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Based on the quantization scheme of the radiation fields in the dispersive and absorptive magnetic
media, the normally ordered correlation functions of the outgoing field through a metamaterial plate
are obtained. Then the relative photon-number densities of the transmitted field, the reflected field
and the absorbed field are gotten through the correlation functions. Furthermore, the contributions
of the relative permittivity and permeability of the metamaterials to the transmission are analyzed.
Our results show that the permittivity and permeability reinforce the transmission for frequencies
that are big compared with the magnetic resonance frequency.
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1 Introduction

Recently, the metamaterials have attracted a great deal
of attention from both theoretical and experimental
sides. The metamaterials have the artificial structure and
the electromagnetic parameters are dependent on the
resonant of the electric and the magnetic field [1]. In some
frequency region the effective permittivity and the per-
meability of the materials can be simultaneously negative
and the materials are also called the left-handed materi-
als because the electric field, the magnetic field and the
wave vector form a left-handed relation in the materials.
These media exhibit a number of unusual electromag-
netic properties such as negative refractive index [1], am-
plification of evanescent wave [3–7], subwavelength cav-
ity resonator [8, 9], clocking [10] and optical illusion [11,
12], etc. The adjustable effective permittivity and perme-
ability play an important role in these novel electromag-
netic properties that do not occur in the naturally exist-
ing materials. These unique features suggest fascinating
applications and unusual phenomena of the metamate-
rials in the control of the electromagnetic wave [13–23].
It is found that both the negative permittivity and the
negative permeability are necessary to the extraordinary
property of the classical electromagnetic wave propagat-
ing in the metamaterials [19–21]. Recently theory and ex-
periments have verified that the magnetic plasmon waves
in a three-dimensional metamaterials own a quantum na-

ture and the metamaterials can steer the non-classical
light waves [23]. Thus there should be some abnormal
properties if the metamaterials are used to control the
quantized radiation. In this work we derive the output
field of the quantized radiation through the metamateri-
als and give support theoretically for the application of
the metamaterials in the quantum information.

Based on the quantization scheme of the radiation
fields and input–output relations in the dispersive and
absorptive magnetic media [17], the quantum statisti-
cal properties of the outgoing radiation can be obtained
from the incoming radiation and excitations associated
with the media. In this work, the normally ordered cor-
relation functions of the outgoing field through a slab of
metamaterials are calculated. Then the relative photon-
number densities of the transmitted field, the reflected
field and the absorbed field are obtained through the
correlation functions. The emphasis is put on the contri-
butions of the permittivity and the permeability to the
transmission.

2 Theory of quantum correlation functions

We consider the quantized radiation transmitting
through a slab of metamaterial plate placed in the air
along the x-direction shown in Fig. 1. The input–output
relations of quantized radiation through multilayer struc-
ture with metamaterials have been given in Ref. [17].
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Here we outline the main derivations to get the quan-
tum optical correlation functions for our system.

Fig. 1 Configuration of the quantized radiation propagating
through a slab of metamaterial. The arrows, together with the
amplitude operators, indicate incoming and outgoing fields.

The vector potential Â(x) in the jth area (xj−1 � x �
xj , j = 1, 2, 3, x0 = −∞, x3 = ∞) can be written as
[17]

Â(x) =
∫ ∞

0

dω

√
�ζj(ω)

4πωε0cA · μj(ω)
nj(ω)

×[eiβj(ω)ωx/câj+(x, ω) + e−iβj(ω)ωx/câj−(x, ω)]

+H.c. (1)

Here A is the transverse normalized area and ζj(ω) =
εI

j(ω)−κI
j(ω)|nj(ω)|2

2γj(ω) with nj(ω) =
√

εj(ω) × √
μj(ω) =

βj(ω) + iγj(ω) being the complex refractive index of the
medium in the jth area. εj(ω) and μj(ω) are the (rela-
tive) permittivity and the (relative) permeability of the
media in the jth area respectively. κj(ω) = 1/μj(ω) is
defined here and the superscript “I” represents the imag-
inary part of the corresponding physical quantity. The
operators âj±(x, ω) which describe the amplitudes of the
damped waves propagating to the right (subscript +)
and left (subscript –) in the jth area can be represented
as

âj±(x, ω) = âj±(x′, ω)e∓γj(ω)ω(x−x′)/c

+
∫ x

x′
dyF̂j±(y, ω)e∓γj(ω)ω(x−y)/c (2)

with

F̂j±(x, ω) = ±i
√

2γj(ω)
ω

c
e∓iβj(ω)ωx/c

×
√

εI
j(ω)f̂e(x, ω) ∓ inj(ω)

√
−κI

j(ω)f̂m(x, ω)√
εI

j(ω) − κI
j(ω)|nj(ω)|2

(3)

In the air, the vector potential Â(x) degenerates to the
general form, which is consistent with the result in the
Ref. [24],

Â(x) =
∫ ∞

0

dω

√
�βj(ω)

4πωε0cA · 1
nj(ω)

×[eiβj(ω)ωx/câj+(x, ω) + e−iβj(ω)ωx/câj−(x, ω)]+H.c.

(4)

Based on Eq. (2) and the boundary continuity conditions
of the vector potential Â(x) at the interface x = xj ,
the input–output relations for the amplitude operators
through the one-layer structure shown in Fig. 1 can be
obtained as [17, 24]
(

â1− (x1, ω)

â3+ (x2, ω)

)
=T (ω)

(
â1+ (x1, ω)

â3− (x2, ω)

)
+A(ω)

(
ĝ
(1)
+ (ω)

ĝ
(1)
− (ω)

)

(5)

Eq. (5) can be written in a compact form as

b̂(ω) = T (ω)â(ω) + A(ω)ĝ(ω) (6)

where T (ω) is the transformation matrix which is given
in the appendix and A(ω) is the absorption matrix. Here

b̂(ω) =
(b̂1(ω)

b̂2(ω)

) ≡ (â1−(x1,ω)
â3+(x2,ω)

)
corresponds to the ampli-

tude operators of the output fields, â(ω) =
(â1(ω)
â2(ω)

) ≡(â1+(x1,ω)
â3−(x2,ω)

)
corresponds to the amplitude operators of the

input fields from the two sides and ĝ(ω) =
(ĝ1(ω)
ĝ2(ω)

) ≡
(ĝ

(1)
+ (ω)

ĝ
(1)
− (ω)

)
represents the noise operators owing to the ab-

sorption.
The input–output relations can be used to obtain the

quantum statistical properties of the outgoing radiation
from the incoming radiation and the excitation associ-
ated with the plate. With regard to measurement, the
quantum statistics of radiation is frequently in terms
of normally ordered correlation functions of electric-field
strength. The electric-field strength of the outgoing ra-
diation reads as

Ê′
i(x) = Ê′(+)

i (x) + Ê′(−)

i (x) (7)

Ê′(+)

i (x) = i
∫ ∞

0

dω

√
�ω

4πcε0Aeiωηix/cb̂i(ω) (8)

Ê′(−)

i (x) =
[
Ê′(+)

i (x)
]†

(9)

where i = 1 represents the left side (x � x1), i = 2 rep-
resents the right side (x � x2) and η1 = 1, η2 = −1.
Since the output photon operators can be related to the
input photon operators according to Eq. (5), the nor-
mally ordered correlations of the outgoing radiation can
be expressed as [24]

C′
{iµ}

(m,n)({xμ, tμ}) =

〈
[ m∏

μ=1

Ê′
iµ

(−) (xμ, tμ)
]
×

[ m+n∏
μ=m+1

Ê′
iµ

(+) (xμ, tμ)
]
〉

(10)

Using Eqs. (7)–(9) and the harmonic time evolution of
photon destruction operators in the Heisenberg picture,
we obtain
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C′
{iµ}

(m,n)({xμ, tμ})

= in−m

(
�

4πcε0A
)(n+m)/2

×
∫ ∞

0

dω1
√

ω1eiω1τi1 · · ·
∫ ∞

0

dωm+n
√

ωm+neiωm+nτim+nC′
{iµ}

(m,n)({ωμ}) (11)

(τiµ = tμ − ηiµxμ/c), where

C′
{iµ}

(m,n)({ωμ}) = 〈
[ m∏

μ=1

b̂†iµ
(ωμ)

]
×

[ m+n∏
μ=m+1

b̂iµ (ωμ)
]
〉

= 〈
{ m∏

μ=1

2∑
kµ=1

[T ∗
iµkµ

(ωμ)â†
kµ

(ωμ) + A∗
iµkµ

(ωμ)ĝ†kµ
(ωμ)]

}{ m+n∏
μ=m+1

2∑
kµ=1

[Tiµkµ(ωμ)âkµ(ωμ) + Aiµkµ(ωμ)ĝkµ(ωμ)]
}
〉

(12)

When a zero-temperature metamaterial plate is irradi-
ated from the left side, the photon-number density of
the outgoing field can be written as

N ′
phi(ω) = 〈b†i (ω)bi(ω)〉 = C ′

ii
(1,1)(ω, ω)

= |Ti1(ω)|2 Nph1(ω), i = 1, 2 (13)

Nph1(ω) is the photon-number densities of the input field
from the left side. Then the relative photon-number den-
sities of the reflected outgoing field is

N1(ω) = N ′
ph1(ω)/Nph1(ω) = |T11(ω)|2 (14)

and the relative photon-number densities of the trans-
mitted outgoing field can be obtained as

N2(ω) = N ′
ph2(ω)/Nph1(ω) = |T21(ω)|2 (15)

The relative photon-number densities of the absorbed
field is

Na(ω) = 1 − N1(ω) − N2(ω) (16)

3 Numerical results and discussion

Let us consider the radiation propagating through a sin-
gle metamaterial plate with dispersive and absorbing
(relative) permittivity and permeability given by [19]

ε(ω) = 1 − ω2
p

ω(ω + iγ)
(17)

μ(ω) = 1 − Fω2

ω2 − ω2
0 + iωΓ

(18)

Here ωp is the electronic plasma frequency and ω0 is
the magnetic resonance frequency. γ and Γ reperesent
the electric and magnetic loss terms respectively. This
metamaterial can be made by the SRR (split-ring res-
onator) structure [1]. Without loss of generality, the val-
ues ω0 = 0.4ωp, γ = 0.03ωp and Γ = 0.03ω0, F = 0.8 are
used in the numerical calculations. The (relative) per-
mittivity and permeability of the surroundings (air) are
taken as ε(ω) = 1 and μ(ω) = 1. The real part of the
permittivity and the real part of the permeability of the

metamaterials are plotted in Fig. 2(a) as a function of
the normalized frequency ω/ω0. The results show that
the metamaterials possess the magnetic resonance near
the frequency ω = ω0. The real part and the imaginary
part of the refractive index (n(ω) =

√
ε(ω) × √

μ(ω))
are given in Fig. 2(b). We can find that a large imagi-
nary part of the refractive index appears near the mag-
netic resonance frequency ω = ω0. These properties play
an important role in the transmission of the quantized
radiation.

Fig. 2 (a) The real part of the permittivity (solid line) and the
real part of the permeability (dashed line) of the metamaterials as
a function of the normalized frequency ω/ω0. (b) The real part
of the refractive index (solid line) and the imaginary part of the
refractive index (dashed line) of the metamaterials as a function of
the normalized frequency ω/ω0.

In Figs. 3 and 4 the relative photon-number densities
of the reflected outgoing field (N1(ω)) and the transmit-
ted outgoing field (N2(ω)) are shown as a function of
the normalized frequency and the normalized thickness
(ω0l/c) of the metamaterial plate. The relative photon-
number density of the absorbed field (Na(ω)) in the
metamaterials is shown in Fig. 5. For frequencies that are
small compared with the magnetic resonance frequency
ω0, almost all the photons incident on the metamaterials
with certain thickness are reflected. The metamaterials
behave like a lossy mirror due to the large value of the
real part and the imaginary part of the refractive index.
The reflectivity decreased rapidly when the frequency
is increasing toward the magnetic resonance frequency.
The relative photon-number densities of the absorbed
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Fig. 3 The relative photon-number densities of the reflected out-
going field through a metamaterial plate.

Fig. 4 The relative photon-number densities of the transmitted
outgoing field through a metamaterial plate.

field are approaching the unit near the magnetic reso-
nance frequency, which means most of the photons can
be absorbed by the plate. The peak in Fig. 5 corresponds
to the peak of the imaginary part of the refractive in-
dex in Fig. 2(b) located at the magnetic resonance fre-
quency. The absorptivity is in proportion to the thick-
ness of the metamaterial plate. The results show that
the large imaginary part of the refractive index causes
the large absorption. With a further increase of the fre-
quency that is associated with a relative small absolute
value of the refractive index, both the reflectivity and the
absorptivity are reduced. The transmission is enhanced
in oscillating way due to the interference effect of the
interface. The metamaterials become nearly transparent
to the photons for large frequencies.

To show the independent contributions of the permit-
tivity and permeability to the transmitted outgoing field,

Fig. 5 The relative photon-number densities of the absorbed field
in a metamaterial plate.

in Fig. 6 we show the relative photon-number densities
of the transmitted outgoing field for three cases: i) the
metamaterial plate with the permittivity and permeabil-
ity given by Eq. (17) and Eq. (18); ii) the plate with the
permittivity given by Eq. (17) and μ(ω) = 1; iii) the
plate with ε(ω) = 1 and the permeability given by Eq.
(18). Figures 6(a) and (b) correspond to the plate with
the normalized thickness ω0l/c = 0.5 and ω0l/c = 1.0
respectively. For frequencies that are small compared
with the magnetic resonance frequency ω0, the relative
photon-number densities through the metamaterials are
small, which is consistent with the case ii): the plate
with permittivity given by Eq. (17) and μ(ω) = 1. It
means that the quantum feature is mainly dependent on
the permittivity in low frequencies. When the frequency
is near the magnetic resonance frequency ω0, the relative
photon-number densities of the transmitted field are low
because of the big absorption. For frequencies that are
big compared with the magnetic resonance frequency ω0,
the relative photon-number densities of the transmitted
field are large. The results show that the permittivity and
permeability reinforce the transmission and this feature
is more obvious for the thick plate.

Fig. 6 The relative photon-number densities of the transmitted
outgoing field: solid lines correspond to the metamaterial plate
with permittivity and permeability given by Eq. (17) and Eq. (18);
dashed lines and dotted lines correspond to the plate with the per-
mittivity given by Eq. (17) but μ(ω) = 1 and ε(ω) = 1 but the
permeability given by Eq. (18). (a) and (b) correspond to differ-
ent thickness of the plate (ω0l/c = 0.5 and ω0l/c = 1.0).

4 Summary

Based on the quantization scheme of the radiation fields
and input–output relations in the dispersive and absorp-
tive magnetic media, we calculate the quantum optical
correlation through a metamaterial plate. Then the rel-
ative photon-number densities of the transmitted field,
the reflected field and the absorbed field are obtained
through the correlation functions. For frequencies that
are small compared with the magnetic resonance fre-
quency ω0, almost all the photons incident on the meta-
materials with certain thickness are reflected. Near the
magnetic resonance frequency ω0, most of the photons
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which can enter the metamaterials are absorbed due to
the large imaginary part of the refractive index. The
transmission is enhanced with a further increase of the
frequency that is associated with a relative small ab-
solute value of the refractive index. Furthermore, the
contributions of the permittivity and the permeability of
the metamaterials to the transmission are analyzed. Our
results show that both the permittivity and permeabil-
ity are necessary to the high transmission for frequencies
that are big compared with the magnetic resonance fre-
quency ω0. These conclusions are similar to those in
the classical situations. This indicates that the unusual
properties of metamaterials might be used in the control
of the quantized radiation.
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Appendix: Elements of transformation matrix

The elements of the matrix T (ω) can be obtained by [24]

T11(ω) = e−iβ1(ω)ωl/c

× [r12(ω) + t12(ω)e2in2(ω)ωl/cr23(ω)υ(ω)t21(ω)]

(A-1)

T12(ω) =
n1(ω)
n3(ω)

√
β3(ω)
β1(ω)

× e−i[β1(ω)+β3(ω)]ωl/(2c)t32(ω)ein2(ω)ωl/cυ(ω)t21(ω)

(A-2)

T21(ω) =
n3(ω)
n1(ω)

√
β1(ω)
β3(ω)

× e−i[β1(ω)+β3(ω)]ωl/(2c)t12(ω)ein2(ω)ωl/cυ(ω)t23(ω)

(A-3)

T22(ω) = e−iβ3(ω)ωl/c

× [r32(ω) + t32(ω)e2in2(ω)ωl/cr21(ω)υ(ω)t23(ω)]

(A-4)

where the interface reflection and transmission coeffi-
cients are defined by

rij(ω) = −rji(ω) =
ni(ω)μj(ω) − nj(ω)μi(ω)
ni(ω)μj(ω) + nj(ω)μi(ω)

(A-5)

tij(ω) =
2ni(ω)μj(ω)

ni(ω)μj(ω) + nj(ω)μi(ω)
(A-6)

and the multiple reflections factor reads as

υ(ω) = [1 − r21(ω)r23(ω)e2in2(ω)ωl/c]−1 (A-7)

In the above expressions l = x2 − x1 is the thickness of
the metamaterial plate.
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