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Cavity growth in ductile metal materials under dynamic loading is investigated via the material
point method. Two typical cavity effects in the region subjected to rarefaction wave are identified:
(i) part of material particles flow away from the cavity in comparison to the initial loading velocity,
(ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via
coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After
the initial slow stage, the volume and the dimensions in both the tensile and transverse directions
show linear growth rate with time until the global tensile wave arrives at the upper free surface.
It is interesting that the growth rate in the transverse direction is faster than that in the tensile
direction. The volume growth rate linearly increases with the initial tensile velocity. After the global
tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the
maximum particle velocity in the opposite direction increase logarithmically with the initial tensile
speed. The shock wave reflected back from the cavity and compression wave from the free surface
induce the initial behavior of interfacial instabilities such as the Richtmyer-Meshkov instability,
which is mainly responsible for the irregularity in the morphology of deformed cavity. The local
temperatures and distribution of hot spots are determined by the plastic work. Compared with the
dynamical process, the heat conduction is much slower.
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1 Introduction

Failure of ductile metal materials under dynamic loading
is an important and fundamental issue in the fields of sci-
ence and technology. The failure process is complicated
because it couples various physical and mechanical mech-
anisms in the microscopic, mesoscopic and macroscopic
scales. Globally speaking, spallation or fragmentation of
metal material is mainly composed of the following typ-
ical stages, nucleation, growth and coalescence of micro-
scopic voids and/or larger scale cavities. There have been
extensive studies on the quasistatic growths of voids and
cavities. The dynamical growth behaviors are much more
complicated and far from being well understood [1].

In 1972 Carroll and Holtz [2] studied the static and
dynamic cavity-collapse relations for ductile porous ma-
terials and found that the compression effect on the cav-
ity growth is not pronounced when the material is not
sensitive to the loading rate. The research was extended
to the visco-plastic materials by Johnson [3] in 1981.
In 1987 Becker [4] numerically analyzed the effect of a
nonuniform distribution of porosity on flow localization
and failure in a porous material. The void density distri-
bution and properties used to characterize the material
behavior were obtained from measurements on partially
consolidated and sintered iron powder. The calculations
were carried out using an elastic viscoplastic constitutive
relation for porous plastic solids. Local material failure
is incorporated into the model through the dependence
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of the flow potential on void volume fraction. The region
modeled is a small portion of a larger body under vari-
ous stress conditions. Both plane strain and axisymmet-
ric deformations are considered with imposed periodic
boundary conditions. It was found that interactions be-
tween regions with higher void fractions promote plastic
flow localization into a band, and that local failure occurs
via void growth and coalescence within the band. The re-
sults of this study suggested a failure criterion based on
a critical void volume fraction that is only weakly depen-
dent on stress history. The critical void fraction depends
on the initial void distribution and material hardening
characteristics. In 1992 Ortiz and Molinari [5] studied the
effect of strain hardening and rate sensitivity on the dy-
namic growth of a void in a plastic material and pointed
out that the inertial effect, hardening effect, loading rate
effect can significantly influence the void growth. The
studies of Benson [6] in 1993 and of Ramesh and Wright
[7] in 2003 showed that the inertia effect is responsible
for stable growth of the cavity. In 1998 Pardoen et al.
[8] investigated the ductile fracture of round copper bars
within the scope of the local approach methodology. Two
damage models, the Rice–Tracey model and the Gurson–
Leblond–Perrin model, were analyzed. Four coalescence
criteria, (i) a critical value of the damage parameter, (ii)
the Brown and Embury criterion, (iii) the Thomason cri-
terion and (iv) a criterion based on the reaching of the
maximum von Mises equivalent stress in a Gurson type
simulation, were comparatively studied. Ellipsoidal void
growth and void interaction were accounted for. As far as
possible, all the parameters of the models were identified
from experiments and physical observations. The effect of
stress triaxiality was studied using specimens presenting
a wide range of notch radii. The effect of strain-hardening
was analyzed by comparing the behaviour of the material
in the cold drawn state and in the annealed state. In 2000
Pardoen et al. [9] proposed an extended model for void
growth and coalescence. This model integrated two exist-
ing contributions, the Gologanu–Leblond–Devaux model
extending the Gurson model to void shape effects and the
Thomason scheme for the onset of void coalescence. Each
of these was extended heuristically to account for strain
hardening. In addition, a micromechanically-based sim-
ple constitutive model for the void coalescence stage was
proposed to supplement the criterion for the onset of co-
alescence. The fully enhanced Gurson model depends on
the flow properties of the material and the dimensional
ratios of the void-cell representative volume element. It
incorporates the effect of void shape, relative void spac-
ing, strain hardening, and porosity. In 2001 Orsini et
al. [10] developed an inelastic rate-dependent crystalline
constitutive formulation and specialized computational
schemes to obtain a detailed understanding of the in-

terrelated physical mechanisms which can result in duc-
tile material failure in rate-dependent porous crystalline
materials subjected to finite inelastic deformations. Re-
sults of this study are consistent with experimental ob-
servations that ductile failure can occur either due to
void growth parallel to the stress axis, which results in
void coalescence normal to the stress axis, or void inter-
action along bands, which are characterized by intense
shear-strain localization and that intersect the free sur-
face at regions of extensive specimen necking. In 2002
Tvergaard and and Hutchinson[11] discussed two mech-
anisms of ductile fracture, void by void growth versus
multiple void interaction, Zohdi et al. [12] discussed the
plastic flow in porous material.

Currently, most of the studies on cavity/void growth
are focused on their relevance on macroscopic behaviors
[2–12]. The quantitative relations are obtained by fitting
experimental results. Those studies do not reveal or indi-
cate the underlying idiographic physical and mechanical
mechanisms of cavity/void growth. Cavity coalescence is
the final stage of spallation developed from mesoscopic
scale to macroscale [13]. It is also the least-known stage
[14–21]. Continuous damage mechanics adopts fluid or
solid description supplemented by damage modeling. The
damage is generally modeled by an internal variable. The
internal variable is defined by the variation of some me-
chanical behavior and is not dynamically relevant to the
particular structures.

The molecular dynamics simulations [14, 22–25] can
help understand some mechanisms from the atomic scale,
but the temporal and spatial scales it can access are too
small to be comparable with experiments. The Material
Point (MP) method [26–29] is a newly developed meso-
scopic particle method in the field of computational solid
mechanics. In this method, the continuum bodies are dis-
cretized with N material particles. Each material parti-
cle carries the information of position, velocity, temper-
ature, mass, density, Cauchy stress, strain tensor and all
other internal state variables necessary for the constitu-
tive model. At each time step, calculations consist of two
parts: a Lagrangian part and an Eulerian one. Firstly,
the material particles flow with the body, and is used to
determine the strain increment, and the stresses in the
sequel. Then, the velocity field is mapped from the par-
ticles to the Eulerian mesh nodes. The spatial derivatives
are calculated and the momentum equation is integrated.
The velocity and acceleration fields are mapped back to
update those of the particles [30, 31]. The MP method
not only takes advantages of both the Lagrangian and
Eulerian algorithms but avoids their drawbacks as well.
Since using Eulerian background grid, it is more stable
and has a higher computational efficiency than the mesh-
less smooth particle hydrodynamics (SPH) [29].
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From the physics side, the MP method is based on
continuum medium description and designing of contact
force. It has been extensively used to simulate the com-
plex dynamical behaviors of shock wave interaction on
inhomogeneous materials [32–37]. The mesoscopic MP
simulation can be further used to investigate the growth
and evolution of defect structures such as cavities and
cracks in the scales of micron and larger. Such investiga-
tions may present indicative results for improving phys-
ical modeling of fracture in larger scales. From the sim-
ulation side, in the MP method the continuous portion
and the cavities are considered separately. So, it is con-
venient to set the particular structures according to our
need and convenient to obtain the concrete information
on the shapes, sizes, connectivity of relevant structures
and their influences on surrounding materials. In other
words, it is convenient to recover with more fidelity the
physical processes of damage and failure. Simulation re-
sults may work as theoretical bases for the physical mod-
eling of damnification. Different from the phenomenolog-
ical quasistatic analysis, the MP simulation results con-
tain intrinsically the inertial effects.

2 Theoretical model of the material

We assume that the material follows an associative
von Mises plasticity model with linear kinematic and
isotropic hardening [38]. The stress and strain tensors, σ

and ε, reads σ = s − PI, P = −Tr(σ)/3, ε = e + θI/3,
θ = Tr(ε)/3, where P is the pressure scalar, s the devia-
toric stress tensor, and e the deviatoric strain. The strain
e is generally decomposed as e = ee + ep, where ee and
ep are the traceless elastic and plastic components, re-
spectively. The material shows a linear elastic response
until the von Mises yield criterion is reached. The yield
σY increases linearly with the second invariant of the
plastic strain tensor ep, i.e., σY = σY 0 + EHarden‖ep‖,
where σY 0 is the initial yield stress and EHarden the hard-
ening coefficient. The deviatoric stress s is related to the
Young’s module Y , the Poisson’s ratio ν and the trace-
less elastic stress tensor by s = eeY/(1 + ν). The shock
speed Us and the particle speed Up after the shock follows
a linear relation, Us = c0 + λUp, where c0 is the sound
speed and λ a characteristic coefficient of material. The
pressure P is calculated by the following Mie–Grüneisen
state of equation [39]:

P − PH =
γ(V )

V
[E − EH(VH)] (1)

where PH, VH and EH are pressure, specific volume and
energy on the Rankine–Hugoniot curve, respectively. The
relation between PH and VH can be written as
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The increment of specific internal energy E − EH(VH)
is taken as the plastic energy. Both the shock compres-
sion and the plastic work contribute to the increasing
of temperature. The temperature increment from shock
compression is calculated by

dTH

dVH
=

c2
0 · λ(V0 − VH)2

cv

[
(λ − 1)V0 − λVH

]3 − γ(V )
VH

TH (3)

where cv is the specific heat. The increasing of tempera-
ture from plastic work is dTp = dWp/cv.

In this work we choose aluminum as the sample mate-
rial. The corresponding parameters are as below: initial
material density in the solid portion ρ0 = 2700 kg/m3,
Y = 69 GPa, ν = 0.33, σY 0 = 120 MPa, EHarden = 384
MPa, c0 = 5.35 km/s, λ = 1.34, cv = 880 J/(kg·K),
k = 237 W/(m·K) and γ0 = 1.96 when the pressure is
below 270 GPa. The initial temperature of the material
is 300 K.

3 Simulation results and physical
interpretation

3.1 Global scenario

In our simulations the body of aluminum material with
cavity is connected with a rigid wall fixed at the bot-
tom with the coordinate z = 0. The simulated body is
located within the volume, [−20, 20]× [−20, 20]× [0, 50]
with the length unit µm. Initially, a spherical cavity with
radius r = 5 µm is located at the position (0, 0, z) within
the material body. At the time t = 0 the material body
with cavity starts to move upward at the velocity vz0.
Thus, the rarefaction wave or tensile wave occurs at the
plane with z = 0. The rarefaction wave propagates up-
wards within the material body. In our MP simulations,
the mesh size is 1 µm and the diameter of the material
particle is 0.5 µm. Periodic boundary conditions are used
in the horizontal directions and free boundary condition
is used in the upper surface of the material body. The
rigid wall is assumed to be the same kind of material
with the material body. Therefore, no special treatment
of contact surfaces is needed in the MP simulations.

Figure 1 shows the snapshots of configurations with vz

field at four different times for the case with z = 10 µm
and initial vz0 = 100 m/s. Figures 1(a)–(d) correspond
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to the times t = 0.8 ns, 1.2 ns, 2.0 ns and 3.0 ns, respec-
tively. The contours for vz = 0 are shown in the plots.
Since no material particles are located within the cavity,
the velocities at the nodes within the cavity are equal
zero. Before the arrival of the global rarefaction wave, the
upper contour with vz = 0 presents the initial morphol-
ogy of the cavity. In Figs. 1(a)–(d) the moving upwards
of the lower vz = 0 contour shows the propagation of
rarefaction wave. It is clear from Fig. 1(a) that the lower
vz = 0 contour is approaching the lower boundary of the
cavity at the time t = 0.8 ns. The velocities of particles
below the cavity had begun to decrease before t = 0.8
ns. Below the lower vz = 0 contour some material par-
ticles show negative velocities. With propagating of the
rarefaction wave, the lower vz = 0 contour begins to get
connection with that corresponding to the cavity. When
the rarefaction wave arrives at the cavity, compression
wave is reflected back. Under the action of the reflected
compression wave, more material particles show negative
velocities and their amplitudes continue to increase.[See
Figs. 1(b) and (c).] The deformation rate of the cavity
is slower compared with the propagation speed of rar-
efaction wave surrounding the cavity. After passing the
cavity the surrounding rarefaction waves begin to con-
verge. Therefore, stronger negative pressure appears on
the top of the cavity. Material particles on the top of

the cavity are accelerated by the upward stresses. At the
time t = 3 ns some material particles show velocities
larger than 100 m/s. See Fig. 1(d).

Figures 2(a) and (c) show the configurations with pres-
sure and velocity fields within the plane x = 0 at times
t = 2 ns and t = 3 ns, respectively. To investigate the
amplitudes of particle velocities we show the distribution
of vz along the vertical direction in the other plots of
Fig. 2. Figures 2(b) and (d) correspond to Figs. 2(a) and
(c), respectively. At the times t = 2 ns and t = 3 ns,
the maximum downward or minimum particle velocities
are −230 m/s and −300 m/s, respectively. From Fig.
2(d) we can observe the vertical distribution of material
particles with velocities larger than 100 m/s. In Figs.
2(a) and (c) the color from blue to red corresponds to
the increase of pressure. From Figs. 2(a) and (c), one
can observe the deformation of the cavity under tensile
loading. The irregularities in the morphology of the cav-
ity result from the following three aspects. (i) The initial
cavity represented by the placed particles is not strictly
spherical. (ii) The shock waves reflected back from the
cavity induce the well-known Richtmyer–Meshkov (RM)
hydrodynamic interfacial instability. The RM instability
is the main mechanism for the initial irregularities of
the deformed cavity. (iii) Compared with the dimension
of the cavity, the mesh size is not small. For point (iii), it

Fig. 1 Configurations with vz field at four different times for the case with z = 10 µm and initial velocity vz0 = 100 m/s.
The contours for vz = 0 are shown in the plots. (a) t = 0.8 ns, (b) t = 1.2 ns, (c) t = 2.0 ns and (d) t = 3.0 ns.
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Fig. 2 Configurations with pressure and velocity fields in the plane with x = 0 [see (a) and (c)] and vz distribution in
the tensile direction [see (b) and (d)]. t = 2 ns in (a) and (c). t = 3 ns in (b) and (d).

should be commented that if decrease the mesh unit, the
body size can be simulated becomes smaller. We have
to make compromise between the simulated body size
and the mesh unit. It should also be pointed out that
the practical cavities in materials are generally not strict
spherical, which is qualitatively accordance with the sim-
ulated one.

With increasing of upward stress on the top of the cav-
ity, the accelerations and velocities of particles within
this region become larger. At the time t = 7.2 ns, the
global rarefactive wave arrives at the upper free surface.
The maximum velocity of particles on the top of the
cavity is about 430 m/s. At this moment, there exists a
region where the particles have large downward veloci-
ties below the cavity. The largest downward velocity is
about −325 m/s. In the plot of vz versus z, there is a
valley between the peak and the rarefaction wave front.
The smallest particle velocity is about 6 m/s. When the
rarefaction wave arrives at the upper free surface and
compression wave is reflected back. Within the region
scanned by the reflected compression wave, material par-
ticles obtain downward accelerations. Several character-
istics are typical for the unloading of rarefaction wave
and reflecting back of compression wave. The first is the
decreasing of velocities of material particles representing
the upper free surface. The second is that the valley con-

tinues to move toward the upper free surface. The third
is that the maximum velocity between the valley and the
cavity continues to increase. At the same time, the re-
gion with maximum downward particle velocity moves
toward the bottom. Since we use periodic boundary con-
ditions in the horizontal directions, the simulation re-
sults for the case with single cavity are also indicative
for interaction of neighboring cavities. From the pressure
field, it is clear that the negative pressures within regions
among the neighboring cavities are weaker. The contours
of negative pressure with small amplitudes get connec-
tion. The strength of compression wave reflected back
from the cavity increases with increasing the strength of
rarefaction wave. Consequently, local positive pressures
occur among the neighboring cavities. The occurrence
of positive pressures within the region scanned by the
global rarefaction wave is a typical cavity effect.

Before the reflected compression wave arrive at the
cavity, the deformation of the cavity is still controlled by
the tensile loading. Below, we discuss the pressure dis-
tributions within the material at two times, 9 ns and 11
ns. Figure 3 shows the configurations with pressure field
at the time 9 ns.The pressure contours in Figs. 3(a)–(f)
are for −300 MPa, −350 MPa, −400 MPa, −450 MPa,
−500 MPa and −550 MPa, respectively. Figure 3 shows
that the contours around the cavities for pressure lower
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than −300 MPa are connected. The neighboring cavities
get interaction via the connection of pressure contours.
At the time 9 ns, there is still no positive pressure occur
among the neighboring cavities. Figure 4 shows various
pressure contours at the time 11 ns. The contours in
Fig. 3(a)–(f) are for 0 MPa, −50 MPa, −100 MPa, −150
MPa, −200 MPa and −250 MPa, respectively. Pressure
distribution around the cavity is as below. (i) The pres-
sure surrounding the cavity is zero. (ii) With increasing
the pressure, the corresponding contour moves away
from the cavity and its surface area becomes larger.

(iii) Among cases shown in the figure the contour for
−150 MPa has the maximum area. If further increase
the pressure, the contour area becomes smaller. Pressure
distribution between the cavity and rigid wall is as below.
There are four regions around the cavity show positive
pressure. The pressure contours for −100 MPa between
the nearest cavities are connected. The contours for
−150 MPa have a higher connectivity. All contours for
−200 MPa, −250 MPa, etc. are connected. The pressure
distribution on the top of the cavity is as below. The re-
gion with the highest pressure does not locate above the

Fig. 3 Configurations with pressure field at the time 9ns. The pressure contours in (a)–(f) correspond to −300 MPa,
−350 MPa, −400 MPa, −450 MPa, −500 MPa, and −550 MPa, respectively.

Fig. 4 Configurations with pressure field at the time 11 ns. The pressure contours in (a)–(f) correspond to 0 MPa, −50
MPa, −100 MPa, −150 MPa, −200 MPa, and −250 MPa, respectively.
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cavity but above the middle of neighboring cavities. Since
the rarefaction wave propagates more quickly within the
solid region, the wave firstly arrives at the upper free sur-
face and get reflected. The weaker the negative pressure,
the closer to the upper free surface the corresponding
contour, and the more planar the corresponding contour.

3.2 Morphology versus tensile strength

Figure 5 shows the configurations with temperature
field at the time 6 ns. The contours in (a)–(d) are for
310 K, 320 K, 330 K and 340 K, respectively. Com-
pared with the dynamical process, the thermal process is
much slower. The temperature and distribution of hot-
spots are mainly determined by the corresponding plastic
work.

Since the rarefaction wave propagates in the sound
speed, all rarefaction waves reach the upper free surface
at the same time. With increasing the tensile strength,
the growth rate of the cavity increases. Figure 6 shows
the evolution of the cavity morphology. Figure 6(a) shows
the cavity volume versus time. The points are simulation
results and the lines are plotted to guide the eyes. The
sizes of the initial tensile velocity vz0, 100, 200, 400 and

1000, are shown in the legend. The unit is m/s. An en-
larged portion of the curve for vz0 = 100 m/s is shown
in the inset. The growth of cavity can be described by
the following stages: (i) initial slow growth stage, (ii) lin-
ear growth stage which ends when the global rarefaction
wave arrives at the upper free surface, (iii) slower growth
stage which ends when the reflected compression wave
arrives at the cavity, (iv) quicker growth stage and (v)
linear growth stage. Figure 6(b) shows the evolutions of
the cavity dimensions in Horizontal (H) and Vertical (V)
directions. The points are simulation results and the lines
are plotted to guide the eyes. It is interesting to observe
that the growth in horizontal direction is quicker than
that in vertical direction. Such a mechanism is equiva-
lent to the “necking effect” in macroscale. There exists
also a linear stage in the growths of cavity dimensions.
The growth rates increase with increasing the strength
of tensile loading. Figure 6(c) shows the initial linear
growth rate of cavity volume versus initial strength of
tensile loading vz0. The points are for the slopes of fit-
ting lines in (a) for the first linear growth stage, and the
line are linear fitting result for the points. It is clear that
within the checked range the volume growth rate linearly
increases with the initial tensile velocity vz0.

Fig. 5 Configurations with temperature field at the time 6ns. The contours in (a)–(d) correspond to 310 K, 320 K, 330
K and 340 K, respectively.
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Fig. 6 Evolution of the cavity morphology. (a) Cavity volume versus time. (b) Cavity dimensions in the Horizontal (H) and Vertical
(V) directions versus time. (c) The linear growth rate versus initial tensile velocity. The sizes of the initial tensile velocity vz0, 100, 200,
400 and 1000, are shown in the legend of (a). The unit is m/s. In (a) and (b) the points are simulation results and the lines are plotted
to guide the eyes. An enlarge portion of the curve for vz0 = 100 is shown in the inset of (a). In (c) the points are for the slopes of fitting
lines in (a) for the first linear growth stage, and the line is for the linear fitting result of the points.

Figures 7(a) and (b) show the density fields of the ma-
terial at two times, 7.2 ns and 12 ns. Figures 7(c) and (d)
show the corresponding pressure fields. The lower bound-
ary of the cavity gradually becomes planar and parallel
to the rigid wall.

3.3 Energy transformation versus tensile strength

For the case with uniform material, during the tensile
loading, kinetic energy of the material transforms grad-
ually to elastic potential energy and plastic work. Those

Fig. 7 Configurations with density field [(a) and (b)] and configurations with pressure field [(c) and (d)] at two times,
7.2 ns and 12 ns. Only the portion with −20 � x � 0 is shown in each plot.
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energies distribute uniformly in planes parallel to the
rigid wall. Although the material is three-dimensional,
the dynamical and thermodynamical process is in fact
one-dimensional. But for the case with cavities, the sit-
uation becomes much more complex. Figures 8(a) and
(b) show the configurations with temperature field at
the same two times as in Fig. 7, from which, besides
the cavity morphology, we can understand better the en-
ergy transformation from kinetic to thermal. There is
a high temperature layer surrounding the deformed cav-
ity. That is because the plastic work by the stresses is
pronounced in that region. Figures 8(c) and (d) show
the configurations with vz field at the same two times.
With the reflecting back of compression wave from the
upper free surface, the distribution range of high particle
velocity becomes narrower.

Figure 9 shows the maximum upward particle veloc-
ity, vz max, above the cavity and maximum downward
particle velocity, vz min, below the cavity versus the ini-
tial tensile velocity vz0. The points are simulation re-
sults and the lines are fitting results. It is interesting
to observe that both vz max and |vz min| logarithmically
increase with the initial tensile velocity vz0.

4 Conclusions

A three-dimensional material point simulation study on
cavity growth in metal materials subjected to dynamic

loading is conducted. Interactions of rarefaction wave
with an existing cavity and the ultimate interactions
of the cavity with its periodic images are carefully in-
vestigated. During the tensile loading procedure, some
material particles below the cavity show high speeds in
the opposite direction. Within the region subjected to
the global rarefaction wave some local regions may show
positive pressures. Neighboring cavities get interaction
via the coalescence of isobaric contours. The deforma-
tion of cavity under tensile loading shows staged behav-
iors. After the initial slow growth stage, the volume and
the dimensions in both the tensile and transverse direc-
tions show linear growth rate with time until the global
tensile wave reaches the upper free surface. The growth
rate in the tensile direction is slower than that in the
transverse direction. The volume growth rate linearly in-
creases with the initial tensile velocity. After the global
tensile wave passed the cavity, the maximum particle ve-
locity in the tensile direction and the maximum particle
velocity in the opposite direction increase logarithmically
with the initial tensile speed. The shock wave reflected
back from the cavity and compression wave from the free
surface induce the initial behavior of interfacial instabil-
ities such as the Richtmyer–Meshkov instability, which
is mainly responsible for the irregularity of the cavity
morphology. Temperature and distribution of hot spots
are determined by the plastic work. Compared with the
dynamical process, the heat conduction is much slower.

Fig. 8 Configurations with temperature field [(a) and (b)] and configurations with vz field [(c) and (d)] at two times,
7.2 ns and 12 ns. Only the portion with −20 � x � 0 is shown in each plot.
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Fig. 9 Maximum upward particle velocity and maximum down-
ward particle velocity versus initial tensile velocity vz0. The points
are simulation results and the lines are logarithmic fitting results.
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