
Front. Phys., 2011, 6(1): 124–132

DOI 10.1007/s11467-010-0152-1

RESEARCH ARTICLE

Oscillation sources and wave propagation paths in complex

networks consisting of excitable nodes

Xu-hong LIAO (���)1, Yu QIAN (��)2, Yuan-yuan MI (���)1, Qin-zhi XIA (���)1,

Xiao-qing HUANG (���)1, Gang HU (��)1,†

1Department of Physics, Beijing Normal University, Beijing 100875, China

2Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007, China

E-mail: †ganghu@bnu.edu.cn

Received September 14, 2010; accepted October 10, 2010

Self-sustained oscillations in complex networks consisting of nonoscillatory nodes have attracted
long-standing interest in diverse natural and social systems. We study the self-sustained periodic
oscillations in random networks consisting of excitable nodes. We reveal the underlying dynamic
structure by applying a dominant phase-advanced driving method. The oscillation sources and wave
propagation paths can be illustrated clearly via the dynamic structure revealed. Then we are able
to control the oscillations with surprisingly high efficiency based on our understanding.
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1 Introduction

Self-sustained oscillations in complex networks consist-
ing of nonoscillatory nodes are very common phenomena
in nature [1], such as oscillations in genetic regulatory
networks [2] and neural networks [3–5]. Revealing the
mechanism of oscillations in complex networks will not
only provide a better understanding of the physiologi-
cal functions but also be beneficial for the diagnosis and
treatment of unfavorable motions, such as epilepsy [6].
There have been many works focusing on oscillatory net-
works with simplified models [7–10], but some fundamen-
tal questions has not been answered. For instance, given
an oscillatory complex network consisting of a large num-
ber of nonoscillatory nodes, one can hardly say anything
about where the oscillation sources are, how oscillatory
waves propagate in the whole network, not to mention
how to efficiently control the oscillation.

The loop structure is ubiquitous in real networks [11]
and the total number of loops can be analyzed [12].
The loops play an important role in the network dy-
namics. The relation between synchronization and the
corresponding dominant loop was discussed [13]. Recur-
rent excitation has been proposed to be the reason sup-
porting self-sustained oscillations in neural networks [7,

8, 14, 15]. However, efficiently identifying the functional
structure in complex networks is remained a question.

In our previous papers [16, 17], we proposed a domi-
nant phase-advanced driving (DPAD) method to reveal
the underlying dynamic structure of self-sustained target
waves in small-world networks of excitable nodes. Based
on the information embedded in the DPAD structures,
we successfully revealed the oscillation source. In small-
world networks [18], numerous local regular connections
coexist with some long-range links. The former play an
important role in target wave propagation and the latter
are crucial for maintaining the self-sustained oscillations.
In the present paper we apply the above ideas to com-
plicated random networks consisting of large numbers of
excitable cells, where all connections are randomly dis-
tributed and no clear trace of wave propagation can be
pursued. We are able to achieve the following results. (i)
By applying the DPAD method, we simplify the origi-
nal high-dimensional random networks to functional and
one-dimensional (1D) DPAD structures. (ii) From the
DPAD structures we can clearly identify the oscillation
sources (unidirectional loops) and reveal the wave prop-
agation paths (unidirectional tree branches); (iii) With
these DPAD structures we are able to classify one or a
few important nodes, by removing which we can control
the oscillations of the whole networks with surprisingly
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high efficiency.

2 Results and analyses

2.1 DPAD method and universal structure

Here, we briefly recall the dynamical DPAD structure
[16, 17]. Given a network consisting of N nodes with
nonoscillatory local dynamics, there are M (M > N)
interactions between different nodes. Dynamic variables
of each node obey well defined coupled ordinary differen-
tial equations. In certain situations, the entire network
displays self-sustained oscillations and all nodes are os-
cillating. Based on the network structure and oscillation
data of each node, we try to find the mechanism sup-
porting the oscillations.

It is clear that any individual nonoscillatory node can
oscillate only if it is driven by one or more interac-
tions with advanced phases. The definition of “advanced
phase” differs in different systems. Among all phase-
advanced interactions the interaction providing the most
contribution to exciting the given node, is defined as
the dominant phase-advanced driving (DPAD). Based
on this idea, the corresponding DPAD for each node can
be identified. With all DPAD interactions known, we
draw the unidirectional DPAD paths between pairs of
nodes from the nodes providing driving to the nodes be-
ing driven. Applying this complexity reduction method,
the original oscillatory high-dimensional complex net-
work of N nodes with M interactions can be reduced
to a 1D network of size N with M ′ unidirectional dom-
inant phase-advanced interactions. Here, the reduced
functional network has the same number of nodes and
interactions (M ′ = N), because each node has one and
only one DPAD.

According to graph theory, if the reduced network with
N links is connected, there is one and only one loop
(2M ′−N+1 − 1 = 1 [19]) in the network. When the re-
duced network consists of P mutually disconnected clus-
ters with nodes in each cluster connected, there is one
and only one loop in each cluster. Figure 1 gives an
illustration of a DPAD structure consisting of two clus-
ters, which agrees well with the conclusion of graph the-
ory. There is one loop in each cluster, and the nodes
not in loops are radiated from different nodes in loops.
The DPAD structure reveals the dynamical relation-
ship between different nodes. Based on this functional
structure, we can identify the loops as the oscillation
source, and illustrate the wave propagation along vari-
ous branches.

All the above ideas are generally applicable to diverse
fields for self-sustained oscillations of complex networks
consisting of individual nonoscillatory nodes. The ap-
plication to genetic regulatory networks are also studied

Fig. 1 A schematic diagram of the DPAD structure in oscillatory
networks with nonoscillatory nodes. The arrows indicate unidirec-
tional phase-advanced interactions.

[20]. The particular meanings of “advanced phase” and
“dominant phase-advanced driving” should be properly
defined to be physically meaningful and operable, based
on the characteristics of different systems.

2.2 Oscillatory excitable cell networks

We have known that the excitability of cell dynamics and
the complexity of the interaction structure are two major
features of neural networks [21, 22]. To achieve a better
understanding of the basic mutual interaction between
the excitable local dynamics and the complicated topo-
logical structure, we make a simplification to consider
the following complex excitable cell networks (CECNs)
of the Bär model [23]

dui

dt
= −1

ε
ui(ui−1)(ui− vi + b

a
)+Du

N∑
j=1

Aij(uj −ui)

dvi

dt
= f(ui) − vi, i = 1, 2, . . . , N (1)

f(ui) =

⎧⎪⎨
⎪⎩

0, ui < 1
3

1 − 6.75ui(ui − 1)2, 1
3 � ui � 1

1, ui > 1

where Aij means the node–node adjacency matrix ele-
ment. Aij = 1 if there is an interaction between node i

and node j and Aij = 0 otherwise. The Bär model keeps
the basic properties of the excitable system with sim-
ple dynamics, with which we can analyze the oscillation
mechanism conveniently. Without couplings, all cells of
CECNs are not oscillatory individually for given a, b.
They evolve asymptotically to the rest state u = v = 0
and will stay there forever unless some external force
drives them away from this state. Therefore, all the anal-
yses in the former section are applicable to this type of
systems. Whenever a cell is kicked from the rest state by
a stimulus large enough, the cell can excite by its own
internal dynamics (so called excitable dynamics). For
simplicity, we assume symmetric couplings, and adopt
random complex networks with identical coupling degree
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k (i.e., each cell couples to equal number k of other cells,
and the bidirectional couplings are chosen randomly).
With proper coupling strength given, the excitation of
any given node can cause firings of the neighbor nodes at
rest. We also take identical parameters for all cells. One
advantage of this homogeneous assumption is to make
sure that all self-sustained oscillatory behavior here is
not due to any heterogeneity in the topological structure,
but due to the self-organization of dynamical mutual ex-
citation.

Figure 2(a) and (c) show the same CECN with each
node having interaction degree k = 3, and the topolog-
ical structure looks rather complicated. With the given
interaction structure and parameters, we simulate the
system by taking different sets of random initial condi-
tions. The system evolves asymptotically to the homo-
geneous rest state in most cases. However, about 3% of
tests provide oscillations. The spatio-temporal patterns
in Fig. 2(b) and (d) are two of these oscillation states.
Both oscillations are periodic and self-sustained, but the
excitation distribution in different nodes looks irregular.
It is thus difficult to unveil the mechanism supporting
the oscillations and the excitation propagation paths in

the network.
We further study how sensitive the oscillations are to

control. Here the control is to remove one or mutiple
nodes from the network and to examine the system re-
sponse to this operation. By removing a node we mean
to discard all interactions from and toward the given
node. After exhaustive tests of the single node removal
we find that the oscillation in Fig. 2(b) can be terminated
(i.e., turned to the homogeneous rest state ui = vi = 0,
i = 1, 2, ..., N) by removing a single node 60 [red node
shown in Fig. 2(a)] while the oscillation persists safely
if we remove as many as 60 nodes [empty square nodes
shown also in Fig. 2(a)]. The sharp difference between
these operations is surprising. It clearly demonstrates
that though the topological structure of Fig. 2(a) is ran-
dom and homogeneous, the dynamic organization sup-
porting the oscillation is strongly heterogeneous, and the
roles played by different nodes in this organization are
considerably different. The central task of the present
work is to reveal these self-organized patterns under the
condition of full knowledge of the coupling structure and
the oscillation data, and then to find effective methods
for controlling the oscillatory networks.

Fig. 2 Different oscillation states in the same random network consisting of N = 100 nodes. All couplings with strength
Du = 1.0 are randomly chosen between N nodes, each having coupling degree k = 3. The nodes have the same parameters
set as follows: α = 0.84, β = 0.07, ε = 0.04. All these parameters will be used throughout Figs. 2–5. (a), (c) Random
networks and their modulations corresponding to oscillation states (b) and (d), respectively. Green lines between nodes
display the mutual interactions generated randomly. When we remove the red nodes, the corresponding oscillation is
suppressed. In contrast, both oscillations persist when the indicated 60 empty square nodes are removed. (b), (d) Spatio-
temporal patterns of two oscillation states in the same network. Both the patterns display the evolution of local variable
u. The nodes are spatially arranged according to their indexes.
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On the other hand, we can never terminate the oscil-
lation in Fig. 2(d) by discarding any single node. In-
stead, this oscillation can be terminated by removing a
pair of nodes [red nodes 12 and 21 shown in Fig. 2(c)]
in contrast with Fig. 2(a) where the oscillation can be
terminated by removing only a single red node. The dif-
ference between Fig. 2(a) and (c) is again a mystery of
oscillatory networks. Similar to Fig. 2(a) the oscillation
persists when we simultaneously remove all 60 empty
square nodes shown in Fig. 2(c).

In order to apply the DPAD method to the oscillation
states in Fig. 2, the first task is to define phase-advanced
interactions of excitable nodes. For a given node that
enters the region of the rest state (u < uth = b/a)
at time ts and departs from this region at time te, we
define the “phase-advanced driving” as the interaction
from the neighbor node that leaves the rest state ear-
lier than the given node [i.e., in the period(ts, te)], which
thereby provides a favorable contribution to kicking the
given cell from the rest state around excitation time
te. Among all phase-advanced interactions the domi-
nant phase-advanced driving is defined as the interaction
from the node first leaving the resting state in the pe-
riod (ts, te). There is no doubt that the dominant driving
makes the most important contribution to exciting the
given node, i.e., to driving the given node to oscillate.

2.3 DPAD structure and oscillation control

In Fig. 3(a), we display the dominant phase-advanced
driving of node 55 in state Fig. 2(b) as an example. With
the definition of DPAD shown in Fig. 3(a) we can draw
the DPAD structures corresponding to various oscillation
states of Fig. 2. In Fig. 3(b), we show the DPAD struc-
ture of state Fig. 2(b). We find a DPAD pattern, which
is just the type shown in Fig. 1. The only difference is
that there is only one cluster in Fig. 3(b). The single
dynamical loop plays the role of oscillation source, with
cells in the loop exciting sequentially to maintain the self-
sustained oscillation. We can observe waves propagating
downstream along the tree branches rooted at various
cells in the loop. Wave propagation in two different paths
is illustrated in Fig. 3(c) and (d), respectively. In Fig.
3(c) and (d) nodes are arranged in order according to the
sequence in the loop and the purple branch, respectively.
We find regular and perfect wave propagation patterns in
both figures. These figures demonstrate that the DPAD
structure well illustrates the wave propagation paths.

The DPAD structure in Fig. 3(b) clearly shows distinc-
tive significance of different cells in the oscillation which
cannot be observed in Fig. 2(a). In Fig. 2(a) all cells
stand equivalently in the homogeneous and randomly
coupled network, and no cell takes any priority over

Fig. 3 (a) Illustration of the dominant phase-advanced driving (DPAD). The black curve denotes the given node 55. Three
nodes, nodes 7, 47, and 88, interact with node 55. The blue and green lines provide driving for exciting the given node,
so they are called phase-advanced interactions. The blue one, making the most significant contribution, is the dominant
phase-advanced driving (DPAD). (b) DPAD structure corresponding to the oscillation state in Fig. 2(b). (c) Evolution of
variable u of nodes in the loop. These nodes are ordered according to the sequence in the loop shown in (b). (d) Evolution
of variable u of different nodes in the purple branch in (b). Both figures (c) and (d) show perfect wave propagation.
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others in topology. The situation in Fig. 3(b) is differ-
ent. Because the unidirectional loop works as the os-
cillation source, cells in the loop must be important to
the oscillation. Furthermore, the cells at various turning
points of large branches, which control large numbers of
downstream cells, are also likely to be important. In
particular, node 60 in Fig. 3(b) is likely to be the most
important cell because it locates in the source loop on
one hand and controls the largest number of downstream
nodes on the other hand. It is interesting to observe that
node 60 is the very single red node in Fig. 2(a) that we
found important for controlling the oscillation but did
not known the reason then. Now, the significance of
node 60 to the oscillation is unveiled clearly. In Fig. 4(a)
we show how the oscillation collapses quickly to the ho-
mogeneous rest state after removing only a single node
60. On the other hand, cells near the branch ends must
be less important to the oscillation. We remove simul-
taneously a large number of cells (60 nodes) in branch
tails [See Fig. 4(b)] which are exactly the empty square
nodes in Fig. 2(a). The network not only continues its
periodic oscillation [Fig. 4(b)], but also keeps the DPAD
structure similar with Fig. 3(b) for the remaining cells
[Fig. 4(c)]. Therefore, the puzzling question that why so
many empty square nodes together in Fig. 2(a) are much
less important than a single red cell, is clearly answered

in Fig. 3(b). Because all these empty square nodes are
far from the source loop, they have little influence on
the self-sustained oscillation. On the other hand the sin-
gle red cell 60 controls both the oscillation source and a
large number of downstream nodes, so it is of crucial im-
portance for the given oscillation. Removing one or few
other cells in the source loop may not stop the oscillation
but can considerably change the oscillation frequency as
well as the DPAD structure of the oscillation.

Period is an important quantity describing the prop-
erties of oscillatory networks. We further study the
influence of the DPAD loops on the periods of network
oscillations. We simulated Eq. (1) in different homoge-
neous random networks (N = 100, k = 3) with random
initial conditions. We found 217 oscillatory realizations
(all are periodic). Then we measured the period T of
each oscillatory network, and plotted T against n in Fig.
4(d) with n being the size of the loop in the correspond-
ing DPAD structure. In Fig. 4(d) a monotonous and
approximately linear increase of 〈T 〉 with n is clearly
demonstrated. These observations convincingly support
the conclusion that DPAD loops indeed play the role of
oscillation sources in complex networks. For a given node
in the source loop, while the neighbor with the most ad-
vanced phase dominates the driving, how quick the node
will be excited is influenced by the input from other

Fig. 4 (a), (b) Evolution of average variables 〈u〉 and 〈v〉. 〈u〉 = 1/N
PN

i=1 ui, 〈v〉 = 1/N
PN

i=1 vi. (a) The oscillation
of Fig. 2(b) is suppressed when we remove the single node 60 at t = 2060 denoted by the dashed line. (b) The oscillation of
Fig. 2(b) are modulated slightly by removing 60 side nodes in total at t = 2060 denoted by the dashed line. (c) The DPAD
structure corresponding to modulated oscillation in (b) with 40 nodes remaining. The resulting DPAD structure remains
similar after the control. (d) Periods T ’s of 217 oscillation states plotted against the sizes of corresponding DPAD loops.
The oscillations are generated in different networks with random initial conditions. The larger red square represents the
average period 〈T 〉 at certain loop size and the red solid line denotes the linear fitting of the tendency. 〈T 〉 increases with
the loop size n almost linearly.
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connecting nodes. Therefore the periods can be different
for the same loop size n.

In Fig. 5(a) we show the DPAD structure correspond-
ing to the oscillation in Fig. 2(d). The interesting dif-
ference between Fig. 5(a) and Fig. 3(b) is that Fig. 5(a)
contains two DPAD clusters (similar to Fig. 1) instead
of the single one in Fig. 3(b). Comparing the DPAD
structure in Fig. 5(a) with that in Fig. 3(b), we can un-
derstand the difference of Fig. 2(a) and (c) immediately.
Since there are two oscillation source loops in Fig. 5(a),
we have to destroy both loops for terminating the oscilla-
tion by removing the two red nodes in Fig. 5(a) simulta-
neously, each from a loop. The two red nodes shown here
(node 12 and 21) are exactly identical to those in Fig.
2(c) with the same color. We show that the oscillation
is suppressed after removing these two red nodes in Fig.
5(b). In Fig. 5(c) and (d) we derive the DPAD structure
with only one of the two red nodes (node 12 or node
21) removed, respectively. It is interesting to see that in
both cases when one DPAD loop of Fig. 5(a) is destroyed,
the other remaining loop serves as the unique oscillation
source of the whole system. All nodes in the original
destroyed DPAD cluster will move to the survival loop
cluster to continue their periodic oscillations. Based on
the former experience in Fig. 4(c) we can easily identify
that the empty square nodes removed in Fig. 2(c) are all
the side nodes in the DPAD structure in Fig. 5(a). That
is the reason why the oscillation persists safely when this

large number of nodes are removed. The removal of these
nodes does not effectively affect the oscillation source.

On the basis of the DPAD structure, we are able to
identify the oscillation source and distinguish the roles
played by different nodes. We can make a better under-
standing of the wave propagation in complex networks
consisting of excitable nodes. Furthermore, we are able
to suppress the oscillations in networks with high effi-
ciency.

2.4 Extensions to other systems

We have sampled a number of CECNs with different ini-
tial conditions and different structures (including differ-
ent system sizes and interaction degrees). Some highly
heterogeneous scale-free networks [24] are also consid-
ered. We even studied CECNs with different local dy-
namics, such as Fitzhugh–Nagumo (FHN) [21] neural cell
networks. For each oscillatory network we are able to de-
rive the DPAD structure, which has the universal struc-
ture of tree branches from loops like Fig. 1. The general
conclusions about DPAD structures are well confirmed.
Some of the results in different networks are shown here.

In Fig. 6, we plot various DPAD structures for os-
cillations in networks with even larger size N = 2500.
In Fig. 6(a)–(c) we display three DPAD structures, re-
spectively, corresponding to different self-sustained peri-
odic oscillations in different networks. DPAD structures

Fig. 5 DPAD structure and corresponding modulations of the oscillation state in Fig. 2(d). (a) DPAD structure with
two loops working as the source of oscillation in Fig. 2(d). (b) Evolution of average variables 〈u〉, 〈v〉 of the state (a).
The oscillation is suppressed when one removes nodes 12 and 21 simultaneously at t = 2060. The time of the removal is
denoted by the dashed line. (c), (d) DPAD structures of modulated oscillation states after removing node 12 and node 21,
respectively.
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Fig. 6 The schematic diagrams of different DPAD structures in larger random networks with N = 2500. The other
parameters are the same as Fig. 2. The numbers inside the loops mean the indexes of corresponding nodes in the loop. The
sizes of branches radiated from different nodes in loops are denoted by the numbers associated with the the corresponding
arrows. (a) Single loop DPAD structure. (b) Double-loop DPAD structure. (c) Triple-loop DPAD structure.

with one loop [Fig. 6(a)], double loops [Fig. 6(b)], and
triple loops [Fig. 6(c)], are illustrated. The numbers
inside the loops indicate the indexes of the loop nodes
while those outside the loops associated with arrows de-
note the size of branches rooted at the given loop nodes.
Currently, the network size is much larger than that in
Fig. 2(a); however, the prediction of the universal DPAD
structure like that in Fig. 1 is still verified. An interest-
ing phenomenon is that we find triple DPAD clusters in
Fig. 6(c).

In Fig. 7, we analyze the self-sustained periodic oscil-
lations in a scale-free network with degree distribution
obeying a power-law rule [24]. The network consists of
N = 200 nodes with average degree 〈k〉 = 4. Because of
the topological heterogeneity, there are some hub nodes
in the network, which have interactions with many other
nodes. The dynamic equations (1) are modified as fol-
lows:

dui

dt
= −1

ε
ui(ui − 1)(ui − vi + b

a
) + Duwi

(2)
dvi

dt
= f(ui) − vi, i = 1, 2, . . . , N

wi =

∑N
j=1 Aijuj∑N

j=1 Aijuj + K
− ui

f(ui) =

⎧⎪⎨
⎪⎩

0, ui < 1
3

1 − 6.75ui(ui − 1)2, 1
3 � ui � 1

1, ui > 1

Being different from the homogeneous random net-
work, a specific type of interplay wi between interacting
nodes are considered here, to ensure that any rest node

can be successfully exited by its any exciting neighbor
node. This type of interplay has been widely used in
neural networks [7, 8, 25] and other excitable networks
[26–28]. Given oscillation states generated by random
initial conditions, similar DPAD structures are unveiled,
one of which is shown in Fig. 7(a). With the informa-
tion embedded in the DPAD structure, we can suppress
the oscillation effectively. The control on the evolution
is demonstrated in Fig. 7(b).

The DPAD structure analysis can also be extended to
complex networks consisting of nodes with more com-
plicated local dynamics. Let us consider the network of
FHN model [21] with diffusive coupling

dui

dt
=

1
ε
(ui − u3

i

3
− vi) + Du

N∑
j=1

(Aij(uj − ui))

(3)
dvi

dt
= ε(ui + β − γvi), i = 1, 2, ..., N

where Aij is also the element of node-node adjacency
matrix. The FHN model has been extensively used to
describe neural dynamics. For the given parameters, the
individual neural cell is excitable. With certain initial
conditions the network of coupled cells can self-organize
into sustained oscillations. In Fig. 8(a) and (b), we dis-
play two different DPAD structures, respectively, corre-
sponding to two periodic states in the same homogeneous
network with different initial conditions. The single loop
[Fig. 8(a)] and double-loop [Fig. 8(b)] DPAD structures
are identified by applying the DPAD method. We can
also suppress the oscillations efficiently by removing the
corresponding red nodes in Fig. 8(a) and (b).
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Fig. 7 Oscillation in a scale-free network consisting of N = 200 nodes. The size of each node is proportional to its degree
k. The degree distribution of the network obeys a power-law distribution with an exponent γ = −3. The average degree
is 〈k〉 = 4. The bidirectional links between nodes are chosen randomly with coupling strength Du = 0.4 and K = 1.8 in
Eq. (2). The local dynamics parameters are the same as Fig. 2. (a) DPAD structure corresponding to a certain periodic
oscillation generated randomly. Only the indexes of the nodes in the loop are indicated. (b) Time evolution of average
variables 〈u〉, 〈v〉. One can suppress the oscillation with the red node 50 removed. The time of the removal is indicated by
the dashed line.

Fig. 8 DPAD structures corresponding to different oscillation states in an FHN network. The network consists of N = 100
nodes with homogeneous degree k = 3. The interactions between different nodes are generated randomly with coupling
strength Du = 0.1. FHN model is applied as the local dynamics. The local parameters in Eq. (3) are set as follows: β = 0.7,
γ = 0.5, ε = 0.2. Two oscillation states are generated by different initial conditions. (a) DPAD structure with a single
loop. (b) DPAD structure with double loops. The important nodes in both oscillation states are marked by red nodes.

3 Conclusions

We studied the problem of periodic oscillations in com-
plex networks consisting of excitable nodes. With the
dominant phase-advanced driving method we revealed
DPAD structures in complicated high-dimensional net-
works. On the basis of the DPAD structures we can
easily identify the oscillation sources and wave propa-
gation paths in oscillatory complex networks. All these
messages are deeply hidden in the original complex struc-
tures and seemingly random phase distribution. These
DPAD structures are extremely important for under-
standing and efficiently controlling self-sustained oscil-
lations in complex systems. We successfully used these
ideas and methods to analyze the model of excitable
cell networks, and these ideas and methods are expected
to be applicable to self-sustained oscillations of complex
networks in a broad range of fields.

In the present paper we have considered only cases of
periodic oscillations where DPAD structures are station-
ary. If an oscillation is quasiperiodic or even chaotic,
the DPAD structure may vary during the evolution,

and this opens a new field for further study. Moreover,
throughout this paper we have studied how to reveal
DPAD sturctures with full knowledge of the interaction
structures and oscillation data. These conditions are not
fulfilled in many experiments. Thus, it is another crucial
task to extend the investigation to the cases with partial
or even without any oscillation data.
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