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By solving the quantum Vlasov equation, electron–positron pair production in a strong electric
field with asymmetric laser pulses has been investigated. We consider three different situations of
subcycle, cycle and supercycle laser pulses. It is found that in asymmetric laser pulse field, i.e.,
when the pulse length of one rising or falling side is fixed while the pulse length of the other side is
changed, the pair production rate and number density can be significantly modified comparable to
symmetric situation. For each case of these three different cycle pulses, when one side pulse length
is constant and the other side pulse length becomes shorter, i.e., the whole pulse is compressed,
the more pairs can be produced than that in the vice versa case, i.e., the whole pulse is elongated.
In compressed pulse case there exists an optimum pulse length ratio of asymmetric pulse lengths
which makes the pair number density maximum. Moreover, the created maximum pair number
density by subcycle pulse is larger than that by cycle or/and supercycle pulse. In elongated pulse
case, however, only for supercycle laser pulse the created pairs is enhanced and there exists also an
optimum asymmetric pulse length ratio that maximizes the pair number density. On the other hand,
surprisingly, in both cases of subcycle and cycle elongated laser pulses, the pair number density is
monotonically decreasing as the asymmetry of pulse increases.
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electric field
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1 Introduction

Pair production in a strong electromagnetic field is one
of the most interesting phenomena in relativistic quan-
tum physics. Beginning with Sauter’s pioneering paper
[1] in 1931, the problem of spontaneous pair produc-
tion in quantum electrodynamics (QED) vacuum in the
presence of an external electric field has been investi-
gated by many authors [2, 3]. Schwinger was the first
to reformulate this problem by using proper-time tech-
nique in 1951 [3] in detail, and since then this pro-
cess was often called the Schwinger effect. Using the
Schwinger formula [3] one can find that electron–positron
(e−e+) pairs are spontaneously produced in constant
electric field if the field strength exceeds the critical value
Ecr = m2

ec
3/(e�) ∼ 1.3×1016 V/cm, which is Schwinger

critical field strength corresponding to laser intensity

I ≈ 4.3 × 1029 W/cm2 for 1 µm light. Unfortunately,
it is extremely difficult to reach in the present exper-
imental condition. However, with the advance of high-
intensity laser technology such as the European extreme
light infrastructure (ELI) [4] or the X-ray free electron
laser (XFEL) facilities [5], the required field strength for
investigation of QED vacuum decay to create e−e+ pair
will be possible in the future. It is noted that the laser
intensity I = 2×1022 W/cm2 is already available [6] and
projects to achieve I = 1026−28 W/cm2 [7, 8] are under
way. The proposed XFEL facilities can provide a good
spatial coherent beam, tunable energy and high peak
power density [9, 10]. The XFEL facilities will generate
field strength as [11] E = 0.1Ecr so that to explore pair
creation by a laser pulse is meaningful.

The e−e+ pair production in QED vacuum is in
general non-perturbation, non-equilibrium and time-
dependent processes. In recent years, various methods
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have been employed to cope with this challenging prob-
lem, in particular some semi-classical methods, for ex-
ample, they are WKB approximation [13, 14], world-
line instanton techniques [15, 16] and the quantum ki-
netic theory by solving the quantum Vlasov equation
(QVE) [9, 10, 12, 17, 18, 22]. Among them the quan-
tum kinetic method by solving the QVE has many ad-
vantages, which is not only getting the pair creation rate
but also getting the e−e+ momentum information. By
solving the QVE one can conveniently get the momen-
tum distribution function and particles number density.
Recently, special interest has been laid on the investi-
gation of e−e+ pair production in alternating [9, 10, 12]
and pulse-shaped electric fields [19–21] within the kinetic
approach based on QVE. In a recent study [22], we have
used this approach to study the dynamical assisted effect
on pair production in the combined electric fields.

It should be noted that up to now the pair production
in QED vacuum in an asymmetric laser electric field has
still not been investigated in detail. Thus, in this pa-
per, by solving the QVE we investigate e−e+ pair pro-
duction in the time-depended asymmetric laser electric
field. We use a fourth order Runge-Kutta method to solve
the equivalent ordinary differential equations about the
created pair distribution function. We have obtained nu-
merically the momentum distribution function, the pair
number density and its dependence on the pulse length
ratio in three different situations of subcycle, cycle and
supercycle laser pulses, respectively. These investigated
results may be useful for possible e−e+ pair creation ex-
periments in future.

2 Kinetic formalism based on quantum
Vlasov equation

A key quantity in the description of pair production pro-
cess in the electric background field is the single-particle
momentum distribution function f(p, t). It can be com-
puted from a QVE with a source term for e−e+ pair
production. Once distribution function f(p, t) is known
we can easily calculate produced particles number den-
sity. To simplify our calculations, the laser field is treated
as classical background field and the magnetic field is as-
sumed to be zero. Because the laser wavelength is much
larger than the pair creation scale as about electrons
Compton wavelength [11] so the electric field is time de-
pendent.

Usually the total electric field is E = Eext + Eint,
where Eint is the internal field induced by the back-
reaction mechanism. However, under the XFEL condi-
tion the inner field Eint can be neglected due to the small

created pairs number density so that E = Eext. The vec-
tor potential along the ẑ-direction is A(t) = (0, 0, A(t))
which generates an electric field

E(t) = −dA(t)
dt

= (0, 0, E(t)) (1)

The quantum kinetic equations whose solution de-
scribes the evolution of the single-particle distribution
function can be written as

df(p, t)
dt

= s(p, t) (2)

which further can be written as QVE form

df(p, t)
dt

=
eE(t)ε⊥
2ω2(p, t)

∫ t

t0

dt′
eE(t′)ε⊥
ω2(p, t′)

× [1 − 2f(p, t′)] cos[2
∫ t

t′
dτω(p, τ)] (3)

where the quantities appearing in this equation are
the electrons/positron three-vector momentum p =
(p⊥, p//), the transverse energy squared ε2

⊥ = m2 + p2
⊥,

the total energy squared ω2(p, t) = ε2
⊥ + p2

//, and the
longitudinal momentum p// = p3 + eA(t). If we define
w(p, t) = eE(t)ε⊥

ω2(p,t) and Θ(p; t, t′) =
∫ t

t′ ω(p, τ)dτ , then
the Eq. (3) becomes

df(p, t)
dt

=
1
2
w(p, t)

∫ t

t0

dt′w(p, t′)[1 − 2f(p, t′)]

× cos[2Θ(p; t, t′)] (4)

In order to simplify numerical treatment of this equation,
we reformulate it by introducing the relevant auxiliary
quantities

u(p, t) =
∫ t

t0

dt′w(p, t′)[1−2f(p, t′)] sin[2
∫ t

t′
dτω(p, τ)]

(5)

ν(p, t) =
∫ t

t0

dt′w(p, t′)[1−2f(p, t′)] cos[2
∫ t

t′
dτω(p, τ)]

(6)

so Eq. (4) can be expressed as a set of first order ordinary
differential equations (ODE)

d
dt

f(p, t) =
1
2
w(p, t)ν(p, t) (7)

d
dt

ν(p, t) = w(p, t)[1 − 2f(p, t)] − 2ω(p, t)u(p, t) (8)

d
dt

u(p, t) = 2ω(p, t)ν(p, t) (9)

What we should emphasize here is that the original
integral-differential equation becomes a set of ODEs
makes not only the numerical treatment simpler but also
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the involved physical quantities or/and terms clearer.
Obviously the term ν(p, t) represents the integral part
of Eq. (4) which constitutes the important contribution
as a source to the pair production. In fact this term re-
veals also the quantum statistics character through the
term [1− 2f(p, t)] in Eq. (4) as well as in Eq. (8) due to
the Pauli exclusive principle. On the other hand, u(p, t)
denotes a countering term to pair production, which is
associated to the pair annihilation in pair created process
to some extent. Obviously Eq. (9) means that more pairs
are created, more probability occurs for the pair annihi-
lation in pair created process. Thus combining all factors
mentioned above will conclude that the studied system
exhibits a typical non-Markovian character as QVE, Eq.
(4).

It is noted that the initial conditions can be given
as f(p, t0), u(p, t0), ν(p, t0) in terms of concrete physi-
cal problems. By integrating the distribution function to
momentum, we can get the time-dependent pair number
density

n(t) = 2
∫

d3p

(2π)3
f(p, t) (10)

with the factor of 2 arising from spin degeneracy. This is
a very useful quantity to help us to compare the effects of
different electric field parameters on the pair creation. It
is also noted that the quasi-particle has a definite physi-
cal meaning at t → ∞, thus what we are really interested
in are f(p,∞) and the produced particles number den-
sity n(∞).

3 Numerical solutions and results

In order to study the e−e+ pair production in a time-
dependent asymmetric laser electric field, we choose the
background field as

E(t) = E0[e
−( t

τ1
)2θ(−t) + e−( t

τ2
)2θ(t)] sin(ωt + ϕ) (11)

where τ1 and τ2 are the rising and falling pulse lengths,
respectively, ω is the laser frequency, ϕ is the carrier
phase, and θ(t) is the Heaviside step function.

In our studies, the numerical solutions are found by
solving Eqs. (7)–(9) using the fourth order Runge–Kutta
method. For convenience, the involving physical quanti-
ties are normalized as the electric field Ecr, wavelength
λc and momentum mec, respectively, where Ecr is the
critical electric field strength, λc = 2.426 × 10−12 m
is the electron Compton wavelength and mec = 0.51
MeV/c is electron momentum. Therefore we use a set
of normalized quantities in our numerical calculations
as E0 = 0.1, λ = 0.618 associated to normalized laser

frequency ω = 1.62. By the way the parameters we have
chosen are only convenient for the numerical calculations.
However it should be emphasized that this corresponds
to an ultraintense hard x ray laser with photon energy
about 800 keV. This laser and corresponding ultrashort
pulse studied in this paper are still unavailable so far.

First, we investigate the f(p,∞) and n(∞) of three
different situations, i.e., subcycle, cycle and supercycle
laser pulses, when one the falling pulse length τ2 is fixed
and the rising pulse length τ1 becomes shorter. Con-
cretely we set the parameters as τ2 = aπ

ω and τ1 = τ2
N ,

where N > 1 is the ratio of falling to rising pulse length
and a is the cycle parameters. Here we choose a = 0.1,
a = 1 and a = 10 as typical representations for subcycle,
cycle and supercycle laser pulses, respectively. We fix the
carrier phase ϕ = 0 for all numerical calculations.

For subcycle (a = 0.1) pulse, the distribution function
f(p,∞) is shown in Fig. 1. It is found that the peak value
of f(p,∞) does not locate at p⊥ = 0 for symmetric pulse
case when N = 1. The dependence of e−e+ pair number
density n(∞) on pulse length ratio N is shown in Fig.
2. It shows that the n(∞) increases rapidly with N until
to N = 3, and when N > 3 it decreases with N until to

Fig. 1 Momentum dependence of the distribution function
f(p,∞) in symmetric laser electric field for subcycle (a = 0.1)
pulse. Pulse length parameters are set by τ2 = 0.1 π

ω
and τ1 = τ2

N
with N = 1.

Fig. 2 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for compressed
subcycle (a = 0.1) pulse.
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N ≈ 47 and then the n(∞) is insensitive to N .
For cycle (a = 1) pulse. The distribution function

f(p,∞) is shown in Fig. 3. We can see that the f(p,∞)
get its maximum value f(p,∞) = 5.61 × 10−3 at p// =
p⊥ = 0 when N = 1. The dependence of e−e+ pair num-
ber density n(∞) on pulse length ratio N is shown in
Fig. 4. In this case n(∞) increases rapidly with N until
to N = 11, at which the number density reaches its max-
imum value nmax(∞) = 4.771× 10−4, and when N > 11
the n(∞) decreases with N until to N ≈ 80 and then
n(∞) keeps almost unchangeable with a further increase
of the N . By comparing the Fig. 4 with Fig. 2 we find
that, in this case the optimum peak value of the n(∞) is
one order smaller than subcycle pules. These results are
also summarized in Table 1.

Fig. 3 Momentum dependence of the distribution function
f(p,∞) in symmetric laser electric field for cycle (a = 1) pulse.
Pulse length parameters are set by τ2 = π

ω
and τ1 = τ2

N
with

N = 1.

Fig. 4 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for compressed
cycle (a = 1) pulse.

For supercycle (a = 10) pulse, we plot the distribution
function f(p,∞) in Fig. 5 when N = 1. By comparing
the Fig. 5 with Figs. 1 and 3 we find that the f(p,∞)
is very different from of the previous two cases. Beside
that f(p,∞) peak does not locate at p⊥ = 0 there ex-
ist multi-peak structure. The dependence of e−e+ pair

Table 1 The e−e+ pair number density (in unit of λ−3
c ) in an

asymmetric laser electric field for subcycle (a = 0.1), cycle (a = 1)
and supercycle (a = 10) laser pulses, respectively. When τ2 is fixed
and τ1 becomes shorter, there exists an optimum pulse length ra-
tio Nopt of asymmetric pulse lengths which makes the pair number
density maximum nmax(∞), which is obtained by parameters set
as τ2 = a π

ω
and τ1 = τ2

N
, where N > 1 is changed.

Cases Maximum number density
Optimum pulse

length ratio

Subcycle nmax = 1.709 × 10−3 Nopt = 3

Cycle nmax = 4.771 × 10−4 Nopt = 11

Supercycle nmax = 4.234 × 10−4 Nopt = 111

number density n(∞) on pulse length ratio N is shown
in Fig. 6. It is obvious that, in this case, the n(∞) is
very sensitive to N which changes from 1 to 111. How-
ever, after N = 111 the value of n(∞) keeps almost
unchangeable with the increase of the N . It is worthy to
note that the n(∞) is enhanced five orders magnitude
from 5.567 × 10−9 when N = 1 to 4.234 × 10−4 when
N = 111. From the Table 1 we can also see that the
maximum value of the n(∞) in this case is still smaller
than previous two cases.

We also study the f(p,∞) and n(∞) by the exchange

Fig. 5 Momentum dependence of the distribution function
f(p,∞) in symmetric laser electric field for supercycle (a = 10)
pulse. Pulse length parameters are set by τ2 = 10 π

ω
and τ1 = τ2

N
with N = 1.

Fig. 6 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for compressed
supercycle (a = 10) pulse.
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of τ2 and τ1, i.e., with pulse length parameters set by
τ1 = aπ

ω and τ2 = τ1
N for subcycle, cycle and supercycle

laser pulses, respectively. Surprisingly the obtained re-
sults for f(p,∞) and n(∞) are exactly the same as what
have been done and mentioned above by τ2 = aπ

ω and
τ1 = τ1

N . This indicates that there exists an exchange
symmetry for pulse rising and falling in studied system.

We now investigate the f(p,∞) and n(∞) when the
falling pulse length τ2 is fixed and the rising pulse length
τ1 becomes longer. Now the pulse length parameters are
set by τ2 = aπ

ω and τ1 = Nτ2. Obviously when N = 1
the f(p,∞) for three cycle pulses are the same as in the
previous cases as shown in Figs. 1, 3 and 5, respectively.
So our attention here will be focused on the behavior of
n(∞), especially its dependence of N .

For subcycle (a = 0.1) pulse this dependence is shown
in Fig. 7. Surprisingly, there exists not an optimum N

for maximum pair number density in this case of elon-
gated pulses, which is contrast to the compressed pulses
studied above. It is found that the n(∞) is only rapidly
decreasing with N until to N ≈ 45 and then exhibits
insensitivity of N . Similarly for cycle (a = 1) pulse the
created n(∞) decreases with N also but in a more rapid
way, see Fig. 8, because after N ≈ 10 the n(∞) has been
almost unchangeable with the further increase of the N .

Fig. 7 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for elongated
subcycle (a = 0.1) pulse.

On the other hand for supercycle (a = 10) pulse we
plot the dependence of e−e+ pair number density n(∞)
on pulse length ratio N in Fig. 9. In this case we choose
N ranging from 1 to 600. By comparing the Fig. 9 with
Figs. 7 and 8 we find that the n(∞) increases with the N

until to N = 461. When N = 461 the n(∞) reaches its
maximum value nmax(∞) = 5.778×10−6 and then n(∞)
decreases very slowly with the increase of N . However,
in this case, the optimum peak value of the n(∞) is still
smaller two orders comparing with the case of supercycle
pulse when pulse length becomes compressed.

By the way the exchange symmetry of the pulse of

Fig. 8 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for elongated
cycle (a = 1) pulse.

Fig. 9 Dependence of e−e+ pair number density n(∞) on pulse
length ratio N in the asymmetric laser electric field for elongated
supercycle (a = 10) pulse.

rising and falling lengthes holds again for elongation of
pulse as that for compression of pulse.

4 Discussion and conclusion

Before giving a summary of this paper it is worthy to
discuss briefly some more practical problems, for exam-
ple, the pair production in plasmas with available laser
pulses. To our knowledge as early as the beginning of
this century some authors have studied involved prob-
lems theoretically. For example, Shen et al. [23] have
suggested a very interesting method to produce pairs
with an ultrathin foil illuminated by two intense circu-
larly polarized laser pulses of zero phase difference. They
estimated that the γ-photon intensity is of 7 × 1027 (sr
s)−1 and the positron density is of 5 × 1022/cm3 when
two 330 fs and 7 × 1021 W/cm2 laser pulses are used.
We noticed that in a recent publication Ridgers et al.
[24] reported that 10 PW laser interacting with solid will
generate dense e−e+ plasmas and ultraintense bursts of
γ rays. The positron density of 1026/m3 can be achieved.
This is relevant strongly to the laboratory study of pair
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production in high-energy astrophysical environments.
However, more theoretical and experimental research are
still needed in the future to have a deeper understanding
in plasmas by an ultrastrong laser field to create e−e+

pairs, which has some important potential applications
including the higher positrons and neutrons source pro-
duction and possible new nuclear fusion schemes and so
on.

In a summary, in this paper, we have numerically in-
vestigated e−e+ pair production in a strong asymmetric
laser electric field by using QVE. We consider three dif-
ferent situations of subcycle, cycle and supercycle laser
pulses. We have obtained numerically the momentum
distribution function, the pair number density and its
dependence on the pulse length ratio of the asymmetric
laser pulses. It is found that in asymmetric laser electric
field, i.e., when the pulse length of one rising or falling
side is fixed while the pulse length of the other side is
changed, the pair production rate and number density
can be significantly modified comparable to symmetric
situation. For each case of three different cycle pulses,
when the pulse is compressed, the more pairs can be
produced than that the pulse is elongated. In former
case there always exists an optimum pulse length ratio
of fixed to shorter pulse lengths which makes the pair
number density maximum. Moreover, the created max-
imum pair number density by subcycle pulse is larger
than that by cycle or/and supercycle pulses. In later
case, however, on one hand, only for supercycle laser
pulse the created pairs is enhanced and there exists also
an optimum pulse length ratio of longer to fixed pulse
segments that maximizes the pair number density. On
the other hand, surprisingly, in both cases of subcy-
cle and cycle laser pulses, the pair number density is
monotonically decreasing as the ratio of longer to fixed
pulse lengths increases. The present work could be use-
ful for understanding and theoretical considerations on
Schwinger mechanism and these investigated results may
be useful for possible e−e+ pair production experiments
in future.
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