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ABSTRACT The noncontact blade tip timing (BTT) measurement has been an attractive technology for blade health
monitoring (BHM). However, the severe undersampled BTT signal causes a significant challenge for blade vibration
parameter identification and fault feature extraction. This study proposes a novel method based on the minimum variance
distortionless response (MVDR) of the direction of arrival (DoA) estimation for blade natural frequency estimation from
the non-uniformly undersampled BTT signals. First, based on the similarity between the general data acquisition model
for BTT and the antenna array model in DoA estimation, the circumferentially arranged probes on the casing can be
regarded as a non-uniform linear array. Thus, BTT signal reconstruction is converted into the DoA estimation problem of
the non-uniform linear array signal. Second, MVDR is employed to address the severe undersampling issue and recover
the BTT undersampled signal. In particular, spatial smoothing is innovatively utilized to enhance the estimation of
covariance matrix of the BTT signal to avoid ill-condition or singularity, while improving efficiency and robustness.
Lastly, numerical simulation and experimental testing are employed to verify the validity of the proposed method. Monte
Carlo simulation results suggest that the proposed method behaves better than conventional methods, especially under a
lower signal-to-noise ratio condition. Experimental results indicate that the proposed method can effectively overcome
the severe undersampling problem of BTT signal induced by physical limitations, and has a strong potential in the ficld
of BHM.

KEYWORDS blade tip timing (BTT), frequency identification, minimum variance distortionless response (MVDR),
undersampled, blade health monitoring (BHM)

excitation, rubbing, and foreign object damage, which
easily lead to fatigue accidents [1-3]. This type of

1 Introduction

Modern aircraft are pursuing superior performance and
low operation and maintenance costs. In engine
operation, potential faults can be found by monitoring the
health condition of engine components to reduce high
maintenance and avoid unnecessary downtime. Rotating
blades, as a high failure-rate part of the engine, often
suffer from extreme conditions, such as aerodynamic
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damage will further cause blade cracks, blade-off faults,
and other failures, eventually resulting in serious acci-
dents of the aero-engine. Therefore, blade health
monitoring (BHM) should be carried out to ensure aero-
engine safety.

Blade vibration analysis and monitoring, one of the
most efficient and adopted methods for BHM, has
attracted extensive attention in engineering and
academics. Many rotating blade condition monitoring
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methods have been proposed recently [4-6]. However,
contact measurement methods, such as strain gauges [7],
are limited by the disadvantages of cumbersome installa-
tion and short service life owing to the high-speed
rotation of blades. Blade tip timing (BTT) [8,9], as a non-
contact method of blade vibration measurement, effec-
tively avoids the shortcomings of contact measurement.
By comparing the difference between the actual arrival
time when the blade vibrates and the expected arrival
time without blade vibration, the blade’s vibration
displacement when it passes through the probe can be
calculated. By installing a few sensors (3-5), the
vibration of all blades in one rotor stage of the engine can
be effectively estimated [10]. However, the quantity of
probes is often confined owing to the physical space
limitation for the BTT sensor installation on the casing,
further contributing to the severe undersampling property
of BTT signals. For most cases, the sampling frequency
of BTT is considerably lower than the blade vibration
frequency.

To solve the frequency aliasing problem caused by
severe undersampling, many methods have been pro-
posed and some decent results have been achieved [11].
Campbell [12] first used magnetic induction sensors to
measure the natural frequency of rotating blades. For the
early single-parameter method [13] and double-parameter
method [14], a simplified dynamic model of the blade is
often needed for blade vibration analysis. Moreover, only
the synchronous resonance frequency can be identified
through the two methods because their implementation
needs the blade rotating speed passing through critical
speed. Some methods, such as autoregression [15] and
circumferential Fourier fitting [16], also have some
limitations, including sensor installation position and
parameterized prior. The “5 + 2” method [17] combines
five and three probes (they share one sensor) uniformly
arranged and creatively carry out blade vibration analysis
using the Chinese remainder theorem. However, the
requirement of seven sensors limits the application and
further development of this method. Thereafter, many
non-parametric methods in the fields of direction of
arrival (DoA) estimation and compressed sensing were
introduced into the analysis of BTT signals. Given that
strong prior knowledge is avoided for these methods, the
integrity of the blade vibration spectrum can be searched,
so that synchronous resonance and asynchronous
resonance parameters can be identified [18]. Compressed
sensing theory proposed by Donoho [19] has been proven
to provide excellent performance for under-sampled
signal reconstruction; thus, it is widely applied to radar,
communication, signal super-resolution reconstruction,
and other fields. Compressed sensing also provides new
possibilities for BTT. Lin et al. [20] introduced
compressed sensing to the signal reconstruction of BTT.

Thereafter, many scholars have attempted to further
improve the performance of compressed sensing methods
for BTT. Wu et al. [21] improved the sparsity of the
reconstructed frequency spectrum by weighing the 1-
norm regularization term. Li et al. [22] improved the
iterative reweighted least squares periodogram by
introducing prior knowledge to reduce computational
complexity. They also verified the effectiveness of the
algorithm by using experimental data. Chen et al. [23]
proposed a stable BTT spectrum identification method by
integrating multiple signal classification (MUSIC) and
multi-bandwidth interpolation. Dong et al. [24] proposed
a pursuit subspace algorithm to solve the problem of
identifying synchronous vibration in BTT signal.

Considering the mechanism of BTT, some array signal
model estimated using DoA is introduced to BTT signal
processing because of the physical and mathematical
similarity of DoA and BTT signals. For example, several
classical algorithms of DoA estimation, including
minimum variance distortionless response (MVDR)
spectrum [18,25], MUSIC [26,27], and estimation of
signal parameters via rotational invariance techniques
(ESPRIT) [28], are used as nonparametric methods to
estimate blade vibration spectrum. MVDR has been
applied to the analysis of tip timing signals for a long
time because of its high resolution and anti-aliasing
property. However, the inevitable high-order matrix
inversion and iterative operation result in MVDR
becoming considerably time-consuming for high compu-
tational complexity, which leads to difficulty in practical
applications. Although the MUSIC method has the
advantages of fast calculation speed and high accuracy of
spectrum estimation, the asynchronous vibration fre-
quency could be effectively estimated only when the
rotating speed approaches the resonance region. The
current study proposes a BTT signal reconstruction
method based on MVDR (i.e.,, improved minimum
variance distortionless response (IMVDR)). The main
contribution of the proposed method is to estimate the
correlation matrix of BTT by spatial smoothing, which
reduces calculation time and improves the robustness of
the algorithm. The comparison of spectrum estimation
performance with several recently proposed methods,
including MVDR, is carried out in the simulation and
experiment.

The remainder of this paper is organized as follows.
Section 2 introduces the main principle of the BTT
measurement. Section 3 describes the proposed method.
Section 4 compares the performance of several
algorithms, including MVDR, with the simulation data to
verify the improvement of the proposed method. Section
5 uses a set of real experimental data to further validate
the effectiveness of the proposed IMVDR method.
Section 6 summarizes the main results obtained and
briefly explains the limitations of the proposed method.
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2 BTT measurement

The BTT measurement method is an advanced non-
contact online monitoring method of blade vibration, and
its schematic is shown in Fig. 1. The mainstream BTT
measurement method relies on the time of arrival (ToA)
probes installed on the casing to monitor the vibration of
blades and the once per revolution (OPR) probes installed
near the rotating shaft to calibrate the rotating speed.
When the blade passes through the sensor, the light
intensity received by the optical probe will suddenly
change, producing a pulse, which will be transmitted to
the signal acquisition system and converted from the
original optical signal to the digital signal. When the
blade is completely free of vibration, the expected arrival
time f,, of the blade in the gth probe at the N,th
revolution can be expressed as follows:

0,+2nN,

lwp = 7
" 2nf (1)

where f; (z.,) represents the blade’s instantaneous rotation
frequency at the arrival time ¢, and 6, is the installation
angle of the gth probe. With several circumferentially
installed probes, the actual arrival time z,, of the blade
can be measured. When the blade rotates at a high speed,
its vibration will cause the lead or lag of the time instant
when the blade reaches the tip timing sensor compared
with that in the condition without blade vibration. Thus,
the actual arrival time f,., can be defined as follows:

. 0,+2nN, + x (t,.)/ R
T i)
where x(f,,) is the vibration displacement of the blade at
the arrival time t,, and R is the radius where the probe
measures. The probe installed near the shaft returns one

OPR pulse each time the mark passes. Thereafter, the
blade rotation frequency at the N;th revolution is obtained

(1)

2)

Probe 1

ToA signal Vibrating blade

Rotation
direction
Blade
non-contact
measurement
Casing system

Fig. 1

according to the time interval T of the adjacent pulses.
The assumption is that the rotating speed of the blade
changes gradually (i.e., the rotating speed does not
change in each revolution), thereby simplifying the
calculation of vibration displacement. The relationship
between blade vibration displacement and blade arrival
time can be expressed as follows:

2nR
L) = —— U Lot 3
)= (mn). )

where f,(N,) represents the blade averaged rotation
frequency at the N, th revolution. In general, only 3 to 5
probes will be installed, and the corresponding BTT
Nyquist rate is equal to 3£ (N,) to S5f£(N,), which is
considerably lower than the natural frequency of the
blade. To improve the sampling performance, the probes
are not uniformly arranged. Therefore, sampling of the
BTT signal is restricted by undersampling and non-
uniform.

X (tact) = an.f_; (Nr) (texp -

3 IMVDR spectrum

The relationship between array signal processing and
BTT signal analysis can be established according to the
basic principle of BTT sampling. Thereafter, MVDR is
introduced as an effective method to reconstruct BTT
signal. However, it is restricted by the time-consuming
operation in autocorrelation matrix estimation, so spatial
smoothing is used to improve the computational
efficiency and robustness of the algorithm.

3.1 DoA estimation for BTT signal frequency
identification

The contrast relationship between DoA and BTT is
shown in Figs. 2(a) and 2(b). If one BTT probe per

OPR —7 ’_‘
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Schematic of the blade non-contact measurement system for blade tip timing. OPR: once per revolution, ToA: time of arrival.
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Fig. 2 (a) Antenna array model of direction of arrival and (b) linear probe array model of blade tip timing.

revolution is regarded as an independent array element,
then the BTT sensors arranged in the circumferential
direction can be equivalent to a one-dimensional non-
uniform signal receiving array. The DoA estimation
problem has a phase difference between arrays owing to
the difference in the wave path between signals arriving
at different array elements. The signal direction can be
estimated according to the difference in wave path, and
the same is true for BTT. The different time for the blade
to pass through each sensor forms the phase difference of
the vibration signal. An important difference between
them is that the sampling rate in the DoA estimation is
higher than that of the estimated signal. Moreover, the
frequency of the estimated narrowband signal (i.e., center
frequency w,) is known, while the frequency and phase of
the blade vibration signal in BTT are unknown. Several
DoA estimation algorithms, including MUSIC, ESPRIT,
and MVDR, can be applied to the analysis of BTT
undersampled signal because of their similarities.

The maximum likelihood method, which is also known
as MVDR, was originally introduced by Capon [29] for
wave-number analysis with large seismic arrays, and it
can be adapted to single time-series spectral analysis.
Lacoss [30] derived Capon’s method and proved that this
method is a minimum variance unbiased frequency
estimator. The weight coefficient obtained using MVDR
can minimize the output power of the array in the desired
direction and maximize the signal-to-interference-plus-
noise ratio. MVDR, as a non-parametric method, is
widely used in spatial-spectral estimation and beamfor-
ming [31]. MVDR has also been applied to spectrum
estimation of BTT signal in Ref. [25]. However, it
involves matrix inversion and iterative operation when
estimating the autocorrelation matrix of the input signal,
leading to highly computational complexity and low
efficiency. The current study improves MVDR to achieve
high computation speed and noise robustness, while the
frequency estimation accuracy of MVDR is retained.
Before further comparison, deviations, development, and
improvement between the proposed method and MVDR
will be briefly described.

3.2 MVDR spectrum

MVDR can be regarded as a filter bank design problem,

in which the final filter bank is constrained by the
minimum distortion. The bandpass filters of MVDR are
time and frequency dependent, which is different from
the spectrum method based on a discrete Fourier matrix.
Let a discrete-time signal x(z,) pass through a linear
causal narrowband filter w, in which signal y(z,) is
denoted as the output of the filter:

M-1
V()= D WD x(t) =W (t,), “
i=0
where M is the length of the x(¢,), w=

[w(©) w(l) w(M—1)]" is the impulse response
of the filter, (-)" denotes Hermite transpose, and x(,) =
[x(t,) x(t,;) -+ x(fupy)]" is the input signal vector.
The power of output signal y(,) is as follows:

E{ly@)r} = E{jwx(z,) ()

where R,, is an M X M autocorrelation matrix of the input
signal x(¢,) and E{-} is the mathematical expectation.
Filter coefficients should be constrained by the idea that
the response of the filter at tentative frequency f is
normalized to unity:

2
} =w'R . w,

S

g wi@alt)=w'a=1,

(6)

Il
=}

where a=1[a(t) a(t) a(ty-;)]" is the steering
vector satisfying a"a = aa™ = 1. The input signal x(¢,)
pass through filter w, and there is no distortion along
vector a. Meanwhile, signals along other vectors tend to
be attenuated. Such conditions can be expressed as
minimization problems in vector form:

min w'R w,

v (M

s.t. wha=1.
Equation (7) can be solved using the Lagrange
multiplier method, and the optimal filter coefficients of
Eq. (2) can be solved as follows:

Rla
a'R'a
The spectrum of the input signal is defined as w'"x (¢,).

The simple form of MVDR can be obtained by directly
replacing w in Eq. (5).

w(a) =

®)
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P, (a)=

. 9
a"R_a ©

According to the blade dynamic characteristics, blade
vibration signal can be sparsely expressed in the
frequency domain. Therefore, the input signal vector
x (¢,) can be specifically reformulated as follows:

ejan(;tl éan]’rl éan”’Ht,

x(t,)=

ejanO’tM,l ejan,’t,w,l eianngiltM,|
$o@ 2 it tio0
5, @240

+n(t,), (10)

5, @2Vttt
or more compactly as follows:

x(t,)=As(,)+n(t,), an
where A, is a steering matrix for signal measurement,
s(t,) is a vector with elements composed of each
frequency component at time #,, n(¢,) is the mx 1 zero-
mean additive noise vector, and {s,S1,..., 8.1},
{f5.fls--os fo)), and {py,0,,.-.,0,_,} are the amplitude,
frequency, and phase, respectively, of the blade tip
vibration. According to computational accuracy, the
frequency estimation range and grid with the resolution
are also determined. The assumption is that the actual
frequency {f;, f/,...,f. ,} is considered to coincide with
the frequency grid, and the error caused by the mismatch
between them is not considered. With the discrete
frequency gridding from f; to fx_,, the steering matrix for
signal recovery could be rewritten as follows:
A =la; a a;, 1. Column a, = [eV/" e/
g/t |T of the array steering matrix A is equivalent to
the complex exponential signal of the frequency f
sampled by the time sequence ¢, = [, 1, tyeni—1 |7
in the BTT signal. By considering the frequencies in the
range {fy, fi,...,fx-1}, the general form of the MVDR
spectrum for the BTT signal is expressed as follows:

Pxx (A) = dlag {Pxx (afo) ’ Pxx (aﬁ)’ ERE) Pxx (afm)} = AHRxst
(12)
where P, (A) is the diagonal matrix with diagonal
elements representing the power spectral density in the
range {fo, fi,-..>fx.1}, that is, the MVDR spectrum of
x(t),and W=[w, w, w1 ] is the unitary matrix
with W'W = WW" =1.
In practice, accurately estimating R, is difficult. In
general, only the correlation matrix R, of the sampled
signal can be used as the estimation of R,,, which is given

as R, = Mx(tn)xH (¢,). The mutual product of average
signal samples is a traditional method to obtain an

autocorrelation matrix. It is not suitable for non-uniform
sampling because the time interval between sampling
points is not regularly distributed. In traditional MVDR
[25], the autocorrelation matrix of a non-uniform signal is
calculated using the Wiener-Sinchin theorem and iterative
updating algorithm proposed by Liepin’sh [32].

R = A'diag(P0(a,). P (ay)..... PO (a; )} A, (13)

2

a' RO x(¢,)
R , (14)

f’“*”(a ) —
fi 8G+1)—
" aZRE.l;l) 'a:

where P? (a,) represents the power spectral density of
tentative frequency f; obtained at the ith iteration and (-)
denotes conjugation. The peak of the MVDR spectrum
appears when the steering vector is orthogonal to the
noise subspace, so it can be used as a non-parametric
method to identify the blade vibration frequency. More-
over, the amplitude of the spectrum obtained by MVDR
represents the power of the input signal. Algorithm 1
refers to the implementation of the MVDR spectrum for
the BTT signal. The speed of MVDR is limited by three
reasons: (1) non-uniform Fourier transform, (2) inversion
of the large-scale matrix, and (3) iterative operation for
the covariance matrix. In addition, the non-convergence
of iterative operation may occur owing to only a few
probes and short signal length. Note that the performance
of MVDR will not be improved with an increase in signal
length but with degradation. The reason is that the
autocorrelation matrix will become singular or ill-
conditioned. The traditional method to deal with
singularity is diagonally loading a small identity matrix to
make the signal covariance matrix invertible.

3.3 Spatial smoothing

To avoid simultaneous excessive calculation cost and
spectrum estimation error, one-dimensional BTT signals
are rearranged by spatial smoothing. Spatial smoothing is
used in DoA estimation to overcome matrix rank
reduction and matrix singular caused by signal coherence
[33]. The input signal x(#,) measured by probes
{1,2,...,0} is divided into N = [(M - L)/Q]+ 1 overlap-
ping snapshots with a window length of L. The starting
point of each snapshot must correspond to the same
sensor to ensure the same structure. The ith snapshots
x;(t,) is as follows:

x;(t,)=AAN"s@t)+n(t,), (15)
where. A = diag [ePH(ee-t), @ti(eos), | Pt} i

the diagonal matrix. Thus, the covariance matrix of the ith
snapshot is obtained as follows:

R=AA"E(s@)s" @)} (A7) A"+ 02l (16)
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Algorithm 1 MVDR spectrum for the BTT signal

Input: the arrival time #

n?

N,

max 2

and error ¢ ;

Output: MVDR spectrum {Pn (a . ),P

xx

Ji

the vibration displacement x(tn ) , frequency sequence { I } , max iterations

- (af{ ),...,PH (”/‘K_. )} :

2
1 Initialization P (a/.k ) = (%a“ x(tn )j , €=0.05, i=0;

2 Obtain array steering matrix A4 = [a n @

af;(_]] with f, and ¢ ;

3 while i‘ﬁgﬂ) (afk )/13;(;) (af.k )—1‘ <¢ and i<N_ _ do
k=0

4 Update I}ii“) and 13)5;”) (a/.k ) by Egs. (13) and (14);
5 i=i+1;
6 end while

7 for fke{fo,fl,...,fK_l} do

1
8 PH( /A): H -1_H »
a. R a;
9 end for

10 Return: {Pxx (a,/;, )?‘Pxx (“ﬁ ),...,PH (afx-. )} y

Let the covariance matrix of the input signal with
spatial smoothing be rewritten as the means of snapshots:

, 1< i1 H N\ H 2
RW:AX(N;A E{s(t,)s" (t)}(A™) |AY+ 020

— ASA" 41, (17)
The spatial smoothed covariance matrix § can be
represented by a block matrix:

S=[1 IA IAY ]
1
_s I
N (IA)
: =GG",  (18)
1 1.v71 *
a (1A™)

where S = E{s(¢,)s" (¢,)} is the covariance matrix of the
signal vector at time £, and G =[VS/N A~+S/N ---
A" V/§/N] is the block matrix. Note that the singularity
of matrix S is the singularity of matrix G. Take the
elementary transformation of matrix G, and the rank of
the matrix G can be expressed as follows:

[ svi SV S1mV1
21V SpVs SomV2
rank (G) = rank
L Smlvm szvm Smmvm
[ ¢y,
(&)%)
= rank i , (19)
L CnVim

where rank(-) denotes the rank of the matrix, s; is the
element of the matrix S/N in row i and column j,
vi=[1 A, AJ"'1is the ith row of a Vandermonde
matrix, and ¢; is any non-zero element in the ith row of
the matrix VS/N. Given that § is the amplitude of the
input signal, there are always non-zero elements in each
row (i.e., ¢; always exists). When the number of subarrays
N is higher than the number of frequency components m,
the Vandermonde matrix is evidently full row rank.
Consequently, matrix G is full row rank and covariance
matrix R’ is non-singular.

Although spatial smoothing ameliorates the singularity
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and ill-condition, the frequency resolution of the
proposed method is reduced owing to subarray division.
However, this compromise will be verified to be
reasonable, thereby improving the robustness of the
algorithm and also has advantages in processing the BTT
data in the non-resonance region. Figure 3 shows the

Test rig

Undersampled

Nonuniformly

schematic of the proposed method. The main steps of
IMVDR are summarized in Algorithm 2.

The computational complexity of IMVDR mainly
comes from the inversion of the autocorrelation matrix
and calculation of spectrum, which are O(M?) and
O(KM?), respectively. The computational complexity of

IMVDR

[ First natural frequency ]

BTIT

Steering matrix

Probes layout Rotating speed

£
]

[”/ ay

Speed

Time

. 1 1
J N e e
V ; 3

)

“/H]

Fig. 3 Schematic of the proposed improved minimum variance distortionless response (IMVDR). BTT: blade tip timing.

Algorithm 2 IMVDR spectrum for the BTT signal

Input: the arrival time ¢, , the vibration displacement x (t,, ) , frequency sequence { Fos Jise+ o5 K_l} , length of the

snapshot L, length of the signal M, and number of probes Q ;

Output: IMVDR spectrum {Pxx (a_/(.] ),Pm (a_,i ),. P (“.fm )} ;

1 Obtain array steering matrix A = Iia o 4y

a, | with f, and 1,

2 Calculate the number of snapshots N = |_(M — L)/ O|+1;

3 for i=0:N-1 do
4 x,(¢,)=x(t,)[ixQ:ixQ+L];
5  end for

6  Calculate the correlation matrix

7 for fke{fo,fl,...,fIH} do

1
o Rl)=gm
S xx fe

9 end for

Return: {PXX (af” ),Pa (af] ),...,PX]C (afk_1 )} :
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MVDR is O(N,KL?), where N, is the number of
iterations and usually equal to 10-20. Although matrix
inversion is inevitable in IMVDR and MVDR, the
dimension of the autocorrelation matrix in IMVDR is
equal to the snapshot width, which is much smaller than
the signal length, and it is only executed once. The
aforementioned reasons make IMVDR an extremely low
time-consuming method.

4 Numerical verification

This section uses a group of synthesized signals with non-
uniform undersampling characteristics to preliminarily
verify the anti-aliasing and amplitude estimation abilities
of the proposed method. Moreover, the improvement of
the proposed method and change in estimation accuracy
are illustrated by comparing it with the MVDR method.
4.1 Synthetic signal

Blade vibration is mainly composed of synchronous and
asynchronous resonance. Synchronous resonance is
generally caused by the rotor, drive excitation, and blade
crack, among others. Asynchronous resonance corre-
sponds to surge, flutter, and other fault phenomena.
Therefore, synchronous resonance is an integer multiple
of rotational speed, whereas asynchronous resonance is
non-integer. This difference is manifested in the time
domain: the former is measured in the same phase by
BTT probes, while the latter is measured in different
phases [34]. Hence, the synthetic signal containing

synchronous and asynchronous resonance can be
expressed as follows:
3
x(f) = Zaie"z"f” +w(),
i=1
f=[1000 2467 3333]|Hz,
a:[l.oo 2.00 1.50], (20)

where function w(¢) is the Gaussian white noise. Blade
rotation speed is assumed to be 4000 r/min, and the

installation angle of five BTT probes is [0°, 36°, 78°,
156°, 282°]. The undersampled signal (orange cross)
obtained by five BTT probes is shown in Fig. 4(a). As
shown in Fig. 4(b), the direct use of non-uniform Fourier
transform (NUFT) will cause serious frequency aliasing,
and the correct frequency components cannot be
identified.

1) IMVDR vs. MVDR. The results obtained by MVDR
and IMVDR are shown in Fig. 5, where the red square
indicates the ground truth. The comparative results
indicate that IMVDR is more effective and robust than
MVDR for the vibration reconstruction of the
undersampled signal. Moreover, calculation speed is
improved, while the estimation accuracy of the spectrum
is maintained. As shown in Fig. 5(a), when the grid size is
1 Hz, the MVDR method has a frequency mismatch,
leads to a substantial decline in estimation accuracy. This
influence is reflected in the increase of amplitude
estimation error in the IMVDR method. With an increase
in grid size, the performances of MVDR and IMVDR can
be improved, and a more evident improvement can be
observed in the estimation results obtained using
IMVDR. Note that apart from frequency, amplitude is
also more accurately estimated through IMVDR under a
grid size of 0.1 Hz, as shown in Figs. 5(d)—5(f). Mean-
while, MVDR may lead to less amplitude identification
accuracy, as shown in Fig. 5. In generally speaking, the
improvement of IMVDR in the analysis of the spectrum
of non-uniform undersampled signal is effective com-
pared with the traditional MVDR method. Furthermore,
the amplitude obtained by IMVDR is certainly valuable,
but the higher accuracy of amplitude estimation
corresponds to a finer grid, which also corresponds to
longer calculation time.

2) The influences of snapshot width, signal length,
noise level, and frequency resolution are quantitatively
analyzed, and the comparative results are shown in Fig. 6.
Figures 6(a) and 6(b) show the approximate parameter
selection range. The estimation accuracy will decrease
with an increase of snapshot width, but the best
estimation result is achieved when L = 32. As shown in
Fig. 6(c), with a decrease in signal-to-noise ratio (SNR),
the estimation accuracy of the signal frequency is not

= —— Synthetic signal |
X Sampling point

Amplitude/mm

0.03 0.04 0.05 0.06

Time/s

(a

0.01 0.02

— NUFT
g 2 | — Synthetic signal
> O Ground truth
=]
2
a1
£
<
0 |
0.07 100 200 300 400
Frequency/Hz

(b)

Fig. 4 Synthetic blade tip timing (BTT) simulation signal: (a) original signal and BTT sampling points and (b) non-uniform Fourier

transform (NUFT) of the undersampled signal.
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Fig. 5 Minimum variance distortionless response (MVDR) spectrum estimation results of the synthetic blade tip timing simulation

signals (M = 512, L = 16) with resolutions of (a) 1 Hz (0.018 s), (

b) 0.5 Hz (0.0598 s), and (c) 0.1 Hz (1.0962 s). Improved MVDR

spectrum estimation results of the synthetic blade tip timing simulation signals (M = 512, Ny = 15) with resolutions of (d) 1 Hz (4.2549 s),

(e) 0.5 Hz (6.0917 s), and () 0.1 Hz (67.1167 s).
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(SNR), and (d) IMVDR spectrum and minimum frequency interval A6.

affected. However, note that as SNR continues to
decrease, the estimation accuracy of the signal amplitude
is reduced, especially when SNR < 5 dB. Overall, the
IMVDR spectrum is robust to noise, in which the
robustness of frequency estimation is better than that of
the amplitude. The resolution result of the IMVDR

spectrum is shown in Fig. 6(d). At a sampling frequency
of 90 Hz, the two frequency components of 90 and
(90+A6) Hz are not considerably distinguished when
A6 < 3 Hz. Nevertheless, this problem can be solved by
increasing the input signal length M and snapshot width
L.
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4.2 Monte Carlo simulation

In this section, several common BTT signal spectrum
estimation methods are used to compare with the
proposed methods, including MUSIC [27], ESPRIT [28],
MVDR [25,35], orthogonal matching pursuit (OMP)
[36,37], alternating direction method of multipliers
(ADMM) [38], iteratively reweighted least squares
(IRLS) [39], and “5 + 2” [40,41]. MUSIC, ESPRIT,
MVDR, and IMVDR are typical algorithms of DoA
estimation. MUSIC uses the noise subspace of the signal,
while MVDR uses the signal subspace. ESPRIT takes
advantage of the rotation invariance of signal subspaces
between two signal covariance matrices and directly
decomposes the eigenvalue to obtain the frequency
instead of the complete spectrum. OMP and ADMM
belong to sparse signal recovery algorithms. OMP is a
classical greedy algorithm to approximately solve the LO-
norm minimization problem. The ADMM  algorithm
solves the Lasso problem of relaxing LO-norm to L1-
norm, while IRLS is a nonparametric method for the
spectral analysis of non-uniform undersampled signals.
Meanwhile, “5 + 2 de-aliases undersampled signals by
constructing two groups of signals with different
sampling rates.

The synthesized signal with K known frequency
components is used to compare the performances of
several algorithms. With the exception of the ESPRIT
algorithm, which directly selects the largest K
eigenvalues, all other algorithms use the peak search
algorithm to find the largest K peaks. Note that not all
algorithms are capable of amplitude identification, so the
amplitude of each frequency component is normalized to
1. Empirical root mean square error (RMSE) is selected
as the index to evaluate each algorithm:

1 K—-1 Ny—1 . 2
RMSE = JNkaZ;Z;( Y. e

where [f2, ..., fo_,]" and [f(;’ A{’,...,f,ﬁ_l]T represent the
ground truth of the frequencies and estimated value of the
frequencies, respectively, and N,. indicates the total
number of testing examples for the Monte Carlo
simulation.

1) RMSE vs. SNR. In this case, several randomly
generated frequencies ranging in [1, 200] Hz were used.
At each SNR level, Monte Carlo simulations are
conducted 100 times. The input signal length of several
methods is 512, in which the snapshot width of IMVDR
and MUSIC is 16. The result of the Monte Carlo
simulation is shown in Fig. 7. Note that at low SNR, the
proposed method performs well, and its calculation time
is slightly lower than that of MUSIC and considerably
faster than those of other methods. The proposed IMVDR
shows higher accuracy and lower calculation time
compared with OMP, which can also identify amplitude.

L2 - - = ESPRIT
- -0 - MUSIC
. |-—+- ADMM

IR
2 e R )

-15 -10 -5 0 5 100 15 20 25
SNR/dB

Fig. 7 Root mean square error (RSME) (logarithmic scale) vs.
signal-to-noise ratio (SNR) in the different methods of spectrum
estimation with two random frequency components.

The ESPRIT method, as a gridless method, is different
from other methods, and its accuracy is continuously
improved with the decrease of SNR. Similar to the other
three on-grid methods, accuracy does not improve when
SNR decreases to 5 dB owing to the limitation of the grid
size. Note that this feature belongs to all types of on-grid
methods, and obtaining finer grids with higher accuracy
is expected. However, finer grids will lead to lower
performance and higher computing time. The ADMM
algorithm needs to adjust parameters A and p to obtain a
relatively stable performance when SNR changes. Mean-
while, other algorithms do not need to adjust parameters
in the simulation process. Note also that the IRLS
algorithm is extremely sensitive to the sum of the number
of sensors, arrangement of sensors, and signal length, so
IRLS cannot realize reasonable spectrum estimation in
this Monte Carlo simulation. Moreover, “5 + 2” requires
two additional probes compared with other methods.
Although the spectrum obtained by “5 + 2” contains the
correct frequency value, discerning the correct peak value
is often challenging owing to aliasing and frequency
leakage.

2) RMSE vs. input signal length. Figure 8 shows that
the RMSE results of two frequencies for the length of
input signal vary from 32 to 2048. The frequency range
of the synthetic signal remains unchanged, and SNR of all
signals is 15 dB. For each signal length M, 100 Monte
Carlo simulations are carried out. When the input signal
length is over 64, the frequency values estimated by
IMVDR obtain the minimum RMSE, and the
performance decreases slightly when length M is below
64. With an increase in input signal length, the fixed grid
resolution limits the performance of all grid-based
estimators except for ESPRIT. Note that compared with
the influence of SNR change, ADMM is less sensitive to
signal length M. Hence, ADMM does not adjust
parameters A and p in this MC simulation. For IRLS,
although signal length has changed, RMSE of frequency
is still larger than that of other methods owing to random
sensor arrangement and small numbers.
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5 Experimental verification

Experiments were further conducted to verify the
effectiveness of the proposed IMVDR method, especially
the excellent performance of the proposed method in

o N ~ < - ESPRIT|
T [+ - -G - MUSIC
L - -+ - ADMM
{}::::&::——A\\* - -+ - IMVDR |1
= Sl ey - A - MVDR
Tl S s -+ - IRLS
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z Y 542
hc) )6\\ N
Rt 2R :“x_\_
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M

Fig. 8 RMSE (logarithmic scale) versus signal length M in the
different methods of spectrum estimation with two random
frequency components.

ﬁi \

asynchronous resonance frequency extraction. Given that
there is no contact measurement system installed on the
test rig, several methods that have been applied in BTT
are used for reference.

5.1 Experimental setup

In this section, a test rig (see Fig. 9) equipped with a BTT
measurement system is used to collect data. An aluminum
disk with eight blades is driven by a servo motor with a
maximum speed of 15000 r/min. BTT probes
circumferentially installed on the casing are used to
measure blade vibration, and an OPR probe is used to
indicate the rotation speed. Five BTT probes were
installed at the position in the following angles: 48°,
108°, 158°, 168°, and 288°. Through finite element
modeling (FEM) analysis, the first and second modal
frequencies at different angular velocities are calculated,
and the Campbell diagram of the blade is obtained as
shown in Fig. 10. The red circle indicates that the first
modal frequency of the blade intersects with four times
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18
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g 5182.5 r/min 145
g 345.5Hz 12 8
g 10 g:D
2 1000 5
8
500 / 6
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/ 2
O = 1 1 1 1
1000 2000 3000 4000 5000 6000

Rotation speed/(r-min™")

Fig. 10 Campbell diagram of the blade.
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the rotation frequency of the blade, and the blade
resonates at 345.5 Hz. Meanwhile, strain gauges are
installed at the root of the blade. The resistance change of
the strain gauge caused by blade vibration is input into
data acquisition through the Wheatstone bridge. The
sampling frequency of the strain gauge is 20000 Hz,
which is significantly higher than the first two-order
natural frequency.

Motor speed is set to the acceleration and constant
speed sections. Four 0.75 MPa pneumatic excitation are
applied to the blade tip to simulate the actual working
condition. The BTT data of blade 1 measured in the
experiment are shown in Fig. 11. As indicated in the
experimental data of blade 1, several resonances occur in
the acceleration, and a resonance appears at 5200 r/min,
which is consistent with the FEM result of the Campbell
diagram.

5.2 Data analysis

Several methods mentioned in Section 4 are used to
analyze the experimental data, except for ESPRIT
because it cannot obtain the complete spectrum. To better
compare the performance differences among several
methods, data in the resonance region are excluded.
Instead, data at 48 s corresponding to the rotation speed
of 4360 r/min are selected. Signal length is 1024 and
frequency grid size is 1 Hz. The snapshot width used by
IMVDR and MUSIC is 64, the sparsity of OMP is set to
10, 20 iterations are used for MVDR, 30 for ADMM, and
10 for IRLS. Figures 12(a) to 12(h) show that the spectra
obtained by each method include the original BTT signal.
The red dot line in Fig. 12 indicates the natural frequency
obtained using the FEM model.

IMVDR and MUSIC reflect the natural frequency and
provide remarkable anti-aliasing even in the non-
resonance region. The estimated frequency is summarized
in Table 1. However, the frequency spectrum obtained by
MUSIC lacks amplitude and each order of rotation
frequency is also lost. OMP, can only obtain each order
of frequency compared with MUSIC, but the vibration
caused by resonance is almost eliminated. The results

given by MVDR and NUFT are markedly similar, and
both have frequency errors caused by speed variation.
The anti-aliasing of MVDR is better than that of NUFT,
but the natural frequency in NUFT is more prominent.
ADMM and IRLS are used to solve the Lasso problem,
and note that the effects of these two methods on the BTT
data in the non-resonance region are not ideal. Another
point is that the amplitudes of several methods are
meaningful except for the pseudo amplitude obtained by
MUSIC. Taking blade 1 as an example, although the
amplitudes of several methods are in the same order of
magnitude, the maximum amplitudes differ by 0.022 mm
(IMVDR, 0.032 mm, and OMP, 0.010 mm). This result
also indicates that highly accurate amplitude estimation is
difficult to achieve.

To compare IMVDR and MUSIC more comprehen-
sively, the time—frequency representation of BTT signals
was analyzed using the two methods. Data from blade 2
installed with strain gauge is divided into 2000 data
segments of signal length is 2048, with a step size of 20.
Rotation speed in each data segment is regarded as a
constant to simplify calculations. Given that IMVDR,
MUSIC, and strain gauge are on-grid methods, frequency
grid size is set to 1 Hz. In addition, amplitudes of short
time Fourier transform and IMVDR represent the
estimation of the input signal amplitude, while amplitudes
of MUSIC represent the orthogonality between the signal
and noise subspaces. Figure 13 shows the estimation
results of the spectrogram by IMVDR, MUSIC, and strain
gauge. Note that the result of IMVDR is markedly better
than MUSIC. In the entire time—frequency domain, the
natural frequency of the blade can be identified, and the
synchronous resonance of each order is still reserved.
Moreover, the blade vibration amplitude is observed to
increase as the rotating speed approaches the resonance
region. In the results obtained by MUSIC, frequency
spectrum at high speed is similar to that in Fig. 12(f), and
natural frequency disappears at low speed. Moreover, the
line indicating the natural frequency in MUSIC “breaks”
near the resonance zone, which has been confirmed in
Ref. [42]. As shown in the subplot, natural frequency is
transported near the resonance region and coincides with
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Fig. 11

Blisk rotation speed and blade tip vibration displacement of blade 1 sampled by blade tip timing system.
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transform.

Table 1 Comparison of the blade natural frequency between IMVDR and MUSIC. Rotation speed is 4360 r/min (¢ = 48 s)

13

Blade natural frequency/Hz

Method

Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8
IMVDR 335 336 345 335 342 333 332 334
MUSIC 335 337 344 335 343 332 331 333

the synchronous vibration frequency. The results of strain
gauge can extract the rotation frequency, natural
frequency of the blade, and enhancement of four times
engine order caused by the pneumatic excitation.

As shown in Fig. 13(a), the 1st order natural frequency
at low speed obtained by IMVDR lies in a band. The
reason is related to the basic principle that the Nyquist
rate of BTT is proportional to the rotating speed of the
bladed disk. The same signal length, high sampling rate,
and short sampling time at high speed are observed but
opposite at low speed. Rotational speed is regarded as a
constant value when estimating the spectrum in each
segment. Consequently, acceleration at low rotational
speed leads to a significant deviation of the array steering
matrix and eventually causes the frequency estimation
error. Execution time takes 44.69 s for IMVDR
spectrogram and 44.80 s for MUSIC, both of which are in
Python 3.8. Even though IMVDR and MUSIC can

achieve excellent efficiency, the estimation results
obtained by IMVDR retain more information on vibra-
tion. The comprehensive compassion further demon-
strates that the proposed IMVDR balances the relation-
ship between accuracy and calculation efficiency. This
result provides additional possibilities for the online
monitoring of blade vibration.

6 Conclusions

BTT is a non-intrusive and non-contact blade vibration
measurement method. Although limited by the Shannon
sampling theorem, many effective methods have been
proposed to overcome frequency aliasing. This study uses
previous research as basis to improve the early MVDR
method and eventually propose a more efficient IMVDR
method. Furthermore, the elaborate signal matrix
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Fig. 13 Spectrogram of blade 2 tip vibration displacement: (a) improved minimum variance distortionless response, (b) multiple signal

classification, and (c) strain gauge.

skillfully reduces the order of the autocorrelation matrix
and avoids the iteration process. A comparison between
the proposed method and other methods through
simulation and experimental data is also conducted.
lastly, the following conclusions are summarized and
presented.

1) IMVDR is a nonparametric method that effectively
solves the problem of non-uniform undersampling of
BTT signal and realizes the estimation of blade vibration
frequency and amplitude. Moreover, IMVDR requires
less prior knowledge than the single-parameter method.
Spatial smoothing is used to preprocess the estimated
signal, which maintains high estimation accuracy and also
avoids the inversion of the high-order matrix and iterative
operation.

2) In the synthetic BTT data and MC simulation,

IMVDR is compared with recently proposed methods.
Results show that IMVDR has noise robustness and
insensitivity to parameter changes under different
conditions. Given that a finer grid size of IMVDR
corresponds to higher amplitude estimation accuracy and
longer calculation time, a trade-off has to be made
between higher amplitude accuracy and shorter
calculation time.

3) The experimental results further verify that the
proposed method can effectively extract the natural
frequency of blades even in the non-resonance region and
recover the complete frequency spectrum of blade
vibration. Meanwhile, its anti-aliasing ability is better
than other methods. When rotational speed fluctuates
substantially, the performance of natural frequency
identification may decrease owing to the change of array
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steering matrix. However, natural frequency still appears
in a certain frequency band.

At present, the high-precision estimation of amplitude
remains a significant challenge for BHM. However, as an
on-grid method, the estimation accuracy of frequency and
amplitude with IMVDR will be limited by grid size,
which is also an inevitable defect for almost all BTT
spectrum recovery methods. In succeeding research, a
more efficient and accurate co-correlation matrix
estimation method suitable for the BTT signal should be
introduced to further improve the accuracy of amplitude
estimation.

Nomenclature

Abbreviations

ADMM Alternating direction method of multipliers

BHM Blade health monitoring

BTT Blade tip timing

DoA Direction of arrival

ESPRIT Estimation of signal parameters via rotational
invariance techniques

FEM Finite element modeling

IMVDR Improved minimum variance distortionless response

IRLS Iteratively reweighted least squares

MUSIC Multiple signal classification

MVDR Minimum variance distortionless response

NUFT Non-uniform Fourier transform

OMP Orthogonal matching pursuit

OPR Once per revolution

RMSE Root mean square error

SNR Signal-to-noise ratio

ToA Time of arrival

Variables

a Element of steering vector a

a Steering vector

ar Steering vector with tentative frequency f

A Array manifold matrix

Ay Array manifold matrix for signal measurement

¢ Non-zero elements in the ith row of the matrix VS/N

f Frequency of synthetic signal

Sr kth frequency in frequency grid

ff" ith estimated frequency in the nth Monte Carlo

simulation

S (@

Blade’s instantaneous rotation frequency at time ¢
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(fo>f15 "'»fK* 1)
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n
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N, Nite, Nmaxs Nime, Ny
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P w(a i )
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{50, 1, ey Sm-1}

8(tn)

w(f)
w

W (a)
w

x
x(f)
x(t,)
xtn)

Blade averaged rotation frequency at the Nth
revolution
Frequency grid

Frequency set of the blade tip vibration

Block matrix

Identity matrix

Number of frequency grid

Length of the snapshot vector

Number of the frequencies in the input signal vector
x(trl)

Length of the input signal vector x(z,)

Index of the first value

Zero-mean additive noise vector

Numbers of the snapshots, iterations of MVDR, max
iterations, Monte Carlo simulation, and the
revolution, respectively

Power spectral density in steering vector a

Power spectral density in steering vector ay
Estimated power spectral density in steering vector a,
Diagonal matrix in which diagonal elements represent
the power spectral density

Number of probes

Radius of the measurement point

Correlation matrix of the ith snapshot

Correlation matrix of the signal x

Estimated correlation matrix of the signal x
Estimated correlation matrix of the signal x with
spatial smoothing

Element of the matrix YS/N in row i and column j
Amplitude set of the blade tip vibration

Vector of each frequency value at time 7,

Covariance matrix of s(z,)

Spatial smoothed covariance matrix of s(#,)

Time interval of adjacent pulses

Actual arrival time of the blade tip

Expected arrival time of the blade tip

Arrival time vector

ith row of the Vandermonde matrix

Filter coefficient

Filter coefficient at time ¢

Filter coefficient vector

Optimal filter coefficient vector

Filter coefficient matrix

Input signal

Vibration displacement of the blade at time ¢

Input signal vector

ith snapshots of input signal vector x(z,)
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16

W(t,) Output signal of the filter at time #,

Oy Installation angle of the gth probe

A6 Difference between two adjacent frequencies
& Error

a? Variance of Gaussian white noise

A Regularization parameter of ADMM

I Learning rate of ADMM

[N Center frequency

{(90s @15 s0,1) Phase set of the blade tip vibration

A Diagonal matrix
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