Ξc → Ξe+νe. Experimentally, only
the ratios of the branching fractions are available to date
[8]:

Γ(Ξ+
c → Ξ0e+ν)

Γ(Ξ+
c → Ξ−π+π+)

= 2.3 ± 0.6+0.3
−0.6,

Γ(Ξ0
c → Ξ−e+ν)

Γ(Ξ0
c → Ξ−π+)

= 3.1 ± 1.0+0.3
−0.5 . (5.12)

There have been active studies of semileptonic decays
of doubly charmed baryons. The interested reader can
consult [155–159] for further references.

Just as with the hadronic decays discussed in the
last subsection, there are also heavy-flavor-conserving
semileptonic processes, for example, Ξ0

c → Λ+
c (Σ+

c )e−ν̄e

and Ω0
c → Ξ+

c e−ν̄e. In these decays only the light quarks
inside the heavy baryon will participate in weak inter-
actions, while the heavy quark behaves as a spectator.
This topic was recently investigated in Ref. [139]. Ow-
ing to the severe phase-space suppression, the branching
fractions are of order 10−6 in the best cases, and typically
10−7 to 10−8.

6 Electromagnetic and weak radiative decays

Although radiative decays are well measured in the
charmed meson sector, e.g., D∗ → Dγ and D∗+

s → D+
s γ,

only three of the radiative modes in the charmed baryon
sector have been seen, namely, Ξ′0

c → Ξ0
cγ, Ξ′+

c →
Ξ+

c γ and Ω∗0
c → Ω0

cγ. This is understandable because
mΞ′

c
− mΞc ≈ 108 MeV, and mΩ∗

c
− mΩc ≈ 71 MeV.

Hence, Ξ′
c and Ω∗

c are governed by the electromagnetic
decays. However, it will be difficult to measure the rates
of these decays because these states are too narrow to
be experimentally resolvable. Nevertheless, we shall sys-
tematically study the two-body electromagnetic decays
of charmed baryons and also weak radiative decays.

6.1 Electromagnetic decays

In the charmed baryon sector, the following two-body
electromagnetic decays are of interest:

B6 → B3 + γ : Σc → Λc + γ, Ξ′
c → Ξc + γ,

B∗
6 → B3 + γ : Σ∗

c → Λc + γ, Ξ′∗
c → Ξc + γ,

B∗
6 → B6 + γ : Σ∗

c → Σc + γ, Ξ′∗
c → Ξ′

c + γ,

Ω∗
c → Ωc + γ, (6.1)

where we denote the spin 1
2 baryons as B6 and B3 for
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Table 13 Predicted semileptonic decay rates (in units of 1010s−1) and decay asymmetries (second entry) in various models. The
absolute branching fraction B(Λ+

c → pK−π+) = (5.0± 1.3)% is replaced by the new measurement of (6.84± 0.24+0.21
−0.27)% by Belle [126]

for the data of Γ(Λ+
c → Λ0	+ν�) taken from the PDG [8]. Predictions of [142, 143] are obtained in the non-relativistic quark model and

the MIT bag model (in parentheses).

Process [131, 132] [142, 143] [144] [145] [146] [147] [148] [149] [150] [151] Expt. [8]

Λ+
c → Λ0e+νe 7.1 11.2 (7.7) 9.8 7.22 7.0 13.2 ± 1.8 10.9 ± 3.0 14.4 ± 2.6

−0.812 −1 −0.88 ± 0.03 −0.86 ± 0.04

Λ+
c → Λ0μ+νe 7.1 11.2 (7.7) 9.8 7.22 7.0 13.2 ± 1.8 10.9 ± 3.0 13.3 ± 2.8

Λ+
c → ne+νe 1.32 1.01 0.96, 1.37

Ξc → Ξe+νe 7.4 18.1 (12.5) 8.5 8.16 9.7 64.8 ± 22.6 seen

Ξc → Σe+νe 3.3 ± 1.7

the symmetric sextet 6 and antisymmetric antitriplet 3̄,
respectively, and the spin 3

2 baryon by B∗
6 .

An ideal theoretical framework for studying the above-
mentioned electromagnetic decays is provided by the for-
malism in which the heavy quark symmetry and the chi-
ral symmetry of light quarks are combined [68–70]. When
supplemented by the nonrelativistic quark model, the
formalism determines completely the low energy dynam-
ics of heavy hadrons. The electromagnetic interactions
of heavy hadrons consist of two distinct contributions:
one from gauging electromagnetically the chirally invari-
ant strong interaction Lagrangians for heavy mesons and
baryons given in Refs. [68–70], and the other from the
anomalous magnetic moment couplings of the heavy par-
ticles. The heavy quark symmetry reduces the number
of free parameters needed to describe the magnetic cou-
plings to the photon. There are two undetermined pa-
rameters for the ground-state heavy baryons. All of these
parameters are related simply to the magnetic moments
of the light quarks in the nonrelativistic quark model.
However, the charmed quark is not particularly heavy
(mc � 1.6 GeV), and it carries a charge of 2

3e. Conse-
quently, the contribution from its magnetic moment can-
not be neglected. The chiral and electromagnetic gauge-
invariant Lagrangian for heavy baryons can be found in
Eqs. (3.8) and (3.9) of Ref. [160], and are denoted by
L(1)

B and L(2)
B , respectively.

The most general gauge-invariant Lagrangian Eq. (3.9)
of Ref. [160] for magnetic transitions of heavy baryons
can be recast in terms of superfields [161, 162]:

L(2)
B = −i3a1tr(S̄μQFμνSν)

+
√

3a2εμναβtr(S̄μQvνFαβT ) + h.c.

+3a′
1tr(S̄

μQ′σ · FSμ) − 3
2
a′
1tr(T̄Q′σ · FT ), (6.2)

where σ · F ≡ σμνFμν , Q = diag(2/3,−1/3,−1/3) is
the charge matrix for the light u, d, and s quarks, and
Q′ = eQ is the charge of the heavy quark. In the above
equation,

T = B3̄, Sμ = B∗μ
6 − 1√

3
(γμ + vμ)γ5B6 . (6.3)

It follows that [161, 162]

A[Sμ
ij(v) → Sν

ij + γ(ε, k)]

= i
3
2
a1Uν

(Qii+Qjj)(kνεμ−kμεν)Uμ−i6a′
1Q

′Uμ
k/ε/Uμ,

A[Sμ
ij(v) → Tij + γ(ε, k)]

= −2
√

3/2a2εμναβ ū3̄v
νkαεβ(Qii − Qjj)Uμ (i < j),

(6.4)

where kμ is the photon 4-momentum, and εμ is the polar-
ization 4-vector. As stressed in Ref. [160], SU(3) breaking
effects due to light-quark mass differences can be incor-
porated by replacing the charge matrix Q with

Q → Q̃ = diag
(

2
3
,−α

3
,−β

3

)
(6.5)

where α = Mu/Md and β = Mu/Ms. To avoid any con-
fusion with the current quark mass mq, we have used
capital letters to denote the constituent quark masses.
In the quark model, the coefficients a1 and a2 are simply
related to the Dirac magnetic moments of light quarks,

a1 = −e

3
1

Mu
, a2 =

e

2
√

6
1

Mu
, (6.6)

whereas a′
1 is connected to those of heavy quarks. Ex-

plicitly, a′
1 is fixed by heavy quark symmetry as

a′
1 =

e

12
1

MQ
. (6.7)

Within the framework of HHChPT, the authors of
[163] proceeded to construct chiral Lagrangians at the
level O(p2) and O(p3) and then calculated the electro-
magnetic decay amplitudes of charmed baryons up to
O(p3). It is not clear whether their O(p2) Lagrangian
(see Eq. (12) of Ref. [163]), characterized by the four
couplings f2, f3, f̃3 and f4, is equivalent to the first two
terms of the O(p) Lagrangian given by Eq. (6.2). The
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unknown couplings there were also estimated using the
quark model.

The general amplitudes of electromagnetic decays are
given by [160]

A(B6 → B3̄ + γ) = iη1ū3̄σμνkμενu6,

A(B∗
6 → B3̄ + γ) = iη2εμναβ ū3̄γ

νkαεβuμ,

A(B∗
6 → B6 + γ) = iη3εμναβ ū6γ

νkαεβuμ. (6.8)

The corresponding decay rates are [160]

Γ(B6 → B3̄ + γ) = η2
1

k3

π
,

Γ(B∗
6 → B3̄ + γ) = η2

2

k3

3π

3m2
i + m2

f

4m2
i

,

Γ(B∗
6 → B6 + γ) = η2

3

k3

3π

3m2
i + m2

f

4m2
i

, (6.9)

where mi (mf ) is the mass of the parent (daughter)
baryon. The coupling constants ηi can be calculated us-
ing the quark model for a1, a2, and a′

1 [160, 164]:

η1(Σ+
c → Λ+

c ) =
e

6
√

3

(
2

Mu
+

1
Md

)
,

η1(Ξ
′+
c → Ξ+

c ) =
e

6
√

3

(
2

Mu
+

1
Ms

)
,

η1(Ξ
′0
c → Ξ0

c) =
e

6
√

3

(
1

Ms
− 1

Md

)
,

η2(Σ∗+
c → Λ+

c ) =
e

3
√

6

(
2

Mu
+

1
Md

)
,

η2(Ξ
′∗+
c → Ξ+

c ) =
e

3
√

6

(
2

Mu
+

1
Ms

)
,

η2(Ξ
′∗0
c → Ξ0

c) =
e

3
√

6

(
− 1

Md
+

1
Ms

)
,

η3(Σ∗++
c → Σ++

c ) =
2
√

2e

9

(
1

Mu
− 1

Mc

)
,

η3(Σ∗0
c → Σ0

c) =
2
√

2e
9

(
− 1

2Md
− 1

Mc

)
,

η3(Σ∗+
c → Σ+

c ) =
√

2e
9

(
1

Mu
− 1

2Md
− 2

Mc

)
,

η3(Ω∗0
c → Ω0

c) =
2
√

2e
9

(
− 1

2Ms
− 1

Mc

)
,

η3(Ξ
′∗+
c → Ξ

′+
c ) =

√
2e
9

(
1

Mu
− 1

2Ms
− 2

Mc

)
,

η3(Ξ
′∗0
c → Ξ

′0
c ) =

√
2e
9

(
− 1

2Md
− 1

2Ms
− 2

Mc

)
.

(6.10)

The results calculated using the constituent quark

masses, Mu = 338 MeV, Md = 322 MeV, Ms = 510
MeV [8], and Mc = 1.6 GeV, are summarized in the sec-
ond column of Table 14. Some other model predictions
are also listed there for comparison.

Radiative decays of s-wave charmed baryons are con-
sidered in Ref. [165] in the quark model, and the predic-
tions are similar to ours. A similar procedure is followed
in Ref. [166] where the heavy quark symmetry is supple-
mented with light-diquark symmetries to calculate the
widths of Σ+

c → Λ+
c γ and Σ∗

c → Σcγ. The authors of Ref.
[75] apply the relativistic quark model to predict vari-
ous electromagnetic decays of charmed baryons. In addi-
tion to the magnetic dipole (M1) transition, the author
of Ref. [167] also considered and estimated the electric
quadrupole (E2) amplitude for Σ∗+

c → Λ+
c γ arising from

the chiral loop correction. The E2 contributions were an-
alyzed in detail in Ref. [168]. The E2 amplitudes appear
at different higher orders for the three types of decays:
O(1/Λ2

χ) for B∗
6 → B6 + γ, O(1/mQΛ2

χ) for B∗
6 → B3̄ + γ

and O(1/m3
QΛ2

χ) for B6 → B3̄+γ. Therefore, the E2 con-
tribution to B6 → B3̄ + γ is completely negligible. The
electromagnetic decays were calculated in Refs. [169–171]
using the QCD sum rule method, and they were studied
within the framework of the modified bag model in Ref.
[172].

It is evident from Table 14 that the predictions in Refs.
[160, 164] and [163] all based on HHChPT are quite dif-
ferent for the following three modes: Σ∗++

c → Σ++
c γ,

Σ∗+
c → Λ+

c γ and Ξ′∗+
c → Ξ+

c γ. Indeed, the results
for the last two modes in Ref. [163] are larger than
all the other existing predictions by one order of mag-
nitude! It is naively expected that all HHChPT ap-
proaches should agree with each other to the lowest or-
der of chiral expansion provided that the coefficients are
inferred from the nonrelativistic quark model. The low-
est order predictions Γ(Σ∗+

c → Λ+
c γ) = 756 keV and

Γ(Ξ′∗+
c → Ξ+

c γ) = 403 keV obtained in Ref. [163] are
still very large. Note that a recent lattice calculation in
Ref. [174] yields Γ(Ω∗

c → Ωcγ) = 0.074±0.008 keV which
is much smaller than the value of Γ(Ω∗

c) = 4.82 keV pre-
dicted in Ref. [163].

Chiral loop corrections to the M1 electromagnetic de-
cays and to the strong decays of heavy baryons were
computed at the one loop order in Refs. [161, 162]. The
leading chiral-loop effects we found are nonanalytic in
the forms of m/Λχ and (m2/Λ2

χ) ln(Λ2/m2) (or m
1/2
q and

mq ln mq, where mq is the light quark mass). Some re-
sults are [161, 162]

Γ(Σ+
c → Λ+

c γ) = 112 keV,

Γ(Ξ′+
c → Ξ+

c γ) = 29 keV,

Γ(Ξ′0
c → Ξ0

cγ) = 0.15 keV, (6.11)
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Table 14 Electromagnetic decay rates (in units of keV) of s-wave charmed baryons. Among the four different results listed in Refs.

[165] and [173], we quote those denoted by Γ
(0)
γ and “Present (ecqm)”, respectively.

Decay HHChPT HHChPT Dey Ivanov Tawfiq Bañuls Aliev Wang Bernotas Majethiya

[160, 164] [163] et al. [165] et al. [75] et al. [166] et al. [168] et al. [169] [170, 171] et al. [172] et al. [173]

Σ+
c → Λ+

c γ 91.5 164.16 120 60.7 ± 1.5 87 46.1 60.55

Σ∗+
c → Λ+

c γ 150.3 892.97 310 151 ± 4 130 ± 45 126 154.48

Σ∗++
c → Σ++

c γ 1.3 11.60 1.6 3.04 2.65 ± 1.20 6.36+6.79
−3.31 0.826 1.15

Σ∗+
c → Σ+

c γ 0.002 0.85 0.001 0.14 ± 0.004 0.19 0.40 ± 0.16 0.40+0.43
−0.21 0.004 < 10−4

Σ∗0
c → Σ0

cγ 1.2 2.92 1.2 0.76 0.08 ± 0.03 1.58+1.68
−0.82 1.08 1.12

Ξ′+
c → Ξ+

c γ 19.7 54.31 14 12.7 ± 1.5 10.2

Ξ′∗+
c → Ξ+

c γ 63.5 502.11 71 54 ± 3 52 ± 25 44.3 63.32

Ξ′∗+
c → Ξ

′+
c γ 0.06 1.10 0.10 0.96+1.47

−0.67 0.011

Ξ′0
c → Ξ0

cγ 0.4 0.02 0.33 0.17 ± 0.02 1.2 ± 0.7 0.0015

Ξ′∗0
c → Ξ0

cγ 1.1 0.36 1.7 0.68 ± 0.04 5.1 ± 2.7 0.66 ± 0.32 0.908 0.30

Ξ′∗0
c → Ξ

′0
c γ 1.0 3.83 1.6 1.26+0.80

−0.46 1.03

Ω∗0
c → Ω0

cγ 0.9 4.82 0.71 1.16+1.12
−0.54 1.07 2.02

Table 15 Electromagnetic decay rates (in units of keV) of p-wave charmed baryons.

Decay Ivanov Tawfiq Aziza Baccouche Zhu Chow Gamermann

et al. [75] et al. [166] et al. [176] [177] [178] et al. [179]

1/2− → 1/2+(3/2+)γ

Λc(2595)+ → Λ+
c γ 115 ± 1 25 36 16 274 ± 52

Λc(2595)+ → Σ+
c γ 77 ± 1 71 11 2.1 ± 0.4

Λc(2595)+ → Σ∗+
c γ 6 ± 0.1 11 1

3/2− → 1/2+(3/2+)γ

Λc(2625)+ → Λ+
c γ 151 ± 2 48 21

Λc(2625)+ → Σ+
c γ 35 ± 0.5 130 5

Λc(2625)+ → Σ∗+
c γ 46 ± 0.6 32 6

Ξc(2815)+ → Ξ+
c γ 190 ± 5

Ξc(2815)0 → Ξ0
cγ 497 ± 14

which should be compared with the corresponding quark-
model results: 92, 20, and 0.4 keV, respectively (Table
14).

The electromagnetic decays Ξ′∗0
c → Ξ0

cγ and Ξ′0
c →

Ξ0
cγ are of special interest. It was advocated in Ref.

[175] that a measurement of their branching fractions
will allow us to determine one of the coupling constants
in HHChPT, namely, g1. They are forbidden at tree level
in the SU(3) limit [see Eq. (6.10)]. In heavy baryon chiral
perturbation theory, this radiative decay is induced via
chiral loops where SU(3) symmetry is broken by the light
current quark masses. By identifying the chiral loop con-
tribution to Ξ′∗0

c → Ξ0
cγ with the quark model prediction

given in Eq. (6.10), it was found in Ref. [164] that one of
the two possible solutions agrees with the quark model
expectation for g1.

For the electromagnetic decays of p-wave charmed
baryons, the search for Λc(2593)+ → Λ+

c γ and
Λc(2625)+ → Λ+

c γ has not yet succeeded. The interested
reader is referred to Refs. [14, 75, 166, 175–180] for more

details on the theoretical side. Some predictions are col-
lected in Table 15, and they are more diversified than
the s-wave case. For electromagnetic decays of doubly
charmed baryons, see, e.g., Refs. [172, 181].

The electromagnetic decays considered to date do not
critically test the heavy quark symmetry or chiral sym-
metry. The results follow simply from the quark model.
There are examples in which both the heavy quark sym-
metry and chiral symmetry enter in a crucial way. These
are the radiative decays of heavy baryons involving an
emitted pion. Some examples that are kinematically al-
lowed are

Σc → Λcπγ, Σ∗
c → Λcπγ, Σ∗

c → Σcπγ, Ξ∗
c → Ξcπγ.

(6.12)

The contact interaction dictated by the Lagrangian L(1)
B

can be nicely tested by the decay Σ0
c → Λ+

c π−γ, whereas
a test of the chiral structure of L(2)

B is provided by the
process Σ+

c → Λ+
c π0γ; see Ref. [160] for the analysis.
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6.2 Weak radiative decays

At the quark level, three different types of processes
can contribute to the weak radiative decays of heavy
hadrons, namely, single-, two-, and three-quark transi-
tions [183]. The single-quark transition mechanism arises
from the so-called electromagnetic penguin diagram. Un-
fortunately, the penguin process c → uγ is highly sup-
pressed, so it plays no role in radiative decays of charmed
hadrons. There are two contributions from the two-quark
transitions: one from the W -exchange diagram accom-
panied by photon emission from the external quark, and
the other from the same W -exchange diagram but with
a photon radiated from the W boson. The latter is typi-
cally suppressed by a factor of mqk/M2

W (where k is the
photon energy) compared to the former bremsstrahlung
process [182]. For charmed baryons, the Cabibbo-allowed
decay modes via cū → sd̄γ (Fig. 7) or cd → usγ are

Λ+
c → Σ+γ, Ξ0

c → Ξ0γ. (6.13)

Finally, the three-quark transition involving W -exchange
between two quarks and photon emission by the third
quark is quite strongly suppressed because of the very
small probability of finding three quarks that are ad-
equately kinematically matched with the baryons [183,
184].

The general amplitude of weak radiative decays of
baryons is given by

A(Bi → Bfγ) = iūf(a + bγ5)σμνεμkνui, (6.14)

where a and b are the parity-conserving and -violating
amplitudes, respectively. The corresponding decay rate
is

Γ(Bi → Bfγ) =
1
8π

(
m2

i − m2
f

mi

)3

(|a|2 + |b|2). (6.15)

Fig. 7 W -exchange diagrams contributing to the quark-quark
bremsstrahlung process c + ū → s + d̄ + γ. The W -annihilation
type diagrams are not shown here.

Nonpenguin weak radiative decays of charmed
baryons, such as those in Eq. (6.13), are characterized by
emission of a hard photon and the presence of a highly
virtual intermediate quark between the electromagnetic
and weak vertices. It was shown in Ref. [185] that these
features should make it possible to analyze these pro-
cesses by perturbative QCD; that is, these processes can
be described by an effective local and gauge invariant
Lagrangian:

Heff(cū → sd̄γ) =
GF

2
√

2
VcsV

∗
ud(c+OF

+ + c−OF
−), (6.16)

with

OF
±(cū → sd̄γ) =

e

m2
i − m2

f

{ (
es

mf

ms
+ eu

mi

mu

)

×
(
F̃μν + iFμν

)
Oμν

± −
(

ed
mf

md
+ ec

mi

mc

)

×
(
F̃μν − iFμν

)
Oμν

∓

}
, (6.17)

where mi = mc +mu, mf = ms +md, F̃μν ≡ 1
2εμναβFαβ

and

Oμν
± = s̄γμ(1 − γ5)cūγν(1 − γ5)d

±s̄γμ(1 − γ5)dūγν(1 − γ5)c. (6.18)

For radiative decays of charmed baryons, one needs to
evaluate the matrix element 〈Bf |Oμν

± |Bi〉. Because the
quark-model wave functions most resemble the hadronic
states in the frame where both baryons are static, the
static MIT bag model was adopted in Ref. [185] for the
calculation. The predictions are3)

B(Λ+
c → Σ+γ) = 4.9 × 10−5,

α(Λ+
c → Σ+γ) = −0.86 ,

B(Ξ0
c → Ξ0γ) = 3.5 × 10−5,

α(Ξ0
c → Ξ0γ) = −0.86 . (6.19)

A different analysis of the same decays in Ref. [186]
yielded the following results:

B(Λ+
c → Σ+γ) = 2.8 × 10−4,

α(Λ+
c → Σ+γ) = 0.02 ,

B(Ξ0
c → Ξ0γ) = 1.5 × 10−4,

α(Ξ0
c → Ξ0γ) = −0.01 . (6.20)

Evidently, these predictions (especially the decay asym-
metry) differ greatly from those obtained in Ref. [185].

Finally, it is worth remarking that, analogous to
the heavy-flavor-conserving nonleptonic weak decays dis-

3) The branching fraction of Ξ0
c → Ξ0γ has been updated using the current lifetime of Ξ0

c .
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cussed in Section 6.3, there is a special class of weak
radiative decays in which heavy flavor is conserved, for
example, Ξc → Λcγ and Ωc → Ξcγ. In these decays, weak
radiative transitions arise from the light quark sector of
the heavy baryon, whereas the heavy quark behaves as
a spectator. However, the dynamics of these radiative
decays is more complicated than that of their counter-
part in nonleptonic weak decays, e.g., Ξc → Λcπ. In any
event, it merits an investigation.

7 Conclusions

In this report, we began with a brief overview of the spec-
troscopy of charmed baryons and discussed their possi-
ble structure and spin-parity assignments in the quark
model. For p-wave baryons, we have assigned Σc2(3

2

−)
to Σc(2800). As for first positive-parity excitations, with
the help of the relativistic quark-diquark model and the
3P0 model, we have identified Λ̃2

c3(
5
2

+) with Λc(2800),
Ξ̃′

c(
1
2

+) with Ξc(2980), and Ξ̃2
c3(

5
2

+) with Ξc(3080), al-
though the first and last assignments may encounter
some potential problems.

It should be stressed that mass analysis alone is usually
not sufficient to pin down the spin-parity quantum num-
bers of higher excited charmed baryon states, a study of
their strong decays is necessary. For example, Σc0(1

2

−),
Σc1(1

2

−
, 3

2

−), and Σc2(3
2

−
, 5

2

−) for Σc(2800) all have sim-
ilar masses. Analysis of strong decays allows us to ex-
clude the first two possibilities. It should be stressed
that Regge phenomenology and the mass relations for
antitriplet and sextet multiplets also provide very useful
guidance for the spin-parity quantum numbers.

On the basis of various theoretical tools such as lattice
QCD and the QCD sum rule method, there are many
theoretical studies of charmed baryon spectroscopy, es-
pecially for doubly and triply charmed baryons. How-
ever, progress on the hadronic decays, radiative decays,
and lifetimes has been very slow. Experimentally, nearly
all the branching fractions of the Λ+

c are measured rel-
ative to the pK−π+ mode. The recent measurements
B(Λ+

c → pK−π+) = (6.84 ± 0.24+0.21
−0.27)% by Belle and

(5.84 ± 0.27 ± 0.23)% by BESIII are very encouraging.
Moreover, BESIII recently measured 2-body, 3-body
and 4-body nonleptonic decay modes of Λ+

c with signif-
icantly improved precision. It is conceivable that many
new data emerging from LHCb, BESIII, and B factories
in the near future and from the experiments at J-PARC
and P̄ANDA in the future can be used to test the un-
derlying mechanism of hadronic weak decays.
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122. P. Żenczykowski, Nonleptonic charmed-baryon decays: Sym-

metry properties of parity-violating amplitudes, Phys. Rev.

D 50, 5787 (1994)

123. M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A.

G. Rusetsky, Exclusive nonleptonic decays of bottom and

charm baryons in a relativistic three quark model: Eval-

uation of nonfactorizing diagrams, Phys. Rev. D 57, 5632

(1998) [arXiv: hep-ph/9709372]

124. L. L. Chau, H. Y. Cheng, and B. Tseng, Analysis of

two-body decays of charmed baryons using the quark dia-

gram scheme, Phys. Rev. D 54, 2132 (1996) [arXiv: hep-

ph/9508382]

Hai-Yang Cheng, Front. Phys. 10(6), 101406 (2015) 101406-25



REVIEW ARTICLE

125. Y. Kohara, Quark-diagram analysis of charmed-baryon de-

cays, Phys. Rev. D 44, 2799 (1991)

126. A. Zupanc, et al. [Belle Collaboration], Measurement of the

Branching Fraction B(Λ+
c → pK−π+), Phys. Rev. Lett. 113,

042002 (2014) [arXiv: 1312.7826 [hep-ex]]

127. X. K. Zhou, Talk presented at Hadron 2015, September 13–

18, 2015, Newport News, USA

128. A. Contu, D. Fonnesu, R. G. C. Oldeman, B. Saitta, and C.

Vacca, A method to measure the absolute branching frac-

tions of Λc decays, Eur. Phys. J. C 74, 3194 (2014) [arXiv:

1408.6802 [hep-ex]]

129. K. Abe, et al. [Belle Collaboration], Observation of Cabibbo-

suppressed and W-exchange Λ+
c baryon decays, Phys. Lett.

B 524, 33 (2002)

130. B. Aubert, et al. [BaBar Collaboration], Measurements of

Λ+
c branching fractions of Cabibbo-suppressed decay modes

involving Λ and Σ0, Phys. Rev. D 75, 052002 (2007) [arXiv:

hep-ex/0601017]

131. H. Y. Cheng and B. Tseng, 1/M corrections to baryonic form

factors in the quark model, Phys. Rev. D 53, 1457 (1996)

132. H. Y. Cheng and B. Tseng, 1/M corrections to baryonic

form factors in the quark model, Phys. Rev. D 55, 1697(E)

(1997)

133. M. Bishai, et al. [CLEO Collaboration], Measurement of

the decay asymmetry parameters in Λ+
c → Λπ+ and Λ+

c →
Σ+π0, Phys. Lett. B 350, 256 (1995)

134. J. M. Link, et al. [FOCUS Collaboration], Measurements of

Ξ+
c branching ratios, Phys. Lett. B 571, 139 (2003)

135. R. Dhir and C. S. Kim, Axial-vector emitting weak nonlep-

tonic deacys of Ω0
c Baryon, Phys. Rev. D 91, 114008 (2015)

[arXiv: 1501.04259 [hep-ph]]

136. H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, T. M. Yan,

and H. L. Yu, Heavy flavor conserving nonleptonic weak de-

cays of heavy baryons, Phys. Rev. D 46, 5060 (1992)

137. M. B. Voloshin, Weak decays ΞQ → ΛQπ, Phys. Lett. B

476, 297 (2000) [arXiv: hep-ph/0001057]

138. X. Li and M. B. Voloshin, Decays Ξb → Λbπ and diquark

correlations in hyperons, Phys. Rev. D 90, 033016 (2014)

[arXiv: 1407.2556 [hep-ph]]

139. S. Faller and T. Mannel, Light-quark decays in heavy

hadrons, arXiv: 1503.06088 [hep-ph]

140. A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Baryon

structure in the bag theory, Phys. Rev. D 10, 2599 (1974)

141. T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Masses

and other parameters of the light hadrons, Phys. Rev. D 12,

2060 (1975)
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