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Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations

over EM wave polarizations are always desirable in practical applications. Here, we review the recent

efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to

visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings

by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations.

With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based

on the reflection geometry and proposed corresponding model metamaterial systems to realize such

effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD)

simulations, and experiments were performed to successfully realize these ideas at both microwave and

visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the

transmission geometry are also reviewed.
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1 Introduction

Polarization is conventionally described by the oscillat-
ing behaviors of the E vectors in a wave [1–4]. If the
trajectory of the end point of E vector forms a line (cir-
cle, ellipse) on the wave front as time varies, the wave
is called linearly (circularly, elliptically) polarized. Po-
larized lights have important applications in different ar-
eas of scientific research, including biology, chemistry,
astronomy, and physics. Practically, it is highly desir-
able to have full control of the wave polarizations. Sev-
eral conventional methods are available to manipulate
the wave polarizations. For example, by using two wave
plates, one can convert the light polarization completely
from one direction to its cross direction. Also, a lin-
early polarized light can be generated when a natural
light passes through an optical grating or reflected by
a medium at the Brewster angle. Other polarization-
related phenomena include the optical activity, the bire-
fringence effects, the polarization beam splitting, etc. [1–
4]. While these conventional methods have their own
characteristics and merits, they do suffer some limita-
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tions simultaneously. For example, these devices are typ-
ically not totally reflective or transparent so that some
optical signals are inevitably lost during operation. In
addition, many conventional devices are much thicker
than wavelength, making the systems bulky for longer
wavelength applications.

Metamaterials are artificial electromagnetic materials
composed by subwavelength local resonance structures of
electric and/or magnetic type and thus possess arbitrary
values of permittivity ε and permeability μ dictated by
such resonance structures [5–12]. Many novel EM prop-
erties were predicted or discovered based on metamateri-
als, including the negative refraction [13–15], the super-
lensing effect [16–19], reversed Doppler shift [13, 20–22],
abnormal Cherenkov radiation [13, 23–26], the subwave-
length metamaterial cavities [27–29], etc. In particular,
combining with the transformation optics method [30–
32], a lot of intriguing wave-functional devices have been
proposed, including the invisibility cloaks [30, 31], elec-
tromagnetic field concentrators [33], field rotators [34],
cylindrical superlenses [35], and superscatterer [36].

Now, that metamaterials can in principle possess arbi-
trary values of ε and μ, it is quite natural to ask whether
they could have better controls over EM wave polariza-
tions. Recently, there were indeed quite some attempts
to employ such new materials to control EM wave po-
larizations [37–47], with several fascinating phenomena
discovered. In what follows, we will give a detailed re-
view on these efforts.

In the next section, we first generalize the conventional
2× 2 transfer-matrix method (TMM) to a 4× 4 version.
This is because metamaterials are usually anisotropic [6–
12], and many exciting polarization-related phenomena
appear in the general situations where the incident EM
wave takes arbitrary propagation direction and polariza-
tion. Theoretical calculations for such a general case are
much more complicated than that for the isotropic case
and for the simplified anisotropic problems (either E or
H field is along one of the optical axes) [48–53]. For the
latter two cases, one can always write down the wave so-
lution as a combination of two independent modes, i.e.,
the s and p modes, with electric or magnetic field paral-
lel to a prefixed planar interface. Polarizations are con-
served as EM wave passes across the interface for each
mode, and therefore, one can study the propagations of
the two modes separately employing the standard 2 × 2
TMM [54, 55]. However, the same thing cannot be done
in a general anisotropic problem, and thus, the standard
2×2 TMM should be generalized to a 4×4 version when
we consider the wave transmissions/reflections in such a
situation. While formalisms were previously available for
an anisotropic medium with an anisotropic ↔

ε tensor [54],
those formulas cannot be directly applied to the present
metamaterial problems where both ↔

ε and ↔
μ could be

anisotropic tensors.

In Section 3, we review our efforts in employing
anisotropic metamaterials to manipulate wave polariza-
tions under the reflection geometry. We discovered sev-
eral amazing polarization manipulation phenomena in
different systems and then proposed realistic metamate-
rial structures that can realize such effects. For exam-
ple, by shining a linearly polarized EM wave on a spe-
cific metamaterial, we found that all kind of polarization
states (circular, elliptic, and linear) are realizable after
reflections under different conditions. We also found it
possible to rotate the polarization direction of a linearly
polarized EM wave by an arbitrary angle and even con-
vert it to its cross direction completely. Several theo-
retical predictions were experimentally verified at both
microwave and visible frequencies.

After we briefly review the efforts in employing meta-
materials to manipulate light polarizations under the
transmission geometry in Section 4, we conclude the pa-
per in Section 5.

2 Computational methodology

In this section, we establish the 4 × 4 version of TMM.
Consider a stratified medium consisting of homogeneous
but anisotropic metamaterial layers, with the z axis cho-
sen normal to the interfaces, as shown in Fig. 1.

Fig. 1 Geometry of a stratified structure consisting of N layers
of anisotropic metamaterials embedded inside air.

2.1 The 4 × 4 transfer matrix

We start from studying the propagations of plane waves
in a homogeneous anisotropic medium, with permittivity
tensor and permeability tensor given by

↔
ε =

⎛
⎜⎝

εx 0 0
0 εy 0

0 0 εz

⎞
⎟⎠ ,

↔
μ =

⎛
⎜⎝

μx 0 0
0 μy 0

0 0 μz

⎞
⎟⎠ (1)

According to the Maxwell equations, the E field inside
such a medium should satisfy

k × [(↔μ
−1

) · (k × E)] +
ω2

c2
↔
ε · E = 0 (2)

where ω and k denote the angular frequency and wave
vector, respectively. With kx and ky prefixed and apply-
ing the constrain ∇ · (↔ε · E) = 0, the dispersion relation
between ω and kz is found as:
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(ω
c

)4

εxεyεz −
⎡
⎣ ∑
i�=j �=l

εi(εjμ−1
j + εlμ

−1
l )k2

i

⎤
⎦(ω

c

)2

+
(

1
2

∑
i�=j �=l

μ−1
i μ−1

j k2
l

)∑
i

εik
2
i = 0 (3)

where i, j, l = x, y, z. Equation (3) has four roots, de-
noted by {kz1, kz2 = −kz1, kz3, kz4 = −kz3} and corre-
sponding to two independent modes propagating for-
wardly and backwardly. For each solution, the elec-
tric field distribution can be obtained through solving
Eq. (2) with the solution of kz inserted. In general, the
wave solution inside the anisotropic medium must be a
linear combination of these four modes, so that the EM
waves can be expressed as:(

E(n)

H(n)

)
=

4∑
σ=1

E(n)
σ

(
ê
(n)
σ

ĥ
(n)
σ

)
e−i[kxx+kyy+k

(n)
zσ (z−zn)−ωt]

(4)

where {E(n)
1 , E

(n)
2 , E

(n)
3 , E

(n)
4 } is a set of expansion co-

efficients to be determined, ê(n)
σ , ĥ

(n)
σ , k

(n)
zσ are the field

vectors and wave-vectors calculated in the nth layer, and
zn is the starting position of the nth layer. Imposing the
condition that the tangential components of E and H

are continuous at the boundary z = zn+1, we found that⎛
⎜⎜⎜⎜⎝

E
(n+1)
1

E
(n+1)
2

E
(n+1)
3

E
(n+1)
4

⎞
⎟⎟⎟⎟⎠ = D−1

n+1DnPn

⎛
⎜⎜⎜⎜⎝

E
(n)
1

E
(n)
2

E
(n)
3

E
(n)
4

⎞
⎟⎟⎟⎟⎠

= Mn+1,nPn

⎛
⎜⎜⎜⎜⎝

E
(n)
1

E
(n)
2

E
(n)
3

E
(n)
4

⎞
⎟⎟⎟⎟⎠ (5)

with

Dn =

⎛
⎜⎜⎜⎜⎝

ê
(n)
1 · ŷ ê

(n)
2 · ŷ ê

(n)
3 · ŷ ê

(n)
4 · ŷ

ĥ
(n)
1 · x̂ ĥ

(n)
2 · x̂ ĥ

(n)
3 · x̂ ĥ

(n)
4 · x̂

ĥ
(n)
1 · ŷ ĥ

(n)
2 · ŷ ĥ

(n)
3 · ŷ ĥ

(n)
4 · ŷ

ê
(n)
1 · x̂ ê

(n)
2 · x̂ ê

(n)
3 · x̂ ê

(n)
4 · x̂

⎞
⎟⎟⎟⎟⎠ (6)

and

Pn =

⎛
⎜⎜⎜⎜⎝

e−ik
(n)
z1 dn

e−ik
(n)
z2 dn

e−ik
(n)
z3 dn

e−ik
(n)
z4 dn

⎞
⎟⎟⎟⎟⎠
(7)

It is noted that in the absence of magnetic anisotropy
(i.e., μx = μy = μz = μ), matricesDn and Pn recover the
results obtained previously [Eqs. (17) and (18) in Ref.
[57]]. When both the magnetic and electric anisotropy

are absent (i.e., μx = μy = μz = μ, εx = εy = εz = ε),
the 4× 4 transfer matrix Mn+1,n is reduced to two inde-
pendent 2× 2 transfer matrixes, recovering the isotropic
medium case [6]. On the other hand, Pn is the usual
propagation matrix to describe how EM wave propagates
in the nth anisotropic layer (with a distance dn). There-
fore, expansion coefficients in an arbitrary layer (say, the
nth layer) can be related to those in the first layer via
applying Eq. (5) iteratively,⎛
⎜⎜⎜⎜⎝

E
(n)
1

E
(n)
2

E
(n)
3

E
(n)
4

⎞
⎟⎟⎟⎟⎠ = Mn,n−1Pn−1Mn−1,n−2Pn−2 · · ·

·M2,1P1

⎛
⎜⎜⎜⎜⎝

E
(1)
1

E
(1)
2

E
(1)
3

E
(1)
4

⎞
⎟⎟⎟⎟⎠ (8)

and the EM fields in the nth layer can be calculated from
Eq. (4) after the expansion coefficients are known.

2.2 Transmission and reflection coefficients

For the system shown in Fig. 1, we label the semi-infinite
reference medium on the left (right)-hand side of the sys-
tem as the 0th [(N + 1)th] layer (see Fig. 1). Assume a
light is incident from the 0th layer, and then, the re-
flected waves in this layer and the transmitted wave in
the last layer can be calculated with the transfer-matrix
technique presented above. Apparently, the eigenmodes
in the reference medium are just the conventional s and
p modes that defined for the isotropic medium [38]. Let
Eis, E

i
p, E

r
s , E

r
p , and Ets, E

t
p denote the complex am-

plitudes of the s and p modes of the incident, reflected,
and transmitted waves, correspondingly. Applying the
techniques described previously, the field inside the last
layer (determined by the parameters Ets and Etp) can be
associated with those inside the 0th layer (determined by
the parameters Eis, Ers , Eip, Erp) by a transfer matrix as:⎛
⎜⎜⎜⎜⎝

Ets

0

Etp

0

⎞
⎟⎟⎟⎟⎠ = Q

⎛
⎜⎜⎜⎜⎝

Eis

Ers

Eip

Erp

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Eis

Ers

Eip

Erp

⎞
⎟⎟⎟⎟⎠ (9)

where

Q = MN+1,NPNMN,N−1PN−1 · · ·M2,1P1M1,0P0 (10)

The reflection and transmission coefficients can then be
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calculated as:

rss =
Ers
Eis

∣∣∣∣
Ei

p=0

=
Q24Q41 −Q21Q44

Q22Q44 −Q24Q42
(11)

rsp =
Erp
Eis

∣∣∣∣
Ei

p=0

=
Q21Q42 −Q22Q41

Q22Q44 −Q24Q42
(12)

tss =
Ets
Eis

∣∣∣∣
Ei

p=0

= Q11 +
Q12(Q24Q41 −Q21Q44) +Q14(Q21Q42 −Q22Q41)

Q22Q44 −Q24Q42
(13)

tsp =
Etp
Eis

∣∣∣∣
Ei

p=0

= Q31 +
Q32(Q24Q41 −Q21Q44) +Q34(Q21Q42 −Q22Q41)

Q22Q44 −Q24Q42
(14)

rps =
Ers
Eip

∣∣∣∣
Ei

s=0

=
Q24Q43 −Q23Q44

Q22Q44 −Q24Q42
(15) rpp =

Erp
Eip

∣∣∣∣
Ei

s=0

=
Q23Q42 −Q22Q43

Q22Q44 −Q24Q42
(16)

tps =
Ets
Eip

∣∣∣∣
Ei

s=0

= Q13 +
Q12(Q24Q43 −Q23Q44) +Q14(Q23Q42 −Q22Q43)

Q22Q44 −Q24Q42
(17)

tpp =
Etp
Eip

∣∣∣∣
Ei

s=0

= Q33 +
Q32(Q24Q43 −Q23Q44) +Q34(Q23Q42 −Q22Q43)

Q22Q44 −Q24Q42
(18)

Here, rss and rpp are the direct reflection coefficients
measuring the reflected waves with polarizations con-
served, whereas rsp and rps are the cross-reflection co-
efficients denoting the reflected waves with polarizations
converted. Similarly, tss and tpp are the direct trans-
mission coefficients, while tsp and tps denote the cross-
transmission coefficients. In the absence of anisotropy
where Q matrix is block-diagonalized (i.e., Q13 = Q14 =
Q23 = Q24 = Q31 = Q41 = Q32 = Q42 = 0), the
polarization-converted terms become exactly zero, rsp =
rps = tsp = tps = 0, and the polarization-conserved coef-
ficients recover those derived for the isotropic case [56]:

rss = −Q21/Q22 (19)

tss = Q11 −Q12Q21/Q22 (20)

The analytical forms of the coefficients defined in Eqs.
(11)–(18) are usually too complicated to derive for an
arbitrary anisotropic layered system so that one needs
to perform numerical computations.

3 Manipulate EM wave polarizations by
metamaterials – reflection geometry

3.1 Single air/metamaterial interface

We first investigate the EM wave scatterings by an in-
terface between air and an anisotropic metamaterial. Al-

though the assumption of a semi-infinite sample is not
quite realistic, this is the simplest model to study which
yields several analytical results, from which many phys-
ical insights can be gained. Unlike the reflection by an
isotropic interface that conserves the polarization, here,
in the presence of anisotropy, an incident wave with a
definite polarization could generate a reflected wave with
another polarization because of the fact rsp, rps �= 0. De-
fine a polarization conversion ratio (PCR) as:

PCR = |rsp|2/(|rss|2 + |rsp|2) (21)

which measures the energy portion transformed from the
original polarization, assumed as the s polarization for
definiteness, to the other polarization (p polarization)
after reflection. Obviously, this ratio depends on the di-
rection (θ, φ) of the incident wave vector kin, which is
given by kin = (ω/c)[sin θ cosφx̂+ sin θ sinφŷ + cos θẑ].

Consider the normal incidence case (θ = 0◦), which
can be solved analytically. While φ is meaningless to
define, the direction of kin in this case, it is still mean-
ingful to differentiate two polarizations. In consistency
with the θ �= 0◦ case [57], we define that the s-polarized
wave has E||ês = (− sinφx̂ + cosφŷ) and the p-polarized
one has E||êp = (cosφx̂+ sinφŷ) in the case of θ = 0◦.
Straightforward calculations yield that

rsp =
(
√
εx
√
μx −√

εy
√
μy) sin(2φ)

(√εy +
√
μx)(

√
εx + √

μy)
(22)

rss =
√
μx

√
μy −√

εx
√
εy + (

√
εx
√
μx −√

εy
√
μy) cos(2φ)

(√εy +
√
μx)(

√
εx + √

μy)
(23)

Several interesting conclusions were obtained through
analyzing Eqs. (21)–(23). First, it is shown that all
these quantities only depend on εx, εy μx, and μy but

have nothing to do with εz and μz since here we only
study the normal incidence situation. Second, the po-
larization conversion effect disappears (rsp ≡ 0) in the
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absence of anisotropy (μx = μy = μ, εx = εy = ε), and
the reflection coefficient becomes

rss =
√
μ/

√
ε− 1√

μ/
√
ε+ 1

(24)

recovering the standard result for an isotropic case [1].
With the anisotropy tuned on, rsp could take a nonzero

value, but the polarization conversion effect is strongly
dependent of the parameter φ. When φ = 0◦ or φ = 90◦,
one finds rigorously that rsp ≡ 0 , indicating the polariza-
tion conversion effect vanishes. This is reasonable since
both E and H field of the incident wave are parallel to a
coordinate axis so that the EM wave cannot detect the
anisotropy of the medium. Meanwhile, the polarization-
converted reflectance |rsp|2 is maximized when φ = 45◦.
However, a complete polarization conversion (i.e., PCR
= 1) does not necessarily appear at φ = 45◦, since the
polarization-conserved reflectance |rss|2 is also a func-
tion of φ. Recalling the definition of PCR in Eq. (20),
we find that realizing PCR = 1 requires that rss = 0,
leading to the following condition:

cos(2φ) =
√
μx

√
μy −√

εx
√
εy√

εy
√
μy −√

εx
√
μx

(25)

Equation (25) shows that, for any value of φ, one can
always choose appropriate material constants εx, εy, μx,
and μy to achieve a complete polarization conversion ef-
fect.

Numerical calculations were performed to illustrate
the above analytical results. Since all metamaterials are
intrinsically frequency dispersive, the metamaterial un-
der study was assumed to have the following typical re-
sponse functions:

μx = 1 +
70

12.712 − f2
, μy = 1 +

22
6.802 − f2

εx = εy = εz = μz = 1
(26)

where f is the linear frequency measured in GHz. The
calculated results of r2sp, r2ss, and PCR are shown in Fig.
2(a), (b), and (c), as functions of frequency calculated
with different values of φ. It is found that the reflectance
(both r2sp and r2ss) are significantly enhanced around
the two resonance frequencies [6.8 GHz, 12.71 GHz, see
Eq. (26); here, the resonance frequencies are belong to
microwave spectrum radar bands, which can be taken
on arbitrary values in principle], and the polarization-
converted reflectance r2sp is the largest at φ = 45◦, in
consistency with our above theoretical analysis. An in-
teresting observation is that while the PCR can reach 1
at some particular frequencies for φ = 45◦, 75◦, the same
is not true for φ = 5◦, 15◦. To understand this point, we
put the frequency-dependent forms of εx, εy, μx, and μy
[Eq. (26)] into Eq. (25) to calculate the value of φ at
which a complete polarization conversion effect is real-
ized and depicted the curve φ ∼ f in Fig. 3. Indeed, for

the model adopted here, there exists a specific regime of
polarization angle (21◦ − 76◦) inside which a complete
polarization conversion effect is realizable via adjusting
frequency. For the sake of simplifications, the material
losses in all the models for microwave frequency regime
have been neglected [see Eqs. (26)–(28) and (31)]. It
is found from numerical calculations that all qualitative
conclusions drawn in this paper remain unchanged after
adding losses to the materials. In particular, while the
reflection coefficients rss, rsp are sensitive to the mate-
rial losses, the PCR value is relatively robust against the
losses.

Fig. 2 r2sp, r2ss, and PCR as functions of frequency for different
values of φ, when EM waves are incident from air on the surface
of a semi-infinite anisotropic metamaterial medium.

Fig. 3 Relation between the polarization angle φ and frequency
f , at which a complete polarization conversion effect (PCR = 1)
is realizable for the single-interface model.

We next study the oblique angle incidence case, which
is much more complex. Figure 4 (a) shows the calculated
PCR as a function of f and φ, with θ fixed as θ = 15◦.
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Fig. 4 (a) PCR as a function f and φ with θ = 15◦, calculated for the single-interface model. PCR as a function of θ
and φ with f = 6.81 GHz (b) and with f = 12.75 GHz (c) for the single-interface model.

It is observed that the trajectory connecting those max-
imum PCR points looks very similar to the φ ∼ f curve,
as shown in Fig. 3, which is calculated in the normal inci-
dence case. The physics is that both of them are dictated
by the frequency dispersion of the material [Eq. (26)].
Fixing the frequency as f = 6.81 GHz and 12.75 GHz,
the PCR as functions of θ and φ were calculated and
depicted the patterns in Fig. 4(b) and (c), respectively.
It is noted that the PCR cannot reach 1 in oblique angle
incidence case. For f = 6.81 GHz, the value of φ to real-
ize a maximum PCR increases toward 90◦ as θ increases,
indicating that at glancing incidence, one can rotate H

toward ŷ to maximize the polarization conversion effect.
An opposite behavior of φ was found for another reso-
nance [see Fig. 4(c)], since the resonances at f = 6.8
GHz and f = 12.71 GHz belong to different directions.

3.2 Anisotropic metamaterial slabs

Although the single-interface model is intuitive, it is
not quite realistic in practice. In this subsection, we
study how to manipulate the EM wave polarizations by
anisotropic metamaterial slabs, which are practically re-
alizable. Two examples were given to illustrate the ap-
plications of the 4×4 TMM, and brute-force FDTD sim-
ulations on specifically designed samples were performed
to verify all predictions based on the 4 × 4 TMM.

The first example is a 1.6-mm-thick metamaterial slab
possessing magnetic responses along two in-plane direc-
tions:

μx = 1 +
15

12.492 − f2
+

100
25.732 − f2

μy = 1+
10

7.112−f2
+

110
14.82 − f2

+
220

22.122 − f2
(27)

εx = εy = εz = μz = 1

With all material and geometrical parameters known, we
employed the 4 × 4 TMM to study the EM wave scat-
terings by such a slab. Figure 5(a) shows the calculated
results of r2sp and r2ss versus frequencies for normal inci-
dence with φ = 45◦. The corresponding PCR are shown
in Fig. 5(b) denoted by solid stars. It is found that the
spectrum calculated for a finite-thickness slab resembles

that of a single-interface case (see Fig. 2) in many re-
spects, although the details of the two spectra are quite
different. For example, the reflectance, including both
r2sp and r2ss, reach their maximum values at the two res-
onance frequencies, but the PCR reach their maximums
at different frequencies at which r2ss are minimized.

Fig. 5 (a) For sample I, the calculated r2sp and r2ss as functions
of frequency under the normal incidence condition with φ = 45◦.
(b) PCR as a function of frequency, obtained by the 4 × 4 TMM
(solid stars) and FDTD simulations (open triangles) for the real-
istic metallic structure with unit cell depicted in Fig. 7(a).

We now study the second example, which is a metama-
terial slab of the same thickness but possesses magnetic
response only along one direction:

μy=1+
10

7.062 − f2
+

110
14.542 − f2

+
220

22.562 − f2

εx = εy = εz = μx = μz = 1
(28)

We employed the 4 × 4 TMM to study the scatterings
by such a metamaterial slab and depicted the normal-
incidence spectra of r2sp, r

2
ss, and PCR in Fig. 6, cal-

culated with different values of φ. While Fig. 6(a) and
(b) show that the spectra of r2sp, r2ss are quite similar to
those calculated for sample I, here, the PCR spectrum
shown in Fig. 6(c) for sample II looks quite unusual. In
particular, the PCR is solely determined by the polar-
ization angle φ but is independent of frequency although
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the metamaterial is highly dispersive [see Eq. (28)].

Fig. 6 For Sample II, the calculated (a) r2sp and (b) r2ss as
functions of frequency under the normal incidence condition with
different azimuth angle φ. (c) PCR versus frequency calculated
under the normal incidence condition with different values of φ,
obtained by the 4×4 TMM (open squares, solid circles, open stars)
and the FDTD simulation (open triangles) for the realistic metallic
structure with unit cell depicted in Fig. 7(b).

To understand such an intriguing phenomenon, we
have derived analytical expressions for the reflection co-
efficients of such a slab under the normal incidence con-
dition [38]. Although the expressions of rss, rsp [see Eqs.
(37) and (38) in Ref. [38]] appear quite complicated, one
can still gain a lot of physical insights via analyzing them.
We found that rsp = 0 in the cases of φ = 0◦, 90◦, due to
the same reasons explained in the single-interface case.
In addition, in the case of φ = 90◦ where the property is
solely determined by εx and μy, it is easily obtained:

rss =
(μy − εx) sin(kz3d)

−2i
√
εx
√
μy cos(kz3d) + (εx + μy) sin(kz3d)

(29)

which again goes back to the reflectance calculated for
an isotropic slab.

The most interesting result appears when the condi-
tion εx = εy = μx �= μy is satisfied. In this case, while
both rss and rsp strongly depend on the value of μx, μy,
and d, such dependences cancel each other in the expres-
sion of the PCR. Specifically, through straightforward
calculations we found that

PCR =
sin2(2φ)

4 sin4 φ+ sin2(2φ)
= cos2 φ (30)

in the case of φ �= 0◦. It is noted that the PCR cannot

be defined in the case of φ = 0◦.
This peculiar property explains the intriguing behav-

iors of the PCR, as shown in Fig. 6(c), since the mate-
rial properties of sample II [εx = εy = μx = 1, see Eq.
(28)] obviously satisfy the condition εx = εy = μx �= μy.
This intriguing behavior could find some applications in
reality, in case that one wants to get a broad band po-
larization manipulation effect in practice.

FDTD simulations [38, 58] were performed to verify
these theoretical predictions obtained with the 4 × 4
TMM. With the help of FDTD simulations, two real-
istic metallic structures have been designed that exhibit
the different material responses, as shown in Eqs. (27)
and (28). As depicted in Fig. 7(a) and (b), the unit cell
of sample is composed of two split-ring resonators (SRR)
[14, 59–61] of different sizes, which are perpendicular to
each other, while that of sample II consists of only one
single SRR. Repeat the unit cells along the x(y) direction
with periodicity 8 mm (5 mm), and then, two 1.6-mm-
thick slabs corresponding to the two samples specified by
Eqs. (27) and (28) have been obtained. The EM wave
normal transmission spectra through the two samples
were calculated through the FDTD simulations, and the
results were shown by solid lines in Fig. 7(c) and (d) for
two independent polarizations (E||x̂ and E||ŷ). Excel-
lent agreements are found between the spectra calculated
by the FDTD simulations (solid lines) and by the TMM
(open stars) based on the model systems represented by
Eqs. (27) and (28). These excellent agreements demon-
strated that our designed structures can indeed be well
described by the effective medium models specified by

Fig. 7 (a) Geometry of the unit cell of Sample I, with param-
eters given by Lx = 7.4 mm, Ly = 4 mm. Other details are the
same as Sample II. (b) Geometry of the unit cell of Sample I,
with parameters given by Lx = 7.4 mm, d = 1.6 mm, g = 0.4mm,
and b = w = t = 0.2 mm. Transmission spectra for Sample I
(c) and Sample II (d) for normally incident EM waves with po-
larizations E||x̂ and E||ŷ, calculated by the TMM based on the
effective-medium models (open stars) and the FDTD simulations
for realistic structures (solid lines).
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Eqs. (27) and (28).
We then performed FDTD simulations to calculate the

PCR spectra with the designed systems, and showed the
results as open triangles in Fig. 5(b) and Fig. 6(c), re-
spectively [38]. Compared with the PCR spectra cal-
culated based on the 4 × 4 TMM, the agreements are
generally quite satisfactory. In particular, we found that
the FDTD simulations exactly reproduced the analyti-
cal results obtained for sample II [see Eq. (30)], verify-
ing the predictions that sample II can indeed serve as a
frequency-independent polarization manipulator. How-
ever, the agreement is found to be not perfect near the
resonances of sample I. Such discrepancies are probably
caused by the finite-size effects since we had to adopt
finite-sized samples in our FDTD simulations [38].

3.3 Double-layer metamaterial reflector

From the above discussions for metamaterial slab cases,
we find that while the PCR value can be as high as 1,
the reflected signal is usually weak (|rsp| �= 1) indicat-
ing that the manipulation efficiency is low. The same is
true for another type of metamaterial slab with ↔

ε and
↔
μ interchanged due to the EM symmetry. The reason is
simply that such single-layer slabs are usually not totally
reflective for EM waves with arbitrary incidence angles
and polarizations.

In this section, we consider a double-layer metamate-
rial reflector [37] to remedy this problem. Such a reflec-
tor consists of a 1.3-mm-thick anisotropic meta-material
layer with

μx = 1 +
70

12.712 − f2
, μy = 1 +

22
6.802 − f2

μz = 1

εx = εy = εz = 1

(31)

put on top of a perfect metal sheet (with εm →
−∞, μm = 1). The calculated results of PCR based on
the 4×4 TMM are shown as solid lines in Fig. 8(a) for a
normal incidence case with φ = 45◦ and in Fig. 8(b) for
θ = φ = 45◦. It is observed that the PCR is strongly en-
hanced around two frequencies, ∼ 12.7 GHz, ∼ 6.8 GHz,
corresponding precisely to the two resonances at which
μx or μy tends to infinity [see Eq. (31)]. In particular,
for the normal incidence case studied in Fig. 8(a), our
theory predicts that PCR = 100% at the two resonance
frequencies, indicating that a linearly polarized light con-
verts its polarization completely after the reflection.

In general, both s- and p-components exist inside
the reflected beam. Defining Δϕsp by rsp/rss =
|rsp/rss|eiΔϕsp , we calculated Δϕsp as the functions of
frequency for the two cases studied in Fig. 8. From the
results (solid lines) recorded in Fig. 9, we found that
Δϕsp can take arbitrary values within [−180◦, 180◦] de-

pending on the frequency (and in turn, on the mate-
rial parameters), indicating that all possible polarization
states (circular, linear, and elliptic) can be realized for
the reflected beam. As shown in the illustrations, we
picked up four frequencies to calculate the polarization
patterns of the reflected beams and found that the resul-

Fig. 8 PCR as the functions of frequency, obtained by TMM cal-
culations on the model system (solid lines), FDTD simulations on
realistic structures (solid stars) and experimental measurements
(open circles). The incident direction is (a) θ = 0◦, φ = 45◦ and
(b) θ = φ = 45◦.

Fig. 9 Frequency dependence of the relative phase Δϕsp between
the s- and p-polarized modes inside the reflected beam, calculated
by TMM on model systems (solids lines) and FDTD simulations
on realistic structures (solid stars). The incident direction is (a)
θ = 0◦, φ = 45◦, and (b) θ = φ = 45◦. The insets show the
polarization patterns of the reflected beams calculated at different
frequencies.
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tant polarizations are linear (6.87 GHz), circular (7.27
GHz), and elliptic (10.9 GHz, 12.46 GHz), correspond-
ingly [37].

The physics underlying these unusual phenom-
ena can be understood by a simple argument.
Consider the normal incidence case for simplicity.
Suppose the incident wave is given by Ein =
(Exx̂+ Ey ŷ) ei(−ωz/c+ωt), then after reflection by an or-
dinary material, the reflected wave is usually written
as Er = r (Exx̂+ Ey ŷ) ei(ωz/c+ωt) with r being the re-
flection coefficient. However, in the present case with
anisotropy (μx �= μy), the reflection coefficients, rx, ry
are different for incident waves polarized along two di-
rections. Thus, in general, the reflected wave should be
Er = (rxExx̂+ ryEy ŷ)ei(ωz/c+ωt), and the polarization
state can be manipulated through varying rx, ry. For
the configuration studied in Fig. 8(a) with Ex = Ey, if
one tune the material parameters to yield rx/ry = −1,
the polarization direction of the reflected wave would be
−x̂ + ŷ, which is perpendicular to that of the original
wave, x̂+ ŷ. A complete polarization conversion (CPC)
is thus realized [37].

The key issue then is how to control rx and ry. With
the metal sheet on the back, the entire structure is al-
ways totally reflective for EM waves, independent of their
incidence angles and polarizations, i.e., |rx| = |ry| ≡ 1.
However, the phase Δψ of the reflection coefficient, de-
fined as rx(y) = eiΔψx(y) , strongly depends on the meta-
material parameters. The calculated reflection phases
(Δψx,Δψy) for the model system have been depicted in
Fig. 10 as functions of frequency. In most cases where
μx(μy) is not large, we have Δψy(x) ∼ ±180◦, since the
metamaterial layer is transparent and light can directly
“see” the metal plate that is reflecting out of phase. How-
ever, at the resonances where μx(μy) → ±∞, we ob-
tained Δψy(x) = 0 since light is reflected directly by the
opaque metamaterial, which possesses infinite impedance
[62–64]. In general, any value of Δψy(x) can be ob-
tained through adjusting the values of μx(μy) and d. The
physics for the CPC effect is now clear. Near each res-
onance, one of μx, μy becomes very large, while another
close to 1, and thus, there must be a frequency where
Δψx − Δψy = ±180◦, and thus, rx/ry = −1 (see Fig.
10).

We also studied how the effect depends on the incident
angles. Depicted in Fig. 11(a) are the PCR as functions
of θ and φ, calculated at f = 6.85 GHz. Numerical
computations reveal that the PCR cannot reach 1 in ar-
bitrary incidence case, but the maximum PCR value can
still approach 1. As θ increases, we found that the value
of φ to realize a maximum PCR increases toward 90◦,
indicating that at glancing incidence, one can rotate E

toward x̂ to maximize the polarization conversion effect.
An opposite behavior of φ was found for the resonance
at f = 12.7 GHz. To facilitate easy comparisons with

experiments, the PCR as a function of φ with θ = 45◦

and as a function of θ with φ = 45◦ have been shown
in Fig. 5(b) and (c), respectively. It is found that the
maximum polarization conversion effect now takes place
at φ ∼ 56◦ when θ is fixed as 45◦, different from the
normal incidence case. On the other hand, the PCR is
a decreasing function of θ when φ is fixed as 45◦ and
reaches 1 at θ = 0◦.

Fig. 10 Frequency dependences of the reflection phase changes
Δψy(x) on the metamaterial reflector surface for normal incident
waves with polarizations E||x̂ and E||ŷ, calculated by TMM on
model system (solid lines) and FDTD simulations on realistic
structures (solid stars).

Fig. 11 (a) PCR as functions of θ and φ, calculated by TMM.
(b) PCR as a function of φ with θ fixed as 45◦, obtained by TMM
(solid lines), FDTD simulation (solid stars), and measurements
(open circles). (c) PCR as a function of θ with φ fixed as 45◦,
obtained by TMM (solid lines), FDTD simulations (solid stars)
and measurements (open circles). Here, we set f = 6.85 GHz.

Microwave experiments and FDTD simulations were
performed to demonstrate these predictions. To real-
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ize the proposed model system described by Eq. (31),
we designed a frequency-selective structure, as shown in
Fig. 12(a), which consists of a periodic array of planar
H-shaped metallic pattern (lattice constant a = 7 mm,
thickness = 0.1 mm), printed on a 1.2-mm thick PCB
slab (with εr = 3.6) with a metal sheet on the back.
Other structural parameters are fixed as b = 5 mm, w =
1.0 mm. A single H-shaped metallic structure possesses
electric resonances for both polarizations [65]. When a
metal plate is added, currents are induced on the metal
plate surface, flowing along a direction opposite to the
currents induced on the H structures. As a result, the
entire structure now exhibits magnetic responses with
well-defined resonance frequencies, but its electric po-
larization is strongly diminished since the two currents
effectively cancel with each other [66, 67]. The compos-
ite material is then perfectly described by the double-
layer model [see Eq. (31)], with d = 1.3 mm being the
thickness of the H-pattern (0.1 mm) plus the inner di-
electric layer (1.2 mm) [67]. As a demonstration, we em-
ployed FDTD simulations [37] to calculate the reflection
phase spectra (Δψx(f),Δψy(f)) of the designed com-
posite material and showed the results in Fig. 10. The
good agreement with the model TMM results supports
our conclusions.

Fig. 12 (a) An image of a part of the experimental sample. (b)
A schematic picture of the experiment setup. Starting from the
laboratory coordinate system {x̂0, ŷ0, ẑ0}, we first rotate the sam-
ple for an angle of θ with respect to the ŷ0(= ŷ1) axis, then show
that for an angle of φ with respect to the ẑ1(= ẑ) axis, and fi-
nally arrive at the local coordinate system {x̂, ŷ, ẑ} attached to
the sample.

A 497 mm × 497 mm sample based on the designs
was fabricated to perform the microwave experiments.
As schematically shown in Fig. 12(c), the measurements
were carried out in an anechoic chamber using a network
analyzer (Agilent 8722 ES) and two linearly polarized
horn antennas. The distance between the source/receiver
antenna and the sample is 6.9 m. The sample was ro-
tated appropriately to achieve a desired incidence angle
(θ, φ). Illuminating the sample by a linearly polarized

signal with E||ŷ0 (i.e., s wave), we then measured the
reflected signal using a ŷ0-polarized receiver horn (data
collected as |rss|2) and an x̂0-polarized one (data col-
lected as |rsp|2). PCR was calculated with the measured
|rss|2 and |rsp|2, and the results were drawn in Fig. 8(a)
and (b) as open symbols. FDTD simulations were also
performed to calculate the PCR spectra based on the de-
signed system, and the results were shown as solid stars
in the same figures. Quantitative agreements are found
among the results obtained by the TMM, the FDTD
simulations, and experiments. In particular, both ex-
periments and simulations verified the CPC effects pre-
dicted by the model analysis. FDTD simulations were
subsequently performed to compute the relative phase
spectra (Δϕsp(f)). The FDTD results are again in good
agreement with the model TMM results, as shown in
Fig. 9, indicating that any desired EM wave polariza-
tion can be obtained. Finally, experiments and simula-
tions were carried out to study the angle dependences
of the polarization conversion effects, and the measured
and simulated results were depicted in Fig. 11(b) and
11(c). Satisfactory agreements are noted compared with
the model TMM results.

3.4 Optical activity in a metamaterial without chirality

When a linearly polarized light travels through a
medium, the polarization direction is rotated by a cer-
tain angle during wave propagation. This phenomenon is
known as the optical activity [2]. Conventional medium
to possess optical activity include chiral media and gy-
rotropic media, which typically exhibit (imaginary) off-
diagonal constitutional tensor elements.

In this section, we demonstrate that our double-plate
reflector, which is neither chiral nor gyrotropic, possesses
strong optical activity. Specifically, we found that the
polarization direction of a linearly polarized incident EM
wave can be rotated by an arbitrary angle after reflections
at our double-layer metamaterial reflector [38]. We now
review our results in some details.

Rewrite the reflection coefficients as rss = |rss|eiϕs ,
rsp = |rsp|eiϕp , the reflected waves can be rewritten as:

Er(r, t) = (|rss|eiΔϕsp ês + |rsp|êp)eiϕpe−i(kr·r−ωt) (32)

where the incident wave is assumed to be s-polarized,
kr is the wave-vector of the reflected wave, and Δϕsp =
ϕs − ϕp denotes the relative phase between the s- and
p-polarized modes inside the reflected beam. One can
easily find from Eq. (31) that the reflected wave still
takes a linear polarization if the condition

Δϕsp = 0 or 180◦ (33)

is fulfilled, but the polarization direction is rotated by
an angle
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ΔΘ = arctan
|rsp|
|rss| (34)

as compared to that of the original wave. When the
condition PCR = 1 is reached implying that |rss| = 0,
it is obtained that ΔΘ = 90◦, indicating the original
s-polarization has been completely changed to the p-
polarization after the reflection [4, 38].

To illustrate how the condition (33) is met, numerical
calculations using the 4 × 4 TMM were performed on
the model system described by Eq. (31). Again, first,
consider the normal incidence case. Depicted in Fig. 13
is the calculated value of Δϕsp as functions of frequency
and the azimuth angle φ. It is noted that the condition
(Δϕsp = 0 or 180◦) is satisfied at two frequencies, 6.87
GHz and 12.88 GHz, independent of the parameter φ.
This fact indicates that the reflected wave still takes a
linear polarization at these two frequencies. For the case
of oblique angle of incidence (θ �= 0◦), extensive numeri-
cal computations were performed, and we found that the
condition (33) can still be met at the vicinities of the two
frequencies – 6.87 GHz and 12.88 GHz.

Fig. 13 For the double-plate reflector model Δϕsp as functions
of frequency and the azimuth angle φ calculated with the 4 × 4
TMM under the normal incident condition.

We chose one of those two frequencies to quantitatively
study the rotation angle ΔΘ based on Eq. (34). Setting
f = 6.87 GHz, we calculated |rsp| and ΔΘ as functions
of θ and φ and drew the results in Fig. 14(a) and (b).
We found that the pattern for ΔΘ resembles that of |rsp|
very much, and both of them are very complicated func-
tions of the incidence angle specified by θ and φ. The
most important observation is that an arbitrary rotation
angle ΔΘ can be obtained via adjusting the incidence
direction or, equivalently speaking, via rotating the re-
flector appropriately. This fact indicates that one can
freely rotate the polarization direction of a linearly po-
larized light by using our metamaterial reflector. This is
remarkable. Although the similar polarization-rotation
effect can be achieved based on the gyrotropic (Faraday)
effect [68], a thick medium is usually required to achieve
a large rotation angle, and also, the efficiency is relatively
low. In contrast, such the reflector is much thinner than
wavelength and the performance is remarkable.

Fig. 14 For the double-plate reflector model, values of |rsp| (a)
and ΔΘ (b) as functions of θ and φ calculated with the 4×4 TMM
setting f = 6.87 GHz.

Although the pattern of ΔΘ ∼ θ, φ appears quite
complicated, for ΔΘ , in the case of normal incidence
(θ = 0◦), an analytical formula can be still derived, with
which many new understandings can be gained. In such
a case, the incident s-polarized EM wave is given by

Ein(r, t) = (− sinφx̂+ cosφŷ)e−i(ωz/c−ωt)

Hin(r, t) = (− cosφx̂ − sinφŷ)e−i(ωz/c−ωt) (35)

A unique property in such a situation is that the EM
wave can be separated as two independent linearly po-
larized waves:(

Ein(r, t)
Hin(r, t)

)
= − sinφ

(
x̂

ŷ

)
e−i(ωz/c−ωt)

+ cosφ

(
ŷ

−x̂

)
e−i(ωz/c−ωt) (36)

For each of these two linearly polarized waves, the re-
flection coefficients, denoted by rx and ry , could take
different values. Since the Maxwell equations are linear
ones, the reflected wave must be

Er(r, t) = (−rx sinφx̂ + ry cosφŷ) ei(ωz/c+ωt) (37)

With a perfect-metal slab on the back, such double-layer
reflector is always totally reflecting, that is, the ampli-
tudes of the reflection coefficients rx and ry are always
absolutely 1, but their phases could be different. There-
fore, when the condition

rx/ry = −1 (38)

is satisfied, the reflected wave still takes a linear polari-
zation [Note that the condition (38) is applicable only
to the case of normal incidence, but the condition (33)
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is valid in a general situation]. As the condition (38)
is satisfied, the E vector of the reflected wave would
be Er ∼ − sinφx̂ − cosφŷ. As schematically shown in
Fig. 15, such an E vector has been rotated by an angle

ΔΘ =

{
2φ, 0◦ < φ � 45◦

180◦ − 2φ, 45◦ < φ < 90◦
(39)

with respect to that of the incident wave, Ein ∼
− sinφx̂+cosφŷ. Equation (39) thus provides us a rigor-
ous and analytical formula to calculate the polarization
rotation angle under the normal incidence condition. In-
deed, the ΔΘ ∼ φ relation calculated by the 4×4 TMM
is shown by solid stars in Fig. 16, which is in excellent
agreement with the analytical relation Eq. (39) repre-
sented by a solid line.

Fig. 15 Schematic picture showing relationships among the Ein

vector of the incident wave, the Er vector of the reflected wave, and
the polarization rotation angle ΔΘ , when an EM wave normally
strikes on the double-plate meta material reflector.

Fig. 16 The polarization rotation angle ΔΘ as a function of
φ, calculated under the normal incidence condition by the 4 × 4
TMM (solid stars) on the model system, analytical relation Eq.
(38) (solid lines), and the FDTD simulations (open triangles) on
the realistic system.

Again, these theoretical predictions were successfully
verified by FDTD simulations on realistic structures [38].
The calculated results of ΔΘ are shown in Fig. 16 as a
function of the polarization angle φ, represented by open
triangles. Perfect agreements were found between the
FDTD simulations and the model TMM results, as well
as the analytical relation Eq. (39).

3.5 Manipulate wavepolarizations at visible frequencies

Although many fascinating applications were theoreti-

cally proposed for metamaterials and some of them were
successfully realized at microwave frequencies (including
the polarization manipulation effects mentioned in this
section), very few were experimentally confirmed at opti-
cal frequencies. This is due to the significantly enhanced
challenges faced by both experiment and theory at op-
tical frequencies. In this section, we review our recent
efforts in designing and fabricating appropriate optical
metamaterials and demonstrating their strong abilities
to control light polarizations at visible frequencies [39].

As schematically shown in Fig. 17(a), the designed
metamaterial consists of a layer of gold rod array and
a continuous gold film, separated by a SiO2 layer. This
trilayer structure was fabricated layer-by-layer with elec-
tron beam evaporation of constituent materials. The
15-nm-thick gold layer was first deposited on a GaAs
substrate with 1 nm Titanium as the adhesive layer and
then covered by a 60 nm SiO2 separation layer. The
top gold rod array, with a thickness of 15 nm, was
fabricated with standard electron-beam lithography and
lift-off technique. Each gold rod is sized 240 nm ×
60 nm, and the periodicities of the array are 300 nm
and 150 nm along two directions. A series of samples
based on the designs were fabricated with sizes fixed as
100 µm×100 µm. Figure 17(b) shows a scanning electron
microscopy (SEM) picture of one typical sample.

Fig. 17 (a) Side-view geometry of the optical metamaterial stud-
ied in this paper. (b) Top-view SEM picture of part of the exper-
imental sample. (c) Scheme of the experimental setup. Here, BS
– beam splitter; CH – confocal hole; LP – linear polarizer; OL
– objective lens; SM – spectrometer. (d) The coordinate system
adopted in this paper.

Optical experiments were performed to measure the
polarization manipulation effects. The experimental
setup is schematically depicted in Fig. 17 (c). Halogen
tungsten was used as the excitation white light source,
which was focused on the sample surface by an objec-
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tive lens. The reflected light was collected by the same
lens and dispersed on the monochromator. Linear po-
larizers were inserted in the paths of both the incident
and reflected light to control the light polarizations. In
our measurements, we set the incident E field parallel to
a fixed laboratory axis x̂0 and then rotated the sample
to change the incident wave polarization with respect to
the sample [see Fig. 17(d)]. With a fixed incident polar-
ization (assumed as the s polarization), we rotated the
receiver to measure the reflectance for the reflected sig-
nals with the same polarization (|rss|2) and that with
a p polarization (|rsp|2). We first rotated the sample
so that the incident E field is parallel to one of the
optical axes and measured the direct reflection spectra
|rss|2(|rsp|2 ≡ 0 in this case). The spectra for φ = 0◦ and
φ = 90◦ cases were depicted in Fig. 18(a) as solid and
open symbols, respectively. Both experimental data and
simulation results are referenced by the reflection spec-
trum measured/calculated with a semi-infinite Si slab.
As λ > 750 nm, the relative reflectivity is higher than
1 since our system possesses a higher reflectivity than
a Si slab. The spectra clearly show that the designed
metamaterial is not totally reflecting, since gold is not
a perfect metal at optical frequencies. Therefore, the
mechanism for microwave frequencies (Section 3.4) does
not work here for the optical metamaterials.

Fig. 18 Relative reflectivity as functions of wavelength for nor-
mally incident waves with polarizations E‖x̂ (solid symbols) and
E‖ŷ (open symbols), obtained by (a) measurements and (b)
FDTD simulations. (c) Reflection phase difference Δϕyx as a
function of wavelength calculated by the FDTD simulations.

We then rotated the sample such that φ = 45◦ [see Fig.
17(d)]. Since the incident wave is not polarized along one
of the optical axes, both |rss|2 and |rsp|2 are nonzero, and

the measured spectra are shown in Fig. 19(a) as solid
and open symbols, respectively. Strong polarization-
converted reflection signal (|rsp|2) appear around 680
nm, which is even prominently shown in PCR spectra de-
picted in Fig. 19(b). The maximum PCR value is found
as 83% at 680 nm wavelength. We further employed
a tunable femtosecond laser as the excitation source to
perform the same measurement and depicted the PCR
spectra in Fig. 19(b) as solid stars. The PCR value ob-
tained with laser input is significantly enhanced, and the
maximum PCR value is as high as 96% at 685 nm. This
is easy to understand, since a laser beam has a much
better directionality than a focused white light beam.

Fig. 19 (a) Measured polarization-conserved relative reflectivity
(|rss|2, solid symbols) and polarization-converted relative reflectiv-
ity (|rsp|2, open symbols) as functions of wavelength. (b) The cal-
culated PCR as a function of wavelength using the experimental
data. (c) The PCR spectra as functions of wavelength obtained
by numerical simulations and theoretical analysis.

FDTD simulations were performed to understand
these intriguing phenomena [39]. In our simulations,
the permittivity of gold is taken as ε = 9.0 −
(1.37 × 1016)2/[ω2 + i(1.0027× 1014)ω], the refractive
index of SiO2 is 1.5, and the permittivity of the semi-
infinite GaAs substrate is 10.8. Direct reflection spec-
tra for φ = 0◦ and φ = 90◦ cases were first calculated,
and the calculated reflectance spectra (|rx|2 and |ry |2)
were depicted in Fig. 18(b). Reasonable agreements were
found when compared with the experimental spectra,
and most experimental features were reproduced. Be-
sides the reflectance, FDTD calculations also provided
us the information of reflection phase. In Fig. 18(c),
where the calculated reflection phase difference for two
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polarizations (Δψyx = ψy−ψx) is shown as a function of
wavelength, we found that Δϕyx approaches 180◦ within
the range of 650–760 nm, coinciding with the frequency
range where the PCR peak is found [see Fig. 19(b)]. In

fact, by decoupling the incident wave to two indepen-
dent polarizations, the PCR spectra can be calculated
for arbitrary φ case (under normal incidence) using the
following formula:

PCR =
[|rx| sinφ− |ry| cosφ cos(Δϕyx)]2

[|rx| cosφ+ |ry| sinφ cos(Δϕyx)]2 + [|rx| sinφ− |ry | cosφ cos(Δϕyx)]2
(40)

The PCR spectra thus calculated is shown in Fig. 19(c)
as open squares for φ = 45◦, which is in reasonable agree-
ment with the measured spectra. A straightforward ex-
planation of the large polarization conversion effect is
that, around 680 nm wavelength, one has similar re-
flectance for two linear polarizations (i.e., |rx| ≈ |ry |)
but with nearly 180◦ reflection phase difference.

We found that the inherent physics behind such un-
usual phenomena is quite different from microwave one
since the metal has a finite penetration length here.
This is reinforced by Fig. 18(a) where the reflectance
is not 100%. Therefore, the above double-layer effec-
tive medium model (Section 3.4) is not suitable for the
present system. Instead, we found that it is better
to model the present system as a single-layer effective
medium with effective permittivity ε̃ and permeability
μ̃, since the considered wavelength ∼700 nm is much
larger than the total thickness of the structure 90 nm.
Effective optical parameters were retrieved [9, 69] using
the FDTD simulated transmission/reflection coefficients,
and the retrieved values of ε̃x, ε̃y, μ̃x, and μ̃y were plot-
ted in Fig. 20(a)–(d). To better understand the role of
resonances, we employed standard Lorentz models to fit
the retrieved effective parameters and finally obtained
the following analytical formulas:

εx = 4 − 6562

f2 + i · 2 · f +
5202

2052 − f2 − i · 17.5 · f
+

902

4002 − f2 − i · 17 · f
εy = 3.3 − 6552

f2 + i · 2 · f +
1802

4502 − f2 − i · 19 · f (41)

μx = 1 +
3102

3502 − f2 − i · 130 · f
μy = 1.1+

1352

1602 − f2 − i · 25 · f +
652

3912 − f2 − i · 17 · f
where f denotes the frequency in THz. The effective
parameters calculated based on Eq. (41) are shown in
Fig. 4(e)–(h) as functions of frequency. It is interesting
to note that, beside the common Drude-like contribu-
tions in εx and εy that originate from the material it-
self, formulas (41) imply that a series of additional EM
resonances exist in such a metamaterial. The magnetic
resonances are induced by an antisymmetric coupling of
the currents flowing in the two metallic layers, which
are similar to those found at microwave frequencies [37,

67]. For the electric resonances, the electric current in
each gold rod is parallel to that flowing in the contin-
uous gold film, forming a symmetric mode [70, 71]. In
general, these EM resonances occur at different wave-
lengths that are dictated by the anisotropic geometric
structures. Thus, our system is ideal anisotropic optical
material possessing wide parameter tunability so that it
can fulfill many applications with appropriate designs.
The PCR spectrum was calculated employing the gener-
alized 4×4 TMM with effective parameters given by Eq.
(41). The results depicted in Fig. 19(c) as open stars
are shown in reasonable agreements with both the direct
numerical results and the experimental data.

Fig. 20 Retrieved effective parameters of the metamaterial, (a)
ε̃x, (b) ε̃y, (c) μ̃y , and (d) μ̃x, as functions of wavelength; Opti-
cal parameters (e) ε̃x, (f) ε̃y, (g) μ̃y , and (h) μ̃x as functions of
wavelength, calculated with formulas (40).

The analytical model offers us a physical picture on the
polarization manipulation effect. From the definition of
PCR, it is noted that PCR=1 requires rss = 0. While it
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is difficult to analyze the expression of rss for a metama-
terial slab [Eq. (38) in Ref. [38]], we found it very helpful
and intuitive to analyze rss of an air/metamaterial inter-
face [Eq. (30) in Ref. [38]]. The condition of rss = 0
rigorously leads to an analytical formula

Zx · Zy = 1 (42)

in the case of φ = 45◦. Here, Zx = √
μy/

√
εx and

Zy =
√
μx/

√
εy are the impedance for light polarized

along x and y directions. In fact, since the normal
reflection coefficients are rx = (Zx − 1)/(Zx + 1) and
ry = (Zy − 1)/(Zy + 1) for two polarizations, when the
condition (42) is met, one can easily verify that rx = −ry
so that PCR = 1 at φ = 45◦. The condition Eq. (42)
has a clear physical implication: the two directions must
satisfy an EM reciprocal principle in order to realize a
complete polarization conversion at φ = 45◦. A limiting
solution of Eq. (42) is that Zx → 0, Zy → ∞, indicating
that the system behaves as a perfect electric conductor
(PEC) for x-polarized light but as a perfect magnetic
conductor (PMC) for y-polarized light. This is just the
situation realized in a microwave frequency regime (Sec-
tion 3.4). At higher frequencies, however, metal is no
longer perfect so that one cannot achieve a PEC or a
PMC. However, Eq. (42) shows that those EM reso-
nances [as shown in Eq. (41)] can be tuned to generate
appropriate optical parameters that satisfy the EM sym-
metry. When the latter is achieved, a high polarization
conversion effect can be realized. To test this picture,
the real and imaginary parts of Zx · Zy as functions of
wavelength were plotted in Fig. 21(b), compared with
the PCR spectra replotted in Fig. 21(a). As expected,
it is found that Zx · Zy ≈ 1 at two wavelengths 628 nm
and 766 nm, which directly explains the two PCR peaks
observed both experimentally and theoretically in Fig.
5(a), (b), and (c). We note that the condition (42), ob-

Fig. 21 (a) The PCR spectrum as a function of wavelength ob-
tained by theoretical analysis. (b) Real and imaginary parts of
Zx · Zy as functions of wavelength.

tained based on a single air/metamaterial interface, is
not rigorously applicable to the present slab case. This
also explains why the measured PCR cannot reach 1.
Nevertheless, we found condition (42) is intuitive to un-
derstand the inherent physics and is helpful for future
designs of similar systems.

4 Manipulate EM wave polarizations by
metamaterials – transmission geometry

In aforementioned sections, we reviewed the recent ef-
forts in employing metamaterials to control EM wave
polarizations based on the reflection geometry. Similar
effects can be realized based on a transmission geometry,
which will be briefly reviewed in this section.

Quite recently, there have been several studies of cre-
ating metamaterial transmission polarizers [40–47]. Chin
et al. proposed to use an anisotropic metamaterial slab
as a transmission polarizer [40], in which the function
and the transmission efficiency of the polarizer can be
designed and controlled. The metamaterial is composed
by electric inductance-capacitance (ELC) resonator par-
ticles, which exhibit designable effective electric permit-
tivity. It was found that a transmission polarizer con-
sisting of two-layer ELC can convert a linearly polarized
wave to a circularly polarized one, while a four-layer ELC
transmission polarizer can convert the polarization of a
linearly polarized wave from one direction to it cross di-
rection. On the other hand, Beruete et al. combined the
ideas of extraordinary optical transmission and metama-
terials to successfully fabricate a polarization device that
can select and rotate EM wave polarizations [41]. For an
input wave with arbitrary polarization, any polarization
can be attained at the output by just adjusting the num-
ber of stacked plates. The most attractive feature of such
a device is that the phase shift between two orthogonal
eigenwaves is achieved with the negative and positive in-
dices of refraction for two independent linearly polarized
waves. T. Q. Li et al. studied the propagations of mi-
crowaves through a chiral metamaterial [42], which is an
array of magnetic dimmers made of two square single
split-ring resonators (SSRRs). The optical activity of
such a medium is originated from the hybridization ef-
fect of magnetic resonances. T. Li et al. investigated the
near infrared optical transmissions through a silver film
with L-shaped holes array [43]. Besides the enhanced
transmission due to the combined plasmonic excitations,
nearly 45˚ polarization rotation was observed with rel-
ative strong transmissions for a polarized light with a
specific incidence angle at the wavelength ∼ 1200 nm. It
is a giant optical rotation rate considering that the sam-
ple is only 80 nm thick. Plum et al. reported that very
strong optical activity can be observed in artificial pla-
nar metamaterials based on an array of asymmetrically
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split rings without chirality at all [44]. Both microwave
and optical experiments were performed to demonstrate
this effect [44].

5 Conclusions

In summary, we have briefly reviewed the recent efforts
in manipulating EM wave polarizations based on the
metamaterial concept. We first established a generalized
4 × 4 transfer-matrix method to study the scatterings
of EM waves by layered anisotropic metamaterials in
a general case, and then, we employed this method to
study the polarization manipulation effects under the
reflection geometry with several different metamaterial
systems, including an anisotropic metamaterial interface,
an anisotropic metamaterial slab, a double-layer meta-
material reflector, and an optical metamaterial. We
showed that several amazing polarization-related phe-
nomena can be realized by metamaterials, including the
polarization conversion, the polarization rotation�and
so on. We also briefly reviewed the existing efforts of
polarization manipulation under the transmission geom-
etry, which were mainly carried out in other research
groups. Many of these interesting phenomena were ver-
ified by FDTD simulations and experiments at both
microwave and visible frequencies. These remarkable
properties have promised metamaterials a lot of techno-
logical applications, and further studies are needed to
explore more fascinating new physics and applications
of metamaterials with respect to the polarization control.
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has E||ês = − sinφx̂+ cosφŷ, and the p-polarized wave has
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