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Abstract   There is a one-to-one correspondence between 
Snyder’s model in de Sitter space of momenta and the dS- 
invariant special relativity as well as a minimum uncer-
tainty-like relation. This indicates that physics at the Planck 
length P  and the scale R = (3/Λ)1/2 should be dual to each 
other and there is in-between gravity of local dS-invariance 
characterized by a dimensionless coupling constant g = P  
/R ~ 10−61. 
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1 Introduction 
A long time ago, Snyder [1] proposed a quantized space-time 
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model in a projective geometry approach to the de Sitter 
(dS)-space of momenta with a scale a near or at the Planck 
length. The energy and momentum of a particle were identi-
fied with the inhomogeneous projective coordinates. Then, the 
space-time coordinates  became operators x̂µ  given by 4- 
“translation” generators of dS-algebra, being noncommuta-
tive. 

Recently, the “doubly special relativity” or the “deformed 
special relativity” (DSR) has been proposed [2, 3]. There is 
also a large scale κ near the Planck energy scale, related to a 
in [1]. Since some DSR models can be realized by the identi-
fication of 4-momentum with certain coordinates on a dS-  
or AdS-space of momenta [4, 5], Snyder’s model may be 
viewed as the first of them.  

The projective geometry approach is basically equivalent 
to the Beltrami model [6] of dS-space (BdS). Importantly,  
the Beltrami coordinates of a dS-hyperboloid, or inhomo- 
geneous projective ones, without the antipodal identifica-  
tion, play a similar role as the Minkowski coordinates in a 
Minkowski-space. In these coordinates, particles and light 
signals move along the time-like or null geodesics being 
straight world-lines with constant coordinate velocities in 
each patch, respectively. Among these systems, the proper- 
ties are invariant under the fractionally linear transformations 
with common denominators (FLT s) of dS-group. These  
motions and the systems could be regarded as inertia with-  
out gravity. Then, there should be the principle of relativity  
in dS/AdS-spacetime, respectively. Lu [7] emphasized the 
issue and began to study the special relativity in dS/AdS- 
space, with his collaborators [8−11]. Promoted by recent ob-
servations on dark universe [12−15], further studies have been 
made [16−24].  

In fact, in Einstein’s special relativity, the assumptions are 
made [25] that rest rigid ruler is Euclidean and that time flow 
itself is homogeneous. However, these are not supported by 
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the asymptotic behavior of our universe [12−15]. Just as
weakening the fifth axiom leads to non-Euclidean geometry,
giving up the assumptions leads to two kinds of the dS/AdS-
invariant special relativity in dS/AdS-spacetime, which are
on an almost equal footing with Einstein’s [7, 16−23].

It is important that from two fundamental constants, the
Planck length �P := (G�c−3)1/2 and the dS-radius R =
(3/Λ)1/2, it follows a dimensionless constant

g :=
√

3�P R−1 or g2 = G�Λ
3c3 ∼ 10−122 (1)

Since Newton’s constant G is present in Eq.(1), g should de-
scribe gravity. A simple gauge-like model for the dS-gravity
showed this feature [26−33].

In this letter, we show that there is an interesting and impor-
tant one-to-one correspondence between dS-invariant special
relativity and Snyder’s model. In addition, there is also a min-
imum uncertainty-like relation between them. These indicate
that the physics at the Planck scale and the scale R should
be dual to each other and there is in-between the local dS-
invariant gravity characterized by the dimensionless coupling
constant g.

The 4-d Riemann sphere S 4 can be embedded in a 5-d Eu-
clidian space E5:

S4 : δABξAξB = �2 > 0, A, B = 0, · · · , 4 (2)

ds2
E = δABdξAdξB = dξtIdξ (3)

where superscript t represents transpose. They are invariant
under rotations of SO(5):

ξ → ξ′ = Sξ, StIS = I, ∀ S ∈ SO(5) (4)

A Beltrami model B of S4 is the intrinsic geometry of S 4

with Beltrami coordinate atlas. In a patch, say,

xµ := �ξµ/ξ4, ξ4 �= 0, µ = 0, · · · , 3 (5)

with

σE(x) := σE(x, x) = 1 + �−2δµνxµxν > 0 (6)

ds2
E = [δµνσ−1

E (x) − �−2σ−2
E (x)δµσxσδνρx

ρ]dxµdxν (7)

it is invariant under FLT s of SO(5) with a transitive form
sending the point A(aµ) to the origin O(oµ = 0),

xµ → x̃µ = ±σ
1/2
E (a)σ−1

E (a, x)(xν − aν)Nµ
ν

Nµ
ν = Oµ

ν − �−2δνσaσaρ[σE(a) + σ
1/2
E (a)]−1Oµ

ρ

O := (Oµ
ν ) ∈ SO(4)

(8)

There is an invariant for two points A(aµ) and B(bν)

∆2
E,�(a, b) = �2[1 − σ−1

E (a)σ−1
E (b)σ2

E(a, b)] (9)

The proper length between A and B is the integral of dsE

over the geodesic segment AB:

L(a, b) = � arcsin(|∆E(a, b)|/l) (10)

The geodesics in B are straight-lines and equivalent to

dqµ

ds
= 0, qµ := σ−1

E (x)
dxµ

ds
(11)

from which it follows the constant ratios

qi

q0
=

dxi

dx0
= consts, i = 1, 2, 3 (12)

And they can be integrated out:

xi(s) = αix0 + βi, αi, βi = consts (13)

In view of the gnomonic projection, the great circles on Eq.
(2) are mapped to the straight-lines, the geodesics (13) in B,
and vice versa. It is also the case for Lobachevski space L4

as the original model [6] is just for the Lobachevski plane.

From an inverse Wick rotation of Riemann sphere S 4 with
� = R [18], it follows

HR : ηABξAξB = ξtJ ξ = −R2 < 0 (14)

ds2 = ηABdξAdξB = dξtJ dξ (15)

with J = (ηAB) = diag(1,−1,−1,−1,−1) and the projec-
tive boundary ∂P HR : ξtJ ξ = 0. Under

ξ → ξ′ = Sξ, StJS = J , ∀ S ∈ SO(1, 4) (16)

they are invariant. Great circles in S 4 now become a kind of
uniform “great-circular” motions with a conserved 5-d angu-
lar momentum on HR

dLAB

ds
= 0, LAB := mR

(
ξA dξB

ds
− ξB dξA

ds

)
(17)

with an Einstein-like formula for mass mR

− 1
2R2

LABLAB = m2
R, LAB = ηACηBDLCD (18)

Further, a “simultaneous” 3-hypersurface

δabξ
aξb = R2 + (ξ0)2, a, b = 1, · · · , 4 (19)
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is an expanding S3.
The 5-d angular momentum operators, proportional to the

generators of the dS-algebra so(1, 4), or the Killing vector
fields acting on the dS-hyperboloid, read (� = 1)

L̂AB =
1
i

(
ξA

∂

∂ξB
− ξB

∂

∂ξA

)
, ξA = ηABξB (20)

And they are globally defined on the dS-hyperboloid.
Via the inverse Wick rotation, the Beltrami model of

Riemann-sphere becomes the BdS-space covered with Bel-
trami coordinate atlas patch by patch. The condition and Bel-
trami metric with ηµν = diag(1,−1,−1,−1) in each patch

σ(x) = σ(x, x) := 1 − R−2ηµνxµxν > 0 (21)

ds2 =[ηµνσ−1(x)+R−2ηµσηνρx
σxρσ−2(x)]dxµdxν(22)

are invariant under FLT s of SO(1, 4)

xµ → x̃µ = ±σ1/2(a)σ−1(a, x)(xν − aν)Dµ
ν

Dµ
ν = Lµ

ν −R−2ηνσaσaρ[σ(a)+σ1/2(a)]−1Lµ
ρ

L := {Lµ
ν} ∈ SO(1, 3)

(23)

In such a BdS-space, the generators of FLT s, or the Killing
vectors, read

q̂µ = (δν
µ + R−2xµxν)∂ν , xµ := ηµνxν (24)

L̂µν = xµq̂ν − xν q̂µ = xµ∂ν − xν∂µ ∈ SO(1, 3)

and form an SO(1, 4) algebra

[q̂µ, q̂ν ] = −R−2L̂µν , [L̂µν , q̂σ] = ηνσ q̂µ − ηµσ q̂ν

[L̂µν , L̂σρ] = ηνσL̂µρ − ηνρL̂µσ + ηµρL̂νσ − ηµσL̂νρ(25)

There are inertial motions with a set of conserved observ-
able along geodesics

dpµ

ds
= 0 with pµ = σ−1(x)mR

dxµ

ds
(26)

dLµν

ds
= 0 with Lµν = xµpν − xνpµ (27)

or equivalent to

mR
d2xi

dt2
= 0, t = x0/c (28)

The pseudo 4-momentum pµ and pseudo 4-angular-
momentum Lµν constitute a conserved 5-d angular momen-
tum (17). Obviously, Eq.(26) is the counterpart of Eq.(11)
and Eq.(18) becomes

E2 = m2
Rc4 + p2c2 + c2

R2 l2 − c4

R2 k2 (29)

which is a generalized Einstein’s formula with energy E =
cp0, momentum pi, pi = δijp

j , boosts ki = L0i, ki = δijk
j

and 3-angular momentum l i =
1
2
εi

jkLjk, li = δij l
j . It can

be proved that they are Noether’s charges with respect to the
Killing vectors (24).

It should be emphasized that since the generators in Eq.
(20) are globally defined on the dS-hyperboloid, they should
also be globally defined in the Beltrami atlas patch by patch.
Thus, there is a set of globally defined ten Killing vectors in
the Beltrami atlas and correspondingly, there is a set of ten
Noether’s charges forming a 5-d angular momentum LAB in
Eq. (17) globally in the Beltrami atlas, though the physical
meaning of each Noether’s charge depends on the Beltrami
coordinate patch used.

The interval and thus light-cone can be well defined by the
counterparts of Eqs. (9) and (10).

Thus, dS-invariant special relativity can be set up on the
relativity principle [7−11] and the universal constant postu-
late for the speed of light c and radius R [16, 17].

Snyder considered the homogenous quadratic form

−η2 := ηABηAηB < 0 (30)

It may be regarded as a hyperboloid in 5-d space of momenta
with the line-element,

ds2
p = ηABdηAdηB (31)

and is identical to the inverse Wick rotation of the Eq.(2) af-
ter identifying ηA with ρξA with a common factor ρ �= 0 in
relativistic units [ρ] = L−2. Thus, a Beltrami model of dS-
space of momenta may also be set up on a space of momenta.
In fact, Snyder defines the energy-momentum with help of a
constant a, which may be taken as the Planck length,

p0 =a−1η0/η4 =a−1ξ0/ξ4, pi =a−1ηi/η4 =a−1ξi/ξ4

Quantum mechanically, in this “momentum picture”, the op-
erators for the space-time-coordinates x̂i, t̂ should be given
by:

x̂i := i
[

∂

∂pi

+ a2pipν

∂

∂pν

]
(32)

t̂ = x̂0/c :=
i
c

[
∂

∂p0

+ a2p0pν

∂

∂pν

]
, pµ = ηµνpν

Together with “boost” M̂ i = x̂0pi + x̂ip0 and “3-angular
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momentum” L̂i =
1
2
εi

jkx̂jpk, they form an so(1, 4) algebra

[x̂i, x̂j ] = −ia2ε ij
k Lk, [x̂0, x̂i] = −ia2M̂ i (33)

[L̂i, L̂j] = ε ij
k L̂k, [M̂ i, M̂ j ] = ε ij

k M̂k; etc

Since pµ are inhomogeneous (projective) coordinates or
Beltrami coordinates, one patch in the model is not enough.
And since the projective space RP 4 is non-orientable, the an-
tipodal identification should not be taken to preserve the ori-
entation. The operators x̂µ are just 4-generators of the dS-
algebra (24), and L̂i, M̂ i are the remaining 6-generators L̂µν

in (25) of so(1, 3) algebra. Actually, the algebra (33) is the
same as (25).

Similar to Snyder’s model, a quantized space-time model
on AdS-space of momenta can be constructed. Actually,
some other DSR models can also be described in other co-
ordinates in a dS- or AdS-space of momenta [4, 5].

It is important that the correspondence of the ratio (12) in
dS-space of momenta may be viewed as the inverse of “group
velocity” components of some “wave-packets”. If so, one
may define in Snyder’s model a new kind of uniform mo-
tions with constant component “group velocity”. In particu-
lar, when the correspondences of β i in (13) vanish, the “group
velocity” of a “wave-packet” coincides its “phase velocity”.
This is similar to the case for a light pulse propagating in vac-
uum Minkowski spacetime.

Furthermore, dS-space of momenta also has a horizon.
Thus, one may imitate the study of dS-space in general rela-
tivity to introduce “temperature” T̃p and “entropy” S̃p for the
horizon. But the question is, do they make sense?

In the viewpoint of dS-invariant special relativity, there is no
gravity in dS-space. Therefore, the thermodynamics is not
originated from gravity.

Since there exist inertial motions and inertial observers in
dS-invariant special relativity, one may set up inertial refer-
ence frame. In the viewpoint of inertial observers in an in-
ertial reference frame, the horizon in dS-space is at T = 0
without entropy. The temperature T = �c/(2πRkB) and en-
tropy S = 4πR2c3kB/(G�) in the static dS-coordinates or
other coordinates arise from non-inertial motions and/or non-
inertial parameterization rather than gravity [24].

Similarly, T̃p and S̃p in Snyder’s model vanish even if the
horizon in the dS-space of momenta exists. Thus, we may
circumvent the difficulty in the explanation of the physical
meaning of T̃p and S̃p in Snyder’s model. However, these

quantities do exist in some DSR models in dS-space of mo-
menta and DSR advocators may have to face the problem of
how to explain their physical meaning.

It is straightforward to see that there is an interesting and im-
portant one-to-one correspondence between Snyder’s model
and the dS-invariant special relativity as shown in the follow-
ing Table:

dS special relativity Snyder’s model

Coordinate “picture” Momentum “picture”

BdS-spacetime BdS-space of momenta

R ∼ cosmic radius 1/a ∼ Planck momentum

Constant 3-velocity Constant “group velocity”

“Quantized” momenta Quantized space-time

p̂α, Ê x̂α, t̂

T = 0 without S T̃p = 0 without S̃p

No gravity No gravity

The one-to-one correspondence should not be considered
to happen accidentally.

In fact, there is also a minimum uncertainty-like relation
between them and indicate why there should be a one-to-one
correspondence. We now present an argument for the rela-
tion. Quantum mechanically, the coordinates and momenta
cannot be determined exactly at the same time if the uncer-
tainty principle, which reads

∆ξI∆ηI � � (34)

where I = 1, · · · , 4 and the sum over I is not taken, is valid in
the embedded space†. Limited on the hyperboloid in embed-
ded space, ∆ξI � R. Suppose that the momentum ηI conju-
gate to ξI also takes values on a hyperboloid. Then, ∆ηI � η

and the uncertainty relation implies Rη ∼ �. Here R and η

are two free parameters. We may write it in a covariant form

ηABξAξBηCDηCηD = �
2 (35)

and refer it as an uncertainty-like relation. When the size of
the hyperboloid in the space of coordinates is Planck length,
namely,

ηABξAξB = −�2
P = −G�c−3 (36)

the hyperboloid in the space of momenta then has Planck
scale,

† Here we simply employ the same notation of some observable for the
expectation value of its operator over wave function in quantum mechanics.
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ηABηAηB = −E2
P /c2 = −�c3/G < 0 (37)

which is equivalent to the Snyder’s relation (30). On the con-
trary, when the scale of the hyperboloid in the space of mo-
menta is

ηABηAηB = −Λ�
2

3
(38)

then we have relation (14). Therefore, the relation (35) may
indicate a kind of the UV-IR connection and the correspon-
dence listed in the Table should reflect some dual relation
between the physics at these two scales. Of course, the ar-
gument here should be further demonstrated. We will provide
it in detail elsewhere.

Furthermore, both Snyder’s model and the dS-invariant
special relativity deal with the motion of relativistic particles.
In dS-invariant special relativity, the momenta of a particle
are quantized and noncommutative, while in Snyder’s model,
the coordinates of a particle are quantized and noncommuta-
tive. There is no gravity in both. As was mentioned in the
beginning, however, the dimensionless constant g = �P /R

in (1) contains the gravitational constant and thus should de-
scribe some gravity. Therefore, we may make a conjecture
that the physics at such two scales should be dual to each
other in some “phase” space and there is in-between the grav-
ity characterized by g.

It is the core of the equivalence principle that gravity should
be based on localized special relativity. In general relativity,
however, there are only local SO(1, 3) Lorentz frames with-
out local translations. One may expect that the gravity should
be based on the equivalence principle with full localized sym-
metry of special relativity, similar to the gauge principle, and
be governed by gauge-like dynamics.

Now, there are three kinds of special relativity on
Minkowski, dS and AdS space with Poincaré, dS and AdS
group, respectively. Thus, there should be three kinds of grav-
ity with relevant localized special relativity with full local
symmetry.

These requirements have been indicated by a kind of sim-
ple models of dS/AdS-gravity [26−33]. For the dS-model,
the gauge-like action with the constant g of dS-gravity in
Lorentz gauge reads [26, 27]

SG = − �

4g2

∫
d4xe(FAB

µνF
µν

AB )

=
∫

d4xe

[
c3

16πG
(F − 2Λ)

− �

4g2F ab
µνF µν

ab +
c3

32πG
T a

µνT µν
a

]
(39)

where e = det(ea
µ), FAB

µν is the curvature of a dS-connection
BAB

µ ∈ so(1, 4), with Bab
µ = Bab

µ,Ba4
µ = R−1ea

µ, F ,
F ab

µν and T a
µν Cartan’s scalar curvature, curvature, and tor-

sion, respectively, on Riemann-Cartan manifolds with metric
gµν = ηabe

a
µeb

ν , Lorentz frame and connection ea
µ, Bab

µ ∈
so(1, 3).

It can be shown that the dS-space and thus the dS-invariant
special relativity do fit this model. In addition, the terms
in the action other than the Einstein-Hilbert term R, which
can be picked up from the Einstein-Cartan term F , should
play an important role as some “dark matter” in the viewpoint
of general relativity. Thus, this model may provide a new
platform for the data analysis of dark universe.

To show whether the Snyder’s model also fits the model of
gravity, one needs to study the quantization of the model of
gravity in a nonperturbative procedure. Undoubtedly, there
is a long way to go. Fortunately, it has been shown that the
model of gravity is renormalizable perturbatively [28−31].
Also, the Euclidean version of action (35) is SO(5) gauge-
like and the Riemann sphere is its solution as an instanton.
So, the quantum tunneling scenario should support Λ > 0.
Furthermore, asymptotic freedom may imply that the cou-
pling constant g should be very tiny and it should link Λ as
an infrared cut-off with �P as an ultraviolet cut-off providing
a fixed point.

Finally, note that g2 is in the same order of difference be-
tween Λ and the theoretical quantum “vacuum energy”; the
big difference is no longer a puzzle in the viewpoint of the
dS-invariant special relativity and local dS-invariant gravity.
Since Λ is a fundamental constant as c, G and �, a further
question should be: what are the origins of these fundamental
constants or the origin of the dimensionless constant g and is
g calculable?

We have shown the one-to-one correspondence between Sny-
der’s model and the dS-invariant special relativity as well as
the minimum uncertainty-like relation. Based on this corre-
spondence and the relation, we have made a conjecture that
there should be a duality in physics at the Planck scale and at
the cosmological scale R and that there is in-between gravity
characterized by a dimensionless constant g.

The gravity between the two scales should be based on the
localization of the dS-invariant special relativity with gauge-
like dynamics. A simple model of dS-gravity in the Lorentz
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gauge may support this point of view.
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