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ABSTRACT The machining unit of hobbing machine tool accounts for a large portion of the energy consumption
during the operating phase. The optimization design is a practical means of energy saving and can reduce energy
consumption essentially. However, this issue has rarely been discussed in depth in previous research. A comprehensive
function of energy consumption of the machining unit is built to address this problem. Surrogate models are established
by using effective fitting methods. An integrated optimization model for reducing tool displacement and energy
consumption is developed on the basis of the energy consumption function and surrogate models, and the parameters of
the motor and structure are considered simultaneously. Results show that the energy consumption and tool displacement
of the machining unit are reduced, indicating that energy saving is achieved and the machining accuracy is guaranteed.

The influence of optimization variables on the objectives is analyzed to inform the design.
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1 Introduction

Manufacturing has created a considerable wealth and
brought numerous jobs to the world [1]. However, it has
caused serious environmental effects, such as energy
shortage and climate warming. Worldwide energy
consumption and carbon dioxide emissions are projected
to increase by 56% and 46% between 2010 and 2040 [2],
and manufacturing currently accounts for more than 30%
of the world’s total energy use and releases 36% of total
carbon dioxide emissions [3]. The manufacturing industry
is facing a difficult undertaking of energy saving and
emission reduction to reach the target of global carbon
neutrality. Therefore, energy saving and low-carbon
development have become the inevitable choice for future
manufacturing.

Machine tools are the core equipment in manufacturing.
On the one hand, the energy consumption of machine
tools accounts for 75% of the energy consumption in
manufacturing [4], but the energy efficiency of machine
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tools is only 10%—15% [5]. On the other hand, environ-
mental studies of machine tools show that more than 99%
of the environmental effect is caused by electricity
consumption [6]. In summary, machine tools have great
potential for energy saving, and improving the energy
efficiency of machine tools can remarkably reduce the
energy consumption and environmental emissions of the
manufacturing industry.

A review of current literature shows that many studies
focused on the energy consumption modeling of machine
tools. Some researchers attempted to build the energy
consumption function of machine tools through theoreti-
cal deduction. In Ref. [7], an energy consumption
function of the machining center in the milling process
was deduced by analyzing the energy flow characteristics
of the machining center processing system. Reference [8]
comprehensively analyzed the mechanism of process
parameters and relative cutting specific energy, and built
the models of cutting force and specific cutting energy.
Xiao et al. [9] developed a multicomponent energy model
based on the energy characteristic analysis of dry gear
hobbing machines. Energy consumption modeling based
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on theoretical deduction has minimal dependence on data,
good interpretability, and can obtain specific energy
consumption functions. However, the deduction process
is cumbersome and has many parameters and complex
calculations.

Some studies established energy consumption models
by using experimental data and surrogate model methods.
Li et al. [10] used Taguchi method to design the
experiment and applied response surface methodology
(RSM) to develop surrogate models for the specific
energy consumption based on the experimental data. Vu
et al. [11] applied kriging and RSM surrogate models to
generate approximate regression models and showed the
relationship between the parameters of hard milling and
outputs (cutting energy, surface roughness, etc.) obtained
by physical experiments. In Ref. [12], a radial basis
function (RBF) neural network was used to render the
relationships between milling processing parameters and
measured performance (energy efficiency, surface
roughness, etc.). Arriaza et al. [13] obtained a quantitative
form of the relationship between the factors and
responses by utilizing RSM and the desirability function
method. The independent factors included the spindle
speed, feed rate, depth, and cutting width, and the
responses are the consumed energy and machining time.
Energy consumption modeling based on data and
surrogate models has the advantages of simple process,
high modeling speed, and good accuracy, but it greatly
depends on data and has poor process visibility.

The above two types of energy consumption modeling
methods have their own advantages and disadvantages,
and their applicable conditions are different. They are
effective method for energy consumption modeling and
analysis.

Numerous researchers have investigated the energy
saving optimization of machine tools based on energy
consumption analysis and modeling, which can be
divided into two parts: processing strategy optimization
and machine tool design optimization [14]. Many of the
investigations have focused on the processing parameter
optimization problems and adopted the multiobjective
optimization algorithms to solve the problems.

A multiobjective cutting parameter optimization model
that took the machining surface roughness, material
removal rate, and machining energy consumption as the
optimization objectives was established in Ref. [15], and
an improved teaching-learning-based optimization
algorithm was proposed to solve the model under various
limited milling conditions. Zhang et al. [16] built a
parameter optimization model of micromilling process,
and used hybrid cuckoo search and grey wolf algorithm
to determine the optimal cutting parameters for minimi-
zing the total energy consumption. He et al. [17] optimi-
zed the cutting parameters with the objectives of
machining efficiency, cutting force, and energy consump-
tion, and used various algorithms, including sharing

function approach, vector evaluated genetic algorithm,
nondominated sorting genetic algorithm-II, and multi-
objective evolutionary algorithm based on decomposition,
to study the Pareto front. Kumar et al. [18] studied the
multiobjective optimization of prime energy consumption
responses along with material removal rate and surface
roughness on rough turning. The multiperformance com-
posite index was determined by using the technique for
order preference by similarity to ideal solution method,
and the weights of responses were obtained by using the
equal, analytic hierarchy process, and entropy weight
methods. However, the energy saving effect achieved
through the optimization of processing parameters is
limited, and processing parameter optimization can only
achieve energy saving of existing machine tools. The
energy saving design of machine tools must be
investigated to improve the energy efficiency of machine
tools in the design stage.

Energy saving design of machine tools has become an
important direction and research frontier for the sustain-
able development of manufacturing in the world. An
international standard “Design methodology for energy-
efficient machine tools” (ISO 14955-1) has been released,
providing the framework and principles of energy saving
design. The European Commission has adopted a series
of policies, including the ECODESIGN Directive and
Energy Efficiency Directive to formulate ecodesign
guidelines [19]. Energy saving design of machine tools is
an important means for the manufacturing sectors to
implement the concept of energy saving and low-carbon
development, and is an important development trend for
the machine tool industry in the future.

Several studies have been conducted to emphasize the
possibility of energy saving in the design stage of
machine tools. Some researchers attempted to improve
the energy efficiency of machine tools by optimizing the
component structures and motor parameters. Triebe et al.
[20] reduced the mass and deflection of the machine table
by optimizing its structure, which can help to achieve
energy saving of the machine tool. Ji et al. [21] presented
an optimization design method of the feed system for
energy saving. The energy saving of the machine tool is
realized by optimizing the structural parameters of the
moving component. Some studies tried to reduce the
energy consumption of machine tools by optimizing the
parameters of motors. Lv et al. [22] proposed that the
energy consumption will decrease if the motor can be
prevented from unnecessary stopping and restarting,
thereby shortening the acceleration time. The results
indicate that the energy consumption can be reduced by
10.6% to more than 50%. Wojcicki and Bianchi [23]
found that energy savings can be achieved in terms of
peak power and energy loss by using the best acceleration
rate and power limit value.

Structure and motor parameter optimizations are
currently studied separately to reduce energy
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consumption. Minimal studies have investigated the
energy saving of machine tools by combining the
optimization of structure and motor parameters, and few
studies have focused on the optimization design of
machine tools for energy saving.

The main contributions of this paper are as follows:
1) Compared with previous studies that achieved the
energy saving of machine tools during the operating
phase, this work attempts to improve the energy
efficiency of hobbing machine tools in the design stage
and proposes an energy saving design method. 2) A
combination of theoretical formulas and surrogate models
is used to establish a comprehensive energy consumption
function for calculating the complex energy consumption
of the main drive and feed system of the machining unit.
An integrated optimization model of the machining unit
considering the motor and structure parameters is
proposed, and the energy consumption is reduced while
ensuring machining accuracy. 3) The influence of the
optimization variables on the objectives is analyzed and
discussed in detail, which can improve the basis for
energy saving design of machine tools.

The rest of this article is organized as follows. Section
2 established the energy consumption function of the

machining unit of hobbing machine tool. Section 3 built
the surrogate models of the tool post support plate mass
and tool displacement, and presents the integrated
optimization model. Section 4 discussed the optimization
results and comparative analysis. Section 5 presented the
conclusions and future research issues. The flowchart of
the whole article is shown in Fig. 1.

2 Energy consumption function of the
machining unit

The main drive and feed system are the main parts of
machine tools, which remarkably affect the machining
performance and energy efficiency of machine tools [24].
The components closely related to the machining of
hobbing machine tools, including spindles and motors,
make up the machining unit.

As shown in Fig. 2, the machining unit of the computer
numerical control (CNC) hobbing machine tool mainly
includes the main motor, servo motor, hob, tool post
shell, tool post support plate, slide plate, and main
gearbox. The machining unit is driven by the main motor
and the servo motor. The output torque of the main motor
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Flow chart of the energy saving design of the machining unit.
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Fig. 2 Structure and force diagram of the machining unit.

drives the rotary motion of the hob spindle through the
main transmission box. The output torque of the servo
motor is transmitted by the slide plate and drives the tool
post, main transmission box, and other additional
components to move up and down along the column
guide rail.

2.1 Load analysis of the main motor

The power of the machining unit is provided by the main
motor and the servo motor. The output power of the main
motor includes the output power of the machining unit,
the kinetic energy change rate of the mechanical transmis-
sion component, and the friction loss of the mechanical
transmission, as shown in Eq. (1) [25]:
Poo = Pocct B2 4 P, = Mooy + B+ 2% 4 ap,, (1

mo = mec+E+ . = Myw,, + a)m+?+a . (1)
where Py, is the output power of the main motor, P, is
the mechanical loss power, ¢ is the operation time of the
machine tool, dEy/d¢ is the rate of change in kinetic
energy of mechanical transmission components, P, is the
cutting power, My is the equivalent nonload Coulomb
friction moment, B is the equivalent viscous friction
damping coefficient, w, is the angular velocity of the

spindle motor shaft, and a is the load factor of the
mechanical transmission system.

When the hobbing machine tool is in a stable state, the
kinetic energy Ex change in the mechanical transmission
part can be ignored, so the kinetic energy change rate
dEy/de=0.

The cutting power formula of hobbing is P, = F; v,
and the cutting force F, is usually calculated by using an
empirical formula, which is expressed as Eq. (2) [26]:

l,’,l].7520.27ag.81f‘ZO,65vc—0.261(1 K2K3 ~ Tcdhngm 5
d, +Ve = To00 " @
where Z is the tooth number of the workpiece, f, is the
axial feed of the hob, m is the normal modulus of the hob,
ap is the cut depth, v, is the cutting speed, ngy, is the hob
speed, dy is the hob outer diameter, K is the coefficient
associated with materials of the gear, K is the coefficient
associated with the hardness of the gear, and K3 is the
coefficient associated with the helical angle of the gear.

F.=182

2.2 Load analysis of the servo motor

The main gearbox of the machining unit is firmly
connected to the tool post. The output torque of the servo
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motor drives the tool post, main gearbox, and other
additional components along the column to feed up and
down along the column through the coupling, ball screw,
guide rail, slide block, and skateboard.

The output torque of the motor is mainly used to
overcome the friction between the guide rail and the
sliding plate, the cutting component force in the feed
direction, the gravity and inertial force of the tool
post—slide plate module. The force diagram is represented
in Fig. 2.

The functional relation between the servo motor output
power, output torque, and angular velocity can be
expressed as Psy = Tym . The power of the transmis-
sion system is provided by the servo motor, and the
equation is shown in Eq. (3):

dwg, dng,
=Jiw—— + B + Ty = 20J iy —— + 20 Bl + T,
dr dr
)
where Py, is the output power of the servo motor, Ty is
the output torque of the servo motor, Jy, is the moment of
inertia of the servo motor, w,, is the output angular
velocity of the servo motor, By, is the damping
coefficient of the servo motor, ngy, is the speed of the
servo motor, and 7j is the output torque of the coupling.

The servo motor drives the ball screw through the
coupling, and the ball screw pair drives the processing
unit to move up and down along the column. The
dynamic equation of the coupling is expressed as Eq. (4):

1= 80m Lo jdom  (jdom o Ty

a d dr MM, ) 1
where J, is the moment of inertia of the coupling, Js is the
moment of inertia of the ball screw, T, is the input torque
of the ball screw, Ty is the frictional moment generated by
the bearing preload, 7, is the transmission efficiency of
the bearing, 7, is the transmission efficiency of the ball
screw, and T is the output torque of the ball screw.

The output torque of the ball screw can be calculated as

Eq. (5):

Tsm

L,-F,

2n ©)
where L, is the lead of the ball screw, and F} is the load
force of the slide plate.

The load force Fi includes the gravity of the sliding
plate tool post transmission module, inertial force,
friction force of the guide rail, and cutting component
force in the feed direction, which can be expressed as

T =

dr (6)
M=M,+M+M+M+M,,

where M, My, M;, My, M., and M, are the masses of the

machining unit, slide plate, tool post support plate, tool

post shell, main gearbox, and additional components,

respectively, Fr is the friction force between the slide

dv.
{Ft:M +sgn(V.))Mg+ Fi+F,,

plate and the vertical guide rail, F, is the cutting force on
the sliding plate, g is the gravitational acceleration, V; is
the axial feed speed of the moving components along the
Z axis, and V; = Ly wy,/(2T).

An integrated model of friction is developed to
accurately describe the friction of the sliding plate
moving along the Z axis, which can be expressed as

Fi=fo+ fesgn(Vo) = Vo + pe [Flsgn(Vo),  (7)
where f; is the Coulomb friction force, f, is the viscous
friction force, Fy is the normal force on the guide rail,
sgn(+) is the symbolic function, y. is the Coulomb friction
coefficient, and u, is the viscous friction coefficient.

The load force on the guide rail is related to many
factors, such as the configuration method (horizontal,
vertical or oblique), the center of gravity and the force
point of the sliding plate, its load-bearing components,
and the inertial force at the start and stop. The normal
load on the linear motion guide of the system can be
expressed as

1 dv,

Fy :Z{(‘“ d—;)[Mhll + (M + M),

+MCIS+Mal4] +FCZZS}S (8)

where a is the distance between the two sliders, /; is the
distance between the barycenters of the slide plate and the
axis of the ball screw, [/, is the distance between the
barycenters of the tool post and the axis of the ball screw,
I3 is the distance between the barycenters of the main
gearbox and the axis of the ball screw, /4 is the distance
between the barycenters of the additional component and
the axis of the ball screw, and /5 is the distance between
the barycenters of the hob and the axis of the ball screw.

2.3 Comprehensive energy consumption function

The efficiency of the motor under any working condition
is the ratio of output power to input power, which can be
expressed as Eq. (9) [23]:

Po-[_ Po-i P _N,"Ti 9
P Py +P.. " 9550’ ©
where n(i) is the motor efficiency under working
condition i, P,.; is the motor output power under working
condition i, Py; is the motor input power under working
condition #, N; is the motor speed under working
condition i, T; is the motor output torque under working
condition 7, and Ploss; 1S the motor loss power under
working condition i, which mainly includes copper loss
power Pcy;, eddy current loss power P.;, hysteresis loss
power Py ;, mechanical loss power Py,.;, and additional
loss power Pyg.,.

The peak loss power of the motor and its every part is
calculated as Eq. (10) [27]:

n(@@) =
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2
Ploss = ghtrAs

PCu = 0-59Ploss’
Pc = Ph :O'llploss,

(10)

where Py 1s the peak loss power of the motor, Pcy is the

peak copper loss power, P, is the peak eddy current loss
power, Py, is the peak hysteresis loss power, ¢ is the limit
value of temperature rise, 4 is the surface area of the
motor core, and 4 is the heat dissipation coefficient.

The motor efficiency under working condition i is
computed as Eq. (11):

Po—i

P 2 N 2 N , N;<ny,
Poi+1.064 [( e ) Pe,+ (—) P+ —Py+1.11x 105Ni°‘7PN]
() Po—i i1 max nn nyn
)= _
! Poi+PeyitPei+ Pri+Prit Py, P,
2 N\%6 ) N; > ny,
P,;+1.064 [( aal ) P, +(—") Py+P.+1.11x 105N,.°~7PN]
Ny

where ny is the rated speed of the motor, Pp,y is the peak
power, and Py is the rated power.
The comprehensive energy model can be established by

max

(11)

analyzing the dynamic equations of the machining unit,
as shown in Eq. (12):

Pl'ﬂ Psm
P=—+
nm nsm
1
= (Mowm + Ba)i1 + 18.2a/7tm1'7520'27ag'8lfzo'ﬁsvgo'%Kl K2K3ngm)
M
1 d sm d sm
+— {Znng n + 21BNy + JIL
Ny dr dt
1 dwsm Lb Lb da)sm Lb
- .]g +T+ M_ + VZM +Fcz+ P sm
771{ o dr ° 27117,377[{ 2n dt sgn(V2) Mg Hon®
(¢ L d sm
+ B g 22 S0V (Mt + (Mo+ M) L+ ML+ ML+ Fo b b4 L (12)
2a 2n dt

where 7y, is the main motor efficiency during operation,
Tsm 1 the servo motor efficiency during operation, and P
is the power of the machining unit.

The comprehensive energy consumption model can be
established through the integration of the power model of
the machining unit, which can be expressed as Eq. (13):

E= L P, (13)

where E is the energy consumption of the machining unit.

3 Optimization model of the machining
unit

To clearly explain the integrated optimization design
method of the machining unit of hobbing machine tool
for energy saving, this paper discusses the comprehensive
energy consumption modeling and optimization method
of the machining unit by taking a YS3118CNCS5 hobbing
machine tool as an example. The CNC hobbing machine

tool and its machining unit are shown in Fig. 3. The main
technical data of the machine tool and gear are shown in
Table 1. The parameters used for the calculation of the
energy consumption in the example are given in Table 2.

The optimization objectives and variables of the
machining unit are determined in Section 3.1, followed
by the surrogate model for the tool displacement and tool
post pallet mass in Section 3.2. The integrated optimiza-
tion model is built in Section 3.3.

3.1 Determination of the optimization objectives and
variables

3.1.1 Optimization objectives

As one of the most important parts of the hobbing
machine tool, the machining unit is the main energy-
consuming component of the machine tool. The energy

consumption of the machining unit, which is expressed in
Eq. (13), is determined as one optimization objective.
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Fig. 3 ' YS3118CNCS5 hobbing machine tool and its machining unit.

Table 1 Main technical parameters of the machine tool and gear

Parameter Value
Maximum workpiece diameter 180 mm
Maximum processing modulus 4 mm
Maximum axial stroke (Z axis) 285 mm
Diameter of the working table 190 mm
Maximum spindle speed (B axis) 1000 r/min

Total mass of the machine tool 8600 kg

Gear material AISI 1045 (UNS G10450)
Gear hardness 180 HB

Gear helical angle 20°

The machining unit directly drives the hob to rotate, so
the parameters of the machining unit directly affect the
maximum offset of the tool during the machining process.
In this paper, the maximum offset of the tool is
represented by the moving distance of the hob center
point, which is called the tool displacement, as shown in
Fig. 4. The tool displacement measures the machining
accuracy and error of the machining unit, and is
determined as another optimization objective.

3.1.2  Optimization variables

In accordance with the analysis in Section 2, the rated
power of the main motor (Py;), the peak power of the
main motor (Ppay;), the rated speed of the main motor
(nn1), the rated power of the servo motor (Py3), the peak
power of the servo motor (Ppax2), and the rated speed of
the servo motor (nn) are selected as the optimization
variables.

Some structures of the tool post support plate are
assembled with other components, and the dimensional
parameters between them need to be matched with each
other, including the diameters of some holes and the
overall dimension, so these structure parameters cannot
be changed. The parameters of the tool post support plate
that can be adjusted, such as xj, x», x3, x4, and xs, are
selected as the optimization variables, as shown in Fig. 5.

Table 2 Parameters used for the calculation of energy consumption

Equation Parameter Value
Eq. (1) My 198.54 N'm
B 0.3
a 0.2
Eq. (2) m 20 mm
K 1
K> 1.05
K; 1.11
dn 290 mm
Eq. (3) Jsm 4x1074 kg'm?
Bsm 0.12
Eq. (4) Ji 3.287x1073 kg'm?2
Ty 5N'm
o 0.98
uz 0.9
m 0.99
Eq. (5) Ly, 4 mm
Eq. (6) My 100 kg
My 200 kg
M, 150 kg
M, 50 kg
Eq. (7) Hy 0.3
U 0.3
Eq. (8) a 0.7m
L 0.05 m
b 0.2m
; 0271 m
Iy 0.235m
s 0.221 m
Eq. (10) h 50
t 40 °C
A 0.2435 m?
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3.2 Optimization objective function

In this section, the simulation experiment based on Latin
hypercube sampling (LHS) is designed, and the surrogate
models of the tool post support plate mass (M;) and tool
displacement (6) are established on the basis of
experimental data. The surrogate model of ¢ is selected as
the objective function of the tool displacement. The
surrogate model of M; is used in the comprehensive
energy consumption function to calculate the objective of
the energy consumption.

\

& e v
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Sy i

Fig.4 Schematic of tool displacement of the hobbing machine
tool.

3.2.1 Simulation experiment design

LHS method is used to design the simulation experiment
for obtaining the sample point data of 60 sets of the
structure parameters of the tool post support plate [28].
The distribution of sample point data is shown in Fig. 5.
The sample points of the design variables are evenly
distributed in the design space and have good
characteristics of filling and balance.

On the basis of each group of the design variables of
the tool post support plate shown in Fig. 6, the
corresponding 3D model of the hobbing machine tool is
established on Solidworks software. The 3D model is

Fig. 5 Tool post support plate of the machining unit.
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Fig. 6 Distribution of sample points of the design variables in the LHS experiment. DoE: design of experiment.
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imported to ANSYS Workbench software to build a finite
element model.

The static analysis of the tool post support plate is
conducted by using the rigid—flexible coupling method to
obtain the tool displacement affected by the deformation
of the tool holder pallet. In the simulation analysis, the
tool post support plate is treated with flexibility, and the
remaining components are treated with rigidity to obtain
the finite element model of the hobbing machine tool, as
shown in Fig. 7.

The original mass of the hobbing machine tool is
6779.8 kg, the original volume is 9.6854x108 mm?3, and
the material is structural steel in ANSYS Workbench.
The mesh shape of the machining unit is tetrahedron, the
mesh size is 30 mm, the number of meshes is 12333, and
the number of nodes is 20360. The direction of gravity is
the Y positive direction. The value and direction of the
load are —2027 N in the X direction, 13990 N in the Y
direction, and 3279 N in the Z direction.

The data of the design variables obtained by the LHS
experiment and the data of M; and 6 computed by the
finite element model are shown in Table3. The
descriptive statistics of the dataset of the LHS experiment
are described in Table 4.

3.2.2  Surrogate model establishment

A comparative study of three modeling methods, namely
Kriging, RBF, and RSM, is conducted to determine the

Table 3 Dataset of the LHS experiment

suitable modeling method for the optimization objectives.
The three methods are commonly used to establish
surrogate models [29].

RSM is a traditional fitting method to obtain the
response value corresponding to the level of each factor
by regression fitting and response surface and contour
line drawing, and the optimal response values can be
predicted. It is suitable for problems with a small amount

0.00

500.00
250.00 750.00

1000.00

/mm

Fig. 7 Finite element model of the hobbing machine tool.

Design variable

Simulation value

Experiment No.

X1/mm Xo/mm X3/mm X4/mm Xs/mm My/kg 6/(10~4 mm)
1 303.91 100.33 56.50 64.65 156.33 216.5745 4.263
2 316.75 121.00 64.17 31.75 186.33 216.4166 3.948
3 281.75 119.00 65.83 46.45 152.33 215.4793 4.167
58 326.08 131.00 65.50 66.05 151.00 208.8849 4.732
59 308.58 120.33 68.50 34.55 173.00 216.0139 4.041
60 347.08 127.67 55.17 31.05 175.00 214.5871 3.942

Table 4 Descriptive statistics of the dataset of the LHS experiment. The number of samples for each parameter was 60

Design variable

Simulation value

Value type
X1/mm Xo/mm X3/mm X4/mm Xs/mm M/kg 8/(10~4 mm)

Mean 315.00 120.00 60.00 51.00 170.00 213.9898 4237
Standard deviation 20.20 11.55 5.77 12.12 11.55 3.0322 0.257
Minimum 280.58 100.33 50.17 30.35 150.33 208.6802 3.680
Ist quartile 297.79 110.17 55.09 40.68 160.17 211.7175 4.048
Median 315.00 120.00 60.00 51.00 170.00 214.1703 4.235
3rd quartile 33221 129.84 64.92 61.33 179.84 215.8750 4.443
Maximum 349.42 139.67 69.83 71.65 189.67 221.3104 4.730
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of data. The common second-order polynomial of RSM
can be expressed as

y:9:§0+2ffxi+ZZfijxixj+Z X (14)
i=1 =1 j>i i=1
where ¥ is the fitting expression of y, &, &, and &; are
undetermined coefficients of the RSM model, and x; and
x; are the sample points.

RBF is a modeling method of surrogate models that
combines a series of precise interpolation methods to
generate a smooth surface from a large number of data
points to predict random processes based on basis
functions. It has strong generalization and multidimen-
sional nonlinear mapping ability [30]. The RBF model
can be formulated as

y=y=;wix<||x,-—x||>+f(x), s

X = (-x19-x21 ---’xn)$
where @; is the adaptability weight coefficient, «(-) is the
RBF, ||-|| is the Euclidean norm, y is the center of «(+), €(+)
is the linear polynomial function, and x is the sample data
set.
Kriging is suitable for fitting and modeling nonlinear
problems [31]. The Kriging model can be denoted as

y=¢x)+0(x),
{ cov [G) (x“'), x(f>)] - = [E (x‘”, xu))] ’

where ¢(+) is the global prediction polynomial, ®(-) is the
random error and its mean is zero, 42 is the variance of
®(-), and Z(+) is the correlation function. In this work, the
Gaussian function is used as the correlation function, as
shown in Eq. (17):

(16)

m

o (x(i),x<j)) - l_[ exp (_ﬂk”x;j)

k=1

a2
_xij)H )’ (17)
where §; is the related parameter determined by

[ IRMSE [ IMAE [I»

Lot 0.9870 0.9808 0.9559
: Zek
8 0.8078
208F s
=
g
206F 0551 0.5662
Y 0.4802
2041 03172
s |0.260
[_‘

02t

0 —
RSM RBF Kriging

(@)

maximum likelihood estimation.

The mean absolute error (MAE), root mean square
error (RMSE), and R-square (R2) are taken to evaluate the
accuracy of the surrogate models. The smaller the value
of MAE and RMSE, the closer the predicted value to the
observed value. The value range of R? is between 0 and 1.
The closer the value of R? is to 1, the higher the
prediction accuracy of the model. The expressions of
these three indicators are shown as

MAE:i |Vi_V? 7
i=1 s

N,

N, ( _ *)2
RMSE = Zu
i=1 N; (18)
N,
_ZI(V,»—Y?Y
[ P —
;(yi_i}i)z

where N; is the number of samples, y; is the ith observed
value, y; is the ith predicted value, and 7, is the mean
value of the ith observed value.

In the LHS experiment, 60 sets of data are randomly
divided into two groups. The 50 sets of data are defined
as the training set, and the remaining 10 sets of data are
defined as the test set. Six surrogate models of M, and ¢
are established by the RSM, RBF, and kriging methods
based on the training set. The accuracy and extensiveness
of the six surrogate models are tested.

The test results of the surrogate models are shown in
Fig. 8. The results indicate that M, adopts the RSM
method with the highest accuracy, and 6 adopts the RBF
method with higher accuracy. Therefore, RSM is selected
to build the surrogate model of M, and the RBF is chosen
to build the surrogate model of 6.

The surrogate model of M; is a multiple quadratic
regression equation based on RSM, as shown below:

[ JRMSE [ IMAE []R?

Lok 0.98600 0.98950 0.98180
< 0.8

(5]

£

S

2 0.6

3

E 04F

021 0.05622
: 0.03412 0.04205
0.02714 0.02356 0.0309]
0
RSM RBF Kriging

(b)

Fig. 8 Test results of the surrogate models of (a) tool post support plate mass and (b) tool displacement.
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RSM(M,) =& +&x +Ex, +"’+§55x§

a, a, as ay ds

ap dp a3 4y Ags o
_ 0 an an au ax *
=6t 0 0 ay au ass j?
0 0 0 au as x4
0 0 0 0 asl ™
where & =286.243, &, =
-0.026 -0.469 0.099 -0.395 —-0.061
23x10° 1.1x10™* 1.6x107° 55x10™" 1.2x107

0 -7.x107 25x107™" =54%x10™*-2.6x10™*

0 0 -3.0x107 8.7x107 -5.1x107°|"
0 0 0 -1.9%107°-7.4x 107
0 0 0 0 -1.4x10™

wsOXI:[—l.%xlO’g 2.63x107 1.11x10°*
T= (2.07 %107, 6.98x 107, 1.83x 10, 1.74x 107, 3.52x 10%, 6.61 x 10*5)

3.3 Integrated optimization model
The constraints of the processing are analyzed, and the
integrated optimization model of the machining unit is
established to ensure that the hobbing machine tool can
still meet the processing requirements after optimization.
The processing parameters of gear hobbing directly
affect the machining capacity and efficiency [32]. The
processing parameters corresponding to the optimized
motor parameters, including the axial feed of hob, the hob
speed, and the depth of cut, should be within the
reasonable range allowed by normal machining to ensure
the machining capacity and efficiency of gear hobbing, as
shown in

.fzmin < f; < f;maxy
ngmmin < ngm < ngmmaxs

2D

apmin < ap < apmax-

The total power consumed by the machine tool cutting
must be within the range that the motor can provide, that
is, the cutting power must be less than the maximum
power of the motor, as shown in

18.2 m1.7520.27ag81f;165 V(C)Js Kl K2K3

m dh
During the acceleration period of the main motor and
servo motor of the gear hobbing machine tool, the
maximum rotational power should not exceed the rated
power of the motor, as shown in

< Pmaxl- (22)

PSA = PSR+JS*(I*CO* < PN,
. _ 27 foa
- T

Dia
2nn* N 21 fgal”
60 Dita

a
(23)

*

>

£ 0 0 0 0
XX, X3 0 0O 0 (19)
XiXs XoX; X3 0 0 |=&+E&s X5
XiXy XXy Xxaxy  x; 0
XiXs  XpXs  X3Xs  XyXs X2

The surrogate model of § is an RBF neural network,
which is a three-layer neural network, including an input
layer, a hidden layer, and an output layer. The key
parameters of the RBF neural network are the synaptic
weight matrix @sox; and the output threshold vector T, as
shown in

174%10° 3.52%10° 6.61 %107 ]T,
(20)

T

[
where Psa is the motor acceleration power, Psr is the
motor shaft rotation power, J;* is the moment of inertia
equivalent to the motor shaft of the transmission system,
p is the number of pole pairs of the motor, " is the motor
angular acceleration, o is the angular velocity of the
motor, n* is the initial speed before the motor is
accelerated, fga is the basic frequency of the inverter, 5
is the acceleration time of the inverter, and ¢* is the
duration of the rotation acceleration.

The natural frequency can well represent the dynamic
characteristics of the machine tool, so the optimized
frequency of the machine tool needs to meet the
constraint shown in

fiz Al (24)
where f; is the ith order natural frequency of the machine
tool after optimization, [fj] is the ith order natural
frequency before optimization, and i = 1,2,...,6.

On the basis of the comprehensive energy consumption
function and the surrogate model establishment, the
optimization objective of the energy consumption E is
obtained by inputting the surrogate model of M, into the
energy consumption function, and the optimization
objective of the tool displacement ¢ is obtained by the
surrogate model of . The optimization variables are the
11 parameters of the structure and the motors.

An integrated optimization model is established, as
shown in

minF (A, A,) = (min E(A;,A,),min §(A,)),
Ay = (Pnis Praxis it Pros Proaxas x2) »
Ay = (X1, X2, X3, X4, X5)
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ﬂmin < ‘fz < f;max’

ngmmin < ngm < ngmmax’
apmin < ap < apmaxa

St 1 8.2m1'75Z°'27ag'8' fZO.()Sv(C)]GKl K2K3 (25)
dhﬂm =X £ max1»
Pop = P+ J. @’ 0" <P,

fizf]-

4 Optimization algorithm and result
analysis

The multiobjective particle swarm optimization (MOPSO)
algorithm is used to optimize the integrated optimization
model of the machining unit of the hobbing machine tool.
The optimization results are analyzed and discussed.

4.1 Optimization algorithm

The MOPSO algorithm has the advantages of fast conver-
gence speed, good convergence effect, and easy realiza-
tion [33], which is suitable to address the multiobjective
optimization problem in this paper. The parameters of the
MOPSO algorithm are shown in Table 5. The main
program of the algorithm is provided as follows.

Procedure: the MOPSO algorithm

1. For each particle i
2. Initialize Dim-dimensional velocity V7 and position Xi
for particle i under the constraint
Calculate the fitness values £, ¢ for particle i and set pBesti = Xi
Initial screening noninferior solutions to archive
. End for

3
4
5
6. For j =1 to Mit do
7
8
9

For i=1 to Nip do
Update velocity Vi and position X7 for particle i
Calculate the fitness values £ and ¢ for particle i
10.  If E(Xi) < E(pBesti) and 0(Xi) < d(pBesti)
lL. pBesti = Xi
12.  Endif
13. End for
14. Update noninferior solutions to archive
15. End for
16. Output noninferior solution set archive
End

4.2 Optimization result and discussion

4.2.1 Optimization result

The simulation and computation are implemented on a
computer workstation with Intel Core 19-10900K CPU at
3.70 GHz and 64 GB RAM. Three Pareto solutions are
selected from the two ends and the middle of the Pareto
frontier, as shown in Fig. 9. The details of these solution
sets are shown in Table 6.

The results show that the energy consumption of the
first solution is the smallest, and the tool displacement
meets the constraint. For practical machining, the machi-
ning accuracy needs to symbolize the process require-
ments, and higher accuracy does indicate better results.
Under the condition of meeting the machining accuracy,
the smaller the energy consumption, the better. Hence the
first solution is selected as the final optimal solution.

4.2.2 Discussion of the result

The energy consumption and tool displacement are
optimized as the single objective to discuss the
optimization effect of the machining unit. The simulation
analysis results are illustrated in Fig. 10, and the
comparison of the results is shown in Table 7.

The optimization results indicate that when the energy
consumption is taken as the single objective, the energy
consumption decreases from 3.122x10% to 1.661x10° J,
which is a 46.8% reduction, but the tool displacement is
larger than before. When the tool displacement is taken as
the single objective, the tool displacement is reduced
from 0.00039290 to 0.00034553 mm, which is a 12.1%
reduction, but the energy consumption is larger than
before. When taking the energy consumption and tool
displacement as optimization objectives, the energy

Table 5 Relevant parameters of the MOPSO

Algorithm setting Symbol Value
Particle dimension Dim 11
Initial population number Nip 100
Maximum iteration number Mit 300
Learning factor cl 2
(3 2
Inertia weight Wini 0.9
@end 0.4
4
3.475 110
o Solution 1
3.470
°
3.465
g .
K ° Solution 2
= o
3.460 e
e
oo Solution 3
)
3.455
oo
°
3.450
23 24 25 26 27 28 29 30
/] x10°

Fig.9 Pareto frontier of the optimization results of the
MOPSO algorithm.
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Table 6 Solutions selected from the Pareto frontier. They have the same parameters, i.e., Pn; = 3000 W, nx; = 800 r/min, Pnp = 1500 W,

x2 = 100 mm, x3 = 50 mm, and x4 = 30 mm

13

Optimization variable

Pareto solution Main motor parameter

Servo motor parameter

Optimization objective
Structure parameter

Pmaxl/W PmaxZ/W

nno/(r-min1)

x1/mm xs/mm E/10°)) 8/(104 mm)

1 6552
6052
3 4930

9321
11892
11855

540
500
500

288
280
280

171
165
152

2.342
2.465
2.907

3.4711
3.4582
3.4518

0.00

B: static structural
Figure

Type: total deformation
Unit: mm

Time: 1

I 0.0003929 Max

0.0003929 Min

500.00 1000.00
250.00 750.00 /mm

Fig. 10 Tool displacement simulation result of the original value.

Table 7 Comparison of variables and objectives before and after the optimization

Optimization variable

Optimization type Main motor parameter

Servo motor parameter

Optimization objective
Structure parameter

Pnt/W  Prgt/W nni/(rmin™!)

Prao/W  Poao/W nno/(rmin!) - x/mm xp/mm x3/mm xs/mm xs/mm

EN10°))  6/(10 mm)

Original value 5000 8000 1000 1800 6000
min(E, J) 3000 6552 800 1500 9321
min(d) 5000 8000 1000 1800 6000
min(E) 3000 11000 800 1500 10,000

700 293 112 50 60 160 3.122 3.9290
540 288 100 50 30 171 2.342 3.4711
700 280 100 50 30 150 3.123 3.4553
500 350 140 70 72 190 1.661 4.3719

consumption decreases from 3.122x10° to 2.342x10°7 J
(i.e., 25.0% reduction), and the tool displacement is
reduced from 0.00039290 to 0.00034711 mm (i.e., 11.7%
reduction).

In summary, the proposed integrated optimization
method can achieve energy saving while optimizing tool
displacement. The feasibility of the integrated optimiza-
tion method is verified.

Sensitivity analysis is a type of analysis that is intended
to describe the relative sensitivity of a model’s outputs to
each of its input variables/parameters [34]. It can rank the
importance of input factors at all levels [35]. A sensitivity
analysis is conducted to analyze the degree of influence
of different optimization variables on energy
consumption and displacement. The results of the
sensitivity of each variable are shown in Fig. 11.

As shown in Fig. 11(a), the sensitivity of Pxi, Pn2, BN1,
and ny; to energy consumption is greater than 0, which
indicates that the energy consumption is positively

correlated with the four variables. When the motor is
working normally, its power is the rated power. The
higher the rated power of the motor (Pn; and Pyp), the
higher the power and energy consumption of the motor in
normal operation, so the higher the energy consumption
of the machining unit. Py; has a greater influence on
energy consumption than P, because the rated power of
the main motor is higher than that of the servo motor. The
higher the rated speed of the motor (nn; and nyp), the
higher its rated power, so the higher the energy
consumption. The influence of nn; and nny on energy
consumption is similar because the speed of the main
motor is close to that of the servo motor.

The sensitivity of Pyaxi, Pmax2, X1, X2, X3, X4, and xs to
energy consumption is smaller than 0, which indicates
that the energy consumption is negatively correlated with
the seven variables. When the machining unit starts, the
corresponding motor will run at the peak power (Ppaxi,
Prax2). When the running speed is reached, the motor will
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Fig. 11 Sensitivity analysis of (a) energy consumption and (b) tool displacement.

return to the rated power. When the peak power of the
motor is higher, the starting time of the machining unit
will be shorter, the energy consumption in the starting
phase will be smaller, and the total energy consumption
will be smaller. As shown in Fig. 5, the larger the
structure parameters (xj, x», X3, X4, xs) of the tool post
support plate, the larger the hollowed volume and the
smaller the actual volume, that is, the smaller the mass of
the tool post support plate. Thus, energy consumption
decreases.

The motor parameters barely affect the tool displace-
ment, so the sensitivity of xj, x2, X3, x4, and x5 is analyzed
in Fig. 11(b). The sensitivity is greater than 0, which
indicates that the tool displacement is positively corre-
lated with the five variables. In accordance with the
previous analysis, the increase in the structure parameters
of the tool post support plate increases the hollowed
volume and decreases the mass, which can reduce the
stiffness and stability of the tool post support plate, so the
tool displacement increases.

The 3D surface plots of each group of the variables are
drawn to analyze the influence trend of the optimization
variables on the optimization objectives, as shown in
Figs. 12 and 13, and each group contains two variables.

As shown in Figs. 12(a) and 12(b), the energy consump-
tion increases with the increase in Pyj, whereas the
energy consumption decreases with the increase in Pp,yg
and Ppax2. In accordance with the shape of the surface,
Prax1 has more influence on energy consumption than
Pn1 and Ppaxo. Figure 12(c) shows that the increase in ny
and nn, causes the increase in energy consumption, and
the flat surface indicates that they have a close degree of
influence on energy consumption. Figures 12(d)-12(f)
show that the energy consumption decreases with the
increase in xi, x», X3, X4, and xs. The graph in the figure is
approximated as a plane, which indicates that the
influence of the five structure parameters on the energy
consumption is close.

As shown in Fig. 13, the tool displacement increases

with the increase in xj, x», X3, x4, and x5, which is in
accordance with the results of the sensitivity analysis. x;
has a more remarkable effect on the tool displacement
than x5 by comparing Figs. 13(a) and 13(b). Figure 13(c)
illustrates that the influence of x; on the tool displacement
is greater than that of xs. Similarly, Fig. 13(d) shows that
the influence of x4 on the tool displacement is greater than
that of x3.

In accordance with the above analysis, the patterns of
influence of the optimization variables on the objectives
are consistent with the conclusions obtained from the
sensitivity analysis. The optimization of the motor
parameters has great importance on the energy saving of
the machining unit.

Although the influence of the single structure parame-
ters on the tool displacement is positive, an appropriate
combination of the structure parameters can reduce the
tool displacement while reducing energy consumption. In
the optimization design of the machining unit, the
influence of variables on objectives is intercoupling, so
selecting the optimal combination of variables based on
design requirements is critical. The machine tool can be
as energy efficient as possible while ensuring machining
accuracy by reasonably selecting the combination of
parameters.

5 Conclusions

An integrated optimization method of the machining unit
of the hobbing machine tool is proposed in this paper to
achieve the energy saving design while maintaining
machining accuracy. The energy consumption function of
the machining unit of a hobbing machine tool is estab-
lished, the energy consumption and tool displacement are
taken as the optimization objectives, and the appropriate
methods are chosen to build the surrogate models. An
energy saving design method for the machining unit that
comprehensively considers the energy consumption and
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tool displacement is proposed.

The results show that the integrated optimization design
method of the machining unit achieves energy saving and
reduces the tool displacement. The energy consumption is
reduced by 7.80x108 J, and the tool displacement is
reduced by 4.579x1075 mm through the multiobjective
optimization. The energy consumption and tool

Energy saving design of machine tool with integrated optimization
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Influence trend of the variables on the energy consumption: (a) Pmax1 and Pni, (b) Pmax1 and Prax2 ,(¢) nn1 and nxa, (d) x4 and xs,

displacement of the optimized machining unit decrease by
25.0% and 11.7% from the original values, respectively.
The sensitivity of the optimization variables on the
objectives is analyzed. The values of sensitivity indicate
that PNy and Ppax; have the greatest influence on the
energy consumption, and x4 has the greatest influence on
tool displacement. The influence trend of the optimization
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Fig. 13 Influence trend of the variables on the tool displacement. (a) x; and xs, (b) x; and x, (¢) x5 and x», and (d) x4 and x3.

variables on the objectives is discussed.

Adaptive sequential sampling will be used to improve
the accuracy of surrogate models in future research. The
energy consumption function for the whole machine tool
will be established.

Nomenclature

a Distance between the two sliders

ap Cut depth

A Surface area of the motor core

B Equivalent viscous friction damping coefficient
Bsm Servo motor damping coefficient

cl, ¢ Learning factors

dp Hob outer diameter

Dim Particle dimension

E Energy consumption of the machining unit

Ey Kinetic energy of mechanical transmission components
fBA Basic frequency of the inverter

fe Coulomb friction force

fi
71

N
fz

']15 ‘]Sa Jsm

A

Ky, K>, K3

I

ith order natural frequency of the machine tool after
optimization

ith order natural frequency before optimization

Viscous friction force

Axial feed of the hob

Cutting force

Cutting force on the slide plate

Friction force between the sliding plate and the vertical
guide rail

Normal force on the guide rail

Slide plate load force

Gravitational acceleration

Heat dissipation coefficient

Moments of inertia of the coupling, ball screw, and servo
motor, respectively

Moment of inertia equivalent to the motor shaft of the
transmission system

Coefficients associated with the materials, hardness, and
helical angle of the gear, respectively

Distance between the barycenters of the slide plate and the

axis of the ball screw



Ly

m

M, My, Mc, M,
My, My

Mo

Mit

n*

Ngm

nN

N1, IN2
nsm

N;

Nip

Pe.;
Py
P
Pross
Pross-i
P
Prax
Praxt, Pmax2
Prec
Prno
Py
Pn
Pni
Pn2
Py
P
Psa
Psg
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Distance between the barycenters of the tool post and the

axis of the ball screw
Distance between the barycenters of the main gearbox and

the axis of the ball screw

Distance between the barycenters of the additional

component and the axis of the ball screw
Distance between the barycenters of the hob and the axis

of the ball screw
Ball screw lead

Normal modulus of the hob
Masses of the machining unit, additional components,
main gearbox, slide plate, tool post shell, and tool post

support plate, respectively
Equivalent nonload Coulomb friction moment

Maximum iteration number

Initial speed before the motor is accelerated

Hob speed

Rated speed of the motor

Rated speeds of the main and servo motors, respectively
Servo motor speed

Motor speed under working condition i

Initial population number

Number of samples

Number of pole pairs of the motor

Power of the machining unit

Additional loss power under working condition i
Cutting power

Peak copper loss power

Copper loss power under working condition 7
Peak eddy current loss power

Eddy current loss power under working condition 7
Peak hysteresis loss power

Hysteresis loss power under working condition i
Peak loss power of the motor

Motor loss power under working condition ¢
Mechanical loss power under working condition 7
Peak power of the motor

Peak powers of the main and servo motors, respectively
Mechanical loss power

Main motor output power

Motor input power under working condition i
Rated power

Rated power of the main motor

Rated power of the servo motor

Servo motor output power

Motor output power under working condition i.
Motor acceleration power

Motor shaft rotation power

sgn(*)

Xiy Xj
X1, X2, X3, X4, X5

¥
z

a

o
Vi

¥i

Vi

0
<)
()
()
b
TTm> Msm

Mz

(@)

HMc

My

X

o*

Wends Wini
On

WO,

o, & &
o)
hz

w;

Symbolic function

Operation time of the machine tool.

Duration of the rotation acceleration

Acceleration time of the inverter

Limit value of temperature rise

Frictional moment generated by the bearing preload
Motor output torque under working condition i
Coupling output torque

Servo motor output torque

Output torque of the ball screw

Input torque of the ball screw

Output threshold vector

Cutting speed

Axial feed speed of the moving components along the Z
axis

Sample data set

Sample points

Structure parameters of the tool post support plate
Fitting expression of y

Tooth number of the workpiece

Load factor of the mechanical transmission system
Motor angular acceleration

ith observed value

ith predicted value

Mean value of the ith observed value

Tool displacement

Global prediction polynomial

Random error

Radial basis function

Bearing transmission efficiency

Motor efficiencies of the main and servo motors,

respectively
Ball screw transmission efficiency

Motor efficiency under working condition i

Coulomb friction coefficient

Viscous friction coefficient

Center of «(-)

Angular velocity of the motor

Final and initial values of the inertia weight, respectively
Angular velocity of the spindle motor shaft

Servo motor output angular velocity

Undetermined coefficients of the RSM model

Linear polynomial function

Variance of O(-)

Correlation function

Related parameter determined by the maximum likelihood

estimation
Adaptability weight coefficient
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Ws0x] Synaptic weight matrix

[I]] Euclidean norm
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