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Abstract The fault diagnosis of bearings is crucial in
ensuring the reliability of rotating machinery. Deep neural
networks have provided unprecedented opportunities to
condition monitoring from a new perspective due to the
powerful ability in learning fault-related knowledge.
However, the inexplicability and low generalization ability
of fault diagnosis models still bar them from the
application. To address this issue, this paper explores a
decision-tree-structured neural network, that is, the deep
convolutional tree-inspired network (DCTN), for the
hierarchical fault diagnosis of bearings. The proposed
model effectively integrates the advantages of
convolutional neural network (CNN) and decision tree
methods by rebuilding the output decision layer of CNN
according to the hierarchical structural characteristics of
the decision tree, which is by no means a simple
combination of the two models. The proposed DCTN
model has unique advantages in 1) the hierarchical
structure that can support more accuracy and
comprehensive fault diagnosis, 2) the better interpretability
of the model output with hierarchical decision making, and
3) more powerful generalization capabilities for the
samples across fault severities. The multiclass fault
diagnosis case and cross-severity fault diagnosis case are
executed on a multicondition aeronautical bearing test rig.
Experimental results can fully demonstrate the feasibility
and superiority of the proposed method.
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1 Introduction

Bearings are widely used in rotating machinery, and their
condition monitoring is crucial to the precision and
reliability of mechanical systems [1]. In recent years, with
the development of sensor technology and information
science, the research of data-driven mechanical fault
diagnosis has developed rapidly. In particular, the
emergence of deep learning (DL) technology makes fault
diagnosis based on deep neural network (DNN) redefine
the most advanced performance [2,3]. Different from the
top—down physics-based fault diagnosis methods, data-
driven methods can resist the effect of environmental
noise and equipment complexity, and update the model in
a timely manner as the monitoring data increase to obtain
more accurate fault recognition performance. Compared
with traditional machine learning methods, DNN has
more powerful data feature extraction capabilities and
less reliance on prior knowledge or hand-made features.
As bottom—up condition monitoring approaches, the DL-
based fault diagnosis methods enjoy an evident advantage
in saving resources and have attracted extensive attention
due to their better effectiveness and robustness.
Researchers tackle data-driven fault diagnosis mainly
for fault type discrimination and fault severity
identification, where the former is to know the fault
location of the components, and the latter tries to analyze
the degradation level related to the physical size of
defects [4,5]. The DL-based fault diagnosis approaches
tend to learn the signal patterns associated with a
particular fault type or severity by DNN methods, e.g.,
autoencoder [6], generative adversarial net [7], recurrent
neural network [8], deep belief network [9], and
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convolutional neural network (CNN) [10]. Generally,
vibration signals, acoustic emission signals, electrical
signals, temperatures, pressures, and sound signals can be
used for condition monitoring and fault diagnosis of
bearings. Among them, vibration signals are widely used
in the fault diagnosis of bearings [11]. According to the
different structures of the networks, the vibration data are
usually transformed into different forms for analysis. For
example, the time domain data or frequency domain data
of the signal are generally used as the input of the
recurrent neural network network, which is more suitable
for the analysis of sequence data; the CNN model is
suitable for processing high-dimensional data and
performs well in analyzing the time-frequency distribu-
tion (TFD) of the signal, such as continuous wavelet
transform (CWT) distribution [12], short-time Fourier
transform distribution [13], and Chirplet transform
[14,15]. More researchers regard the diagnosis problem
as a single-level multiclassification problem and attempt
to achieve higher classification accuracies by designing a
more complex network. Most researchers ignore the logic
of fault diagnosis and only focus on the judgment of fault
type, but not the fault severity associated with the
magnitude of the failure [16]. Few approaches consider
fault types and severities together when transforming the
diagnosis task into a common classification task for
processing, where each fault mode and each fault severity
are treated as a specific label. For example, Zhao et al.
[17] converted the raw signals of bearings into grey
images and directly adopted the CNN model for fault
diagnosis. In the experiment, three fault types and three
fault severities were considered at most, and the fault
diagnosis task was transformed into a common 10-
category classification task for processing. Analogously,
Minhas et al. [18] recognized the different fault types and
severities of bearings as a single-level multiclassification
problem by the complementary ensemble empirical mode
decomposition and support vector machine (SVM)
classifier. Pan et al. [19] proposed a novel symplectic
geometry matrix machine method for the classification of
bearings with different fault types and severities. Wen
et al. [20] adopted a hierarchical CNN model for the
classification of bearings with different fault types and
severities. These explorations are beneficial to obtaining
precise fault recognition no matter which data form or
network structure is used. However, considering the
actual application scenarios faced by fault diagnosis, the
following issues are often overlooked:

a) The logic of fault diagnosis is usually ignored.
Although these models meet the demand of joint
diagnosis of fault types and severities, they exponentially
increase the complexity of the classification task and
require more labeled data as well as complex models for
the expected diagnosis performance. The substantial
increase of classification complexity for these approaches
brings greater challenges to the classification models.
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Moreover, it is not in line with the logical cognition of
experts to mix different fault attributes for identification.

b) Most of the works only consider the input and output
but not the justifiable prediction of the intermediate
process. Although DNN-based fault diagnosis networks
have strong knowledge learning capabilities, explaining
the discriminative details of intermediate decisions is still
difficult, making the diagnosis results provided by DNN
models often difficult to be trusted. The interpretability of
the model has always been recognized as a topic worth
exploring, which is of great importance for fault
diagnosis tasks [21,22].

c¢) Data-driven fault diagnosis methods often have weak
generalization ability for new categories but a strong
dependence on the label information of the samples
[23,24]. However, the fault severity of collected samples
will not be exhaustive in the real case; consequently, the
diagnostic model often fails in dealing with test samples
belonging to unseen fault severity classes. The limitation
of the cross-severity generalization becomes a large
obstacle for existing models to be popularized and
applied in engineering.

The existing research has several useful explorations on
these problems. To deal with the first problem, the
hierarchical diagnosis strategy that identifies the type and
severity has been adopted in several works. However, the
existing methods still stay at acquiring a hierarchical
output by using a hierarchical Softmax classifier [25,26]
rather than the hierarchical decision in the intermediate
stage of the diagnosis models. In our view, a more
effective approach would be to apply hierarchical
decision rules to deal with this problem. The fault type
should be judged first, and then the fault severity
judgment can be made based on the prior knowledge
provided by the fault type judgment. Regarding the
second problem, the interpretability of DL models has
always been continuously explored in various fields and
still a difficult challenge worth numerous studies. An
accepted way to improve the interpretability of the model
is the estimation of the decision uncertainty [27,28]. For
the third problem, the cross-severity identification of
bearing faults is a new subject to the best of our
knowledge. The hierarchical diagnosis framework and
hierarchical decision rules can help the cross-severity
generation of fault type diagnosis for these samples with
unseen fault severities. The effective usage of fault type
knowledge in the training data will greatly support the
decision making of test samples across severities but still
difficult to achieve with existing methods.

To address the mentioned issues, a novel deep
convolutional tree-inspired network (DCTN) is explored
for the hierarchical fault diagnosis of bearings. The
proposed model effectively integrates the advantages of
CNN and decision tree methods by designing an output
decision layer similar to the decision tree structure to
fine-tune the weights of the convolutional layers
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reversely. The signals are converted into TFDs by the
CWT method because the time-domain information is
conducive to fault severity analysis, and the frequency
domain information is more sensitive to different fault
types [29,30]. The CNN-based architecture is used as a
pre-training model. During pre-training, a Softmax
classifier is connected to the backbone CNN. The
powerful feature learning ability of CNN can ensure the
effectiveness of fault-related feature extraction from the
samples. After that, the Softmax classification layer and
the fully-connected layer are replaced by the tree-
structured decision layer to execute the hierarchical fault
diagnosis decision in sequence. The hierarchical
diagnosis helps reduce the task complexity of diagnosis
and improve the accuracy of fault diagnosis. More
importantly, the tree-inspired network designed in this
paper enables the model to diagnose across fault
severities of bearings. The multiclass fault diagnosis case
and cross-severity fault diagnosis case are executed on a
multicondition aero-engine bearing test rig to verify the
feasibility and superiority of the proposed method. Given
the state-of-the-art works in fault diagnosis, the proposed
DCTN-based fault diagnosis approach has unique
advantages in the following aspects:

a) The tree-structured hierarchy is helpful for a more
accurate, comprehensive diagnosis decision-making. The
judgment of the fault type provides a priori knowledge
for fault severity diagnosis, which is beneficial to
improving diagnosis accuracy. The multilevel decision
information with the progressive determination of fault
type and fault severity are more in line with maintenance
cognition in engineering.

b) The interpretability of the model output is explored
through the hierarchy structure. The decision tree model
is one of the most interpretable machine learning
methods, but its weak knowledge learning ability has
always limited its application. The proposed DCTN
model effectively integrates decision tree with the CNN
model and can provide the hierarchy and uncertainties of
decision-making to improve the interpretability of the
model output.

¢) The proposed model has more powerful generali-
zation capabilities for samples with unseen fault severity
categories. The final diagnosis decision of fault attributes
is made from multiple views by the embedded hierar-
chical tree-structured decision layers. The trained model

Input data Convolutional layers

Fig. 1
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can be generalized well for fault type diagnosis even if
the sample has an unseen fault severity category. To our
best knowledge, this paper carries out the first exploration
in cross-severity fault diagnosis of bearings.

The rest of this paper is organized as follows. Section 2
presents the methodologies of the proposed DCTN
model. Section 3 presents the DCTN-based fault
diagnosis approach of bearings. Section 4 shows the two
case studies for the fault diagnosis of aeronautical
bearings and discusses in detail the superiority of the
DCTN method over other related works. Finally, Section
5 presents the conclusions and conceivable future works.

2 Proposed deep convolutional
tree-inspired network

Figure 1 shows the schematic view of the proposed
DCTN model, which mainly consists of three
convolutional layers, one pre-trained fully-connected
layer, and one tree-structured decision layer. The
proposed DCTN model takes CNN as the backbone
network to learn the fault-related features in the TFDs of
bearing signals. A tree-structured decision layer is then
embedded into the pre-trained CNN to replace the fully-
connected layer for fine-tuning. The weights of the fully-
connected layer in the CNN are deduced to the node
attribute representation of the tree-structured decision
layer. Different types of nodes are given corresponding
weights according to the logical relationship in the tree-
structured decision layer. By defining a new supervision
loss function and then fine-tuning the model weights, the
leaf nodes and seed nodes can support the effectiveness
of hierarchical fault diagnosis. The leaf nodes can also
acquire an effective fault classification ability in the
proposed tree-structured decision layer to deal with cross-
severity fault diagnosis tasks, which lays the foundation
for the better generalization of the model.

2.1 Learning the neural backbone of the seed nodes

Fault type discrimination and fault severity identification
have an inherent logical relationship, which the decision
making of the model should also correspond to. The
decision tree model has good interpretability because the
decision of each node has clear physical meanings.

Tree-structured decision layer

Fully-connected layer

Nt/

t

)

iy

r

Schematic view of the proposed deep convolutional tree-inspired network model.
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However, weak knowledge learning ability has greatly
limited its application for a long time [31-33]. Although
decision trees are interpretable and simple to use, they are
prone to overfitting, can be less robust to small changes
in training data, and generally rely on heuristic
algorithms. In recent years, many researchers have made
several attempts to improve the performance of the
decision tree model, such as the random forest model
[34], the deep forest model [35], and several deep
decision tree models [36,37]. These methods optimize the
structure of the decision tree to improve the classification
performance and retain interpretability. However, the
performances of these methods are still not as good as the
state-of-the-art DNN models even in small data sets.

As a feedforward neural network, CNN has shown
strong feature extraction ability in the processing of
sequence, image, and video data. Generally, the basic
structure of a CNN includes two kinds of layers, one of
which is the feature extraction layer. The input of each
neuron is connected to the local receptive field of the
previous layer, and the local features are extracted by the
feature extraction layers. Once the local feature is
extracted, the positional relationship between it and other
features is also determined. The second is the feature
mapping layer, in which each layer is connected with
multiple feature maps, and each feature map corresponds
to a classification plane. With the deepening of
exploration, several studies have found that embedding
the decision tree model into DNN models can better
guarantee the recognition accuracy of the model [38—40].
Hence, the tree-structured decision layer is embedded into
the CNN model for ensuring the performance of
hierarchical fault diagnosis and reinforcing the
interpretability of the model. The constructed DCTN
model takes the convolutional layers as the backbone.
Inspired by the decision tree, a tree-structured decision

Table 1 Layer details of backbone CNN

layer is embedded in the backbone model to provide
hierarchical diagnosis logic and is endowed with the
ability to diagnose across fault severities. To understand
the distribution of embedded features extracted by the
convolutional layers better, the weights of the final fully
connected layer are used to induce the hierarchy and
embedded decision rules.

The constructed CNN neural backbone owns three
convolutional layers and one fully-connected layer. The
convolutional layers can learn the fault-related features
from the TFDs of the signals by model training. The
fully-connected layer can reduce the dimension of the
features learned from the convolutional layers to adapt to
the dimension of the seed nodes in the tree-structured
decision layer. The layer details of the backbone CNN are
shown in Table 1, where N represents the number of
samples, RXR represents the dimension of the TFD, and K
is usually equal to the number of sample categories. The
weight of the model is initialized by pre-training to
guarantee the accuracy of the entire model. During pre-
training, a Softmax classifier is connected to the
backbone CNN. After that, the Softmax classification
layer and the fully-connected layer are replaced by the
tree-structured decision layer for fine-tuning. The Adam
optimization algorithm is used to optimize the model and
speed up the convergence. The cross-entropy function is
used as the loss function in the model pre-training.

The cross-entropy of the prediction loss H(p, q) is

H(p, 9=~ {p(x)logq(x)
+[1=p()]log[1-g()]}, (1
where x is the input features of the Softmax classifier,
p(+) is the probability distribution of the predicted output,
and ¢(-) is the probability distribution of the actual
output.

Layer Set Output shape
Input — NxRxRx1
2D convolution layer Kernel size: 1x1, channel: 16, stride: 1 NXRXRx16
Batch normalization Feature number: 16, eps: 1075 NXRxRx16
ReLU activation - NXRXRx16
2D max pooling layer Kernel size: 2x2 NXR/2XR/2%16
2D convolution layer Kernel size: 3x3, channel: 32, stride: 1 NXR/2XR/2x32
Batch normalization Feature number: 32, eps: 1075 NXR/2XR/2x32
ReLU activation - NxR/2xR/2x32
2D max pooling layer Kernel size: 2x2 NXR/AXR/4x32
2D convolution layer Kernel size: 3x3, channel: 64, stride: 1 NXR/4xR/4%64
Batch normalization Feature number: 64, eps: 1075 NXR/4xXR/4x64
ReLU activation - NXR/4xR/4x64
Adaptive average pooling layer Kernel size: 1x1 Nx1x1x64
Fully-connected layer Batch size: 64x1x1, out features: K, no bias NxK
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2.2 Interpreting the tree-structured decision layer

Inspired by the decision tree model, the sequential
decision of the hierarchical fault diagnosis is carried out
by the tree-structured decision layer. The structure of the
decision sequence is designed according to the underlying
logic of the fault diagnosis task. Two decision hierarchies
are generated, yielding the two main fault diagnosis
levels, namely, fault type and fault severity. Figure 2
shows that the first hierarchy is to determine the fault
type of the input sample to acquire the corresponding
superclass attribute, whereas the second hierarchy is to
determine the fault severity of the input sample to acquire
the corresponding subclass attribute. The parentheses
indicate the calculation method of prediction probability
at this node. The input—output relationship between leaf
nodes and root nodes is not as simple as that in the neural
network.

According to the structure of the decision tree, the
decision nodes in the first decision level are defined as
the leaf nodes, and the decision nodes in the second
decision level are defined as the seed nodes. The number
of leaf nodes is consistent with the number of sample
fault types, whereas the number of seed nodes is
consistent with the number of sample categories K. The
seed nodes correspond to the weights of the fully-
connected layer of the pre-trained backbone CNN. The
weight matrix W € R of the fully-connected layer is
obtained by the back-propagation training with Softmax
classifier. According to the network structure setting in
Table 1, the dimension value L of the sample feature after
convolutional layers should be 64.

In the pre-training stage, distance d; between the feature
and each classification hyperplane is

a2 "E

]
where w; e R is the weight vector of the jth vector in
weight matrix W of the fully-connected layer, and
x e REX! refers to the input feature vector of the tree-
structured decision layer, which is also the output of the

j=1,2, ..., K )

X

v
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final convolutional layer. The multiclassification model
sets a hyperplane for each category and divides the
feature space through multiple hyperplanes. One region
corresponds to one category. Distance d; refers to the
similarity between the test sample and the labeled sample
in the jth hyperplane. The prediction scope z;=w;-x
corresponding to K categories can be acquired by the
fully-connected layer. Then, it is mapped to prediction

probabilities by the Softmax classifier as
. e
¥; = softmax (zj) == ,

2.

=1

A3)

where y; refers to the predicted probability for the jth
category and satisfies

K
Dhi=t )
=1

The weight of seed nodes directly adopts from the pre-
trained fully-connected layer. In this way, the
identification ability of the subclass is equivalent to that
of the pre-trained CNN model, which guarantees the
performance of the model. The corresponding weight sw;
(i=1, 2, or 3) of the ith leaf node is obtained by adding
the weight of its seed nodes. Taking the structure shown
in Fig. 2 as an example, the following relationship can be
obtained:

3
swp = ij,
J=1

SW2 =Wy,

7
SW3 = ij,
j=5
3

Z(swi‘x) =1,
i=1
7

(wj-x)zl.
=1

®)

Input features

SWy Superclass
PN )
()

—
3
S
\
=
=
>,

Fig. 2 Weight propagation of tree-structured decision layer.
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2.3 Fine-tuning with decision loss

Fine-tuning is of great importance to improve the overall
performance of the model. If only the weights obtained
by the pre-training model are used and the weights are
determined according to Eq. (5), the accuracy of the
overall model will be the same as that of the pre-training,
and the advantages of the hierarchical structure cannot be
exerted. The Softmax function at each decision node is
used to generate the corresponding decision probabilities
because probabilities are naturally better interpretable.
Taking the structure in Fig.2 as an example, the
following relation is met after the fine-tuning:

3
3 05500) =1,
J=
W, = swa, (6)
7
3305 a) .
=5

where w’ € R'" refers to the weight vector of the jth tree-
structured  decision layer after fine-tuning. The
classification of the superclass can provide prior
knowledge for the identification of the subclass through
the fine-tuning. The DCTN model designed in this paper
fine-tunes the weights of the backbone model and the
tree-structured decision layer, and performs Softmax
classification on all nodes to make the final fault
diagnosis decision according to the path probabilities. In
detail, the probability of correct prediction for seed nodes
is defined as P (subclass). The probability of correct
prediction of leaf nodes is defined as P (superclass).
Hence, the probability of overall correct prediction of the
model is calculated as

P (£)=P (subclass|superclass) - P (superclass), 7

where P () refers to the path probabilities of the tree-
structured decision layer, ¢ refers to the overall
prediction. The final class prediction is defined as

q (2) = argmaxP({), (8)

where q(@) is the predicted probabilities of the tree-
structured  decision layer. The loss function
H* (p(),q(),p(),q(-)) of the tree-structured decision
layer is calculated based on the cross-entropy function as

H* (p).q(k). p(0).4(?))
K AL K VK
= H(tp 0 fa (), )+ o (@1, e (@), ). ©

where p(k) refers to the true labels of the pre-trained
network, q(lAc) refers to the predicted probabilities of the
pre-trained network, and p(¢) refers to the true labels of
the tree-structured decision layer. The first term on the
right side of the equation represents the same cross-

819

entropy function as the pre-trained network to maintain
the effectiveness of the original training. The second term
is the newly added loss term, which corresponds to all
predictions related to the tree decision path probabilities.
Super parameter o is the weight adjusting the pre-trained
decision and tree-structured decision.

3 Proposed DCTN-based fault diagnosis
approach of bearings

To analyze the ability of multi-fault identification and the
capacity of generalization for the superclasses of the
proposed DCTN-based fault diagnosis approach, two
fault diagnosis tasks, namely, multiclass fault diagnosis
and cross-severity fault diagnosis of aeronautical
bearings, are carried out. Different fault diagnosis
networks are designed corresponding to different tasks,
which are described in detail in Subsections 3.2 and 3.3.

3.1 Aeronautical bearing test rig

The bearing dataset is collected by the Politecnico di
Torino rolling bearing test rig [41], which is shown in
Fig. 3. The aeronautical bearing at the B1 position can be
easily removed from its support, allowing checking the
response of the system when installing bearings with
different fault types and severities. The bearings of the
spindle are grease lubricated, whose temperature is
limited by a liquid refrigeration circuit.

Table 2 shows the serial number of the damaged
bearing, the fault locations and severities, the subclass
labels, and the superclass labels. Among them, the
superclass is determined according to the location of the
fault, marked as N in the table for no fault, I for the inner
ring fault, and R for the outer ring fault. Rockwell tools
are used to produce localized defects on the elements,
resulting in conical indentations on the inner ring or
individual rollers. The set fault size is shown in Table 2.
Given such a small fault severity, observing the specific
fault size is difficult with the existing signal processing
methods. The XYZ triaxial sensor of the Bl bearing is
installed at the A1 position. According to experience, the
signals collected in the Y direction can better reflect the
health status of the bearing.

The operating condition details of the aeronautical
bearing are shown in Table 3. Data are collected from
aeronautical bearings operating under 17 loads and
speeds with a sampling frequency of 51.2 kHz and a
sampling time of 10 s. The raw signals of the seven
bearings are shown in Fig. 4. The raw signal is unstable
and contains some noise in the real case. In our view, this
instability of the raw signals makes directly using the
signals in the time domain for fault diagnosis difficult. To
obtain a better expression of fault features, TFD is used
as the basic data form for analysis.
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Fig. 3 Overview of Politecnico di Torino rolling bearing test rig.

Table 2 Fault set details of acronautical bearings

Serial number Fault location ~ Fault size/um Superclass Subclass
N-1 No defect - N 1
I-2 On the inner ring 450 I 2
I3 On the inner ring 250 1 3
1-4 On the inner ring 150 I 4
R-5 On a roller 450 R 5
R-6 On a roller 250 R 6
R-7 On a roller 150 R 7
Table 3 Operating condition details of aeronautical bearings
Number Load/N Speed/(r'min1)
Cl 0 6x103

Cc2 1000 6x103

C3 1400 6x103

C4 1800 6x103

C5 0 12x103

Co 1000 12x103

Cc7 1400 12x103

C8 1800 12x103

c9 0 18x103

C10 1000 18x103

Cl11 1400 18x103

C12 1800 18x103

C13 0 24x103

Cl4 1000 24x103

Cl15 1400 24x103

Cleé 0 3x104

C17 1000 3x104

3.2 Time—frequency analysis based on CWT

The CWT method can effectively represent the local

characteristics of signals in the time—frequency domain
and has proven to be quite suitable for fault analysis of
mechanical equipment [13,42]. For signal s(f) in time ¢
and the specified mother wavelet , the CWT function is
defined as follows:

+00 t=b

CWT(s(t)) = a2 j_ [s(t)://* (—)} dr,  (10)

a

where a > 0 is the stretch factor, b = 0 is the shift factor,
and = refers to the conjugate operation. The complex
Morlet wavelet with bandwidth frequency and center
frequency of 3 is selected as the mother wavelet, the scale
sequence length is set as 256, and « and b are set as 2 and
5 empirically, respectively.

The TFD of 0.1 s length signals collected in the Y
direction from the bearing under condition C17 is shown
in Fig. 5. The occurrence of faults is usually accompanied
by the increase of the impact components in the time—
frequency domain. Furthermore, the impact component
distribution varies when the fault location of the bearing
is different. The impacts of the I-2 and R-5 bearings
locate in different frequency bands. For bearings with the
same fault position, the vibration component in the signal
increases gradually with the increase of the fault size, that
is, from 150 to 450 um. However, distinguishing bearings
N-1, I-4, and R-7 only by observation from the TFDs is
difficult. Therefore, more effective models are needed to
distinguish different fault bearings. In general, CWT-TFD
can effectively characterize the difference of bearing
signals in different health states, which lays a good
foundation for fault diagnosis.

3.3 DCTN-based hierarchical multiclass fault diagnosis
network

The designed DCTN-based hierarchical multiclass fault
diagnosis network is shown in Fig. 6. The DCTN-based
hierarchical multiclass fault diagnosis approach differs
from the existing methods in the strategy for hierarchical
decision making. In decision making, the different fault
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types corresponding to the superclass labels of the connected layer in the backbone CNN is replaced with the
samples are first distinguished. Then, the different fault tree-structured decision layer in the fine-tuning. The
severities corresponding to each type with the same training and test samples of the model correspond to
subclass label of the samples are distinguished. The fully- seven categories listed in Table 2.
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Fig. 4 Raw signals of bearings under different health states.
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Fig. 6 Designed DCTN-based hierarchical multiclass fault diagnosis network.
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3.4 DCTN-based cross-severity fault diagnosis network

The cross-severity fault diagnosis approach is a new
attempt for fault diagnosis models. The designed DCTN-
based cross-severity fault diagnosis network is shown in
Fig. 7. The cross-severity samples corresponding to the
same superclass labels are identified for decision making.
For example, bearing I-3 has the same super class as [-2
and -4, which correspond to the fault located on the inner
ring, and bearing R-6 has the same superclass as R-5 and
R-7 corresponding to the fault located on the roller. The
model shown in Fig. 6 is trained by the samples from
bearings N-1, I-2, I-4, R-5, and R-7, and tested by the
samples from bearings I-3 and R-6. The purpose of
prediction is to identify successfully the superclass labels
of the test bearings, whose node weights are initialized by
seed nodes that do not contain the corresponding subclass
labels of the test bearings.

4 Case studies

This section discusses two fault diagnosis cases, namely,
multiclass bearing fault diagnosis task and cross-severity
bearing fault diagnosis task. The first case is to verify the
diagnosis performance of the proposed DCTN model.
The adopted strategy of hierarchical decision-making is
expected to be conducive to improve the precision of
fault identification. The second case is to verify the
generalization ability across different fault severities. The
proposed model is built by the Pytorch framework and
implemented on a computer with 64-bit Windows 10
system, RAM of 16 GB i5 CPU, and NVIDIA RTX 2080
GPU.

4.1 Case one: multiclass fault diagnosis of bearings

This subsection discusses the diagnosis task of seven fault
categories that belong to different fault types and
severities. The input data of the model is the TFD matrix
generated by the CWT method. For convenience of
processing, all the TFD matrices are normalized to the
dimension of 100x100 as the standard input of the
network model by bilinear interpolation. Each fault
category corresponds to 100 signal samples, several of

Input TFDs

Backbone CNN network

Trained by data from 1, 2,4,5,7 I w, @
Tested by data from 3 and 6
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which are randomly selected as the training set and the
rest as the test set. In the training, the batch size of the
model is set as 16, and the learning rate is set as 0.01.
Moreover, 10% of the training data are randomly
extracted as the validation data set. All the training
processes can achieve convergence within 200 epochs. To
deal with measurement error, the results of fault
identification accuracy given in the experiment are
averaged after 10 measurements.

Figure 8 illustrates the fault diagnosis performance of
bearings under operating condition C17. The ratio of the
training data in the whole dataset ranges from 0.1 to 0.9.
Theoretically, using more samples in model training is
more conducive to the model achieving higher
recognition accuracies. The analysis under different
training sample sizes is beneficial to comparing the fault
diagnosis performance of the proposed model more
comprehensively. Parameter sensitivity analysis is also
executed as the proportion weight o in Eq. (9) and is set
as 0.1, 0.5, 1, 5, 10, 50, 100, and 500. Theoretically,
parameter w cannot be very large or very small. A large w
will lead to the reduction or even loss of the feature
learning ability achieved by pre-training in the fine-
tuning of the model, whereas a small o will prevent the
advantages of the designed hierarchical decision from
being reflected.

Figure 8 shows that the results are consistent with the
above analysis. When the training data ratio is higher than
0.5, the model can achieve an accuracy of 100% under
different w settings. When the ratio is less than 0.5, the
recognition accuracy shows a downward trend along with
the decrease of the training data. In comparison, the fault
diagnosis performance is unsatisfactory when o is 0.1,
0.5, or 1. When w is 100 or 500, the performance of the
model is relatively better but not as good as the
performance of the model when w = 10. Therefore, we
can conclude that the hierarchical diagnosis strategy of
the model proposed in this paper is beneficial to
improving the accuracy of fault diagnosis, but the
knowledge learning ability of the CNN model should also
be retained. A better fault diagnosis performance can be
reached by the reasonable allocation of the two parts in
the final decision.

Table 4 shows the fault diagnosis performance of
bearings with different training data ratios under 17

Tree-structured decision layer

[ Superclass Subclass 1
I sw, ."‘“3 ~ @2 I

/1 Wi O4
—>| ®5; O—mi> O

\ W—».S
—

Fig. 7 Designed DCTN-based cross-severity fault diagnosis network.



Xu WANG et al. Deep convolutional tree-inspired network for fault diagnosis

operating conditions. The mean accuracies on the right of
the table correspond to the recognition accuracy rate
under specific conditions. The mean accuracy corres-
ponding to the data collected under condition C4 is the
lowest, which is 97.08%. The mean accuracies of the data
collected under conditions C5 and C13 are the highest,
which are both 99.89%. The performance of fault
diagnosis varies under different working conditions, but
the overall identification can be considered very effective.
The mean accuracies on the bottom of the table
correspond to the recognition accuracy rate under a
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specific ratio. In a comprehensive consideration of all
working condition data, the mean recognition accuracy
also increases with the increase of the ratio of training
samples, and it can be maintained at 100% when the ratio
exceeds 0.7. When the ratio is 0.1, the mean recognition
rate is the lowest, which is 96.04%. Overall, the proposed
DCTN-based multiclass bearing fault diagnosis approach
is effective under different operating conditions.

To analyze the performance of the proposed DCTN-
based fault diagnosis approach more objectively, it is
compared with seven other typical fault diagnosis

100
93 Zooming 98
96
90 94
X
% 92
S 85F 90
e 88 3
2 a
O 0.1 0.2 0.3 0.4
75 + —fe— 0 =0.1 o=1 A~ 0=10 =B~ ©=100
v =05 =—fe= 0=5 I\ ©=50 —A— =500
70 1 ] 1 ! 1 ] ]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio

Fig. 8 Fault diagnosis performance of bearings under different ratios and w settings.

Table 4 Fault diagnosis accuracy of bearings with different training data ratios

Fault diagnosis accuracy/%

Condition 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Mean
Cl 96.19 9321 99.39 100.0 100.0 100.0 100.0 100.0 100.0 98.75
2 96.67 93.93 96.53 100.0 99.43 98.57 100.0 100.0 100.0 98.35
c3 96.83 88.57 96.94 96.19 99.43 99.29 100.0 100.0 100.0 97.47
Cc4 97.46 89.81 95.71 9238 99.43 98.93 100.0 100.0 100.0 97.08
cs 99.03 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.89
c6 97.94 96.43 94.08 100.0 99.71 100.0 100.0 100.0 100.0 98.68
c7 93.65 95.00 96.12 100.0 100.0 100.0 100.0 100.0 100.0 9831
8 93.81 95.18 9531 99.05 98.29 100.0 100.0 100.0 100.0 97.96
) 97.78 99.82 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.73
C10 97.14 97.68 99.39 100.0 100.0 100.0 100.0 100.0 100.0 99.36
cl 93.81 98.93 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.19
c12 93.81 98.93 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.19
13 99.05 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.89
Ccl4 93.81 95.54 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.82
ci5 94.44 98.21 100.0 100.0 99.43 100.0 100.0 100.0 100.0 99.12
Cl6 93.81 99.82 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.29
17 97.46 98.21 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.52
Mean 96.04 96.43 98.44 99.27 99.75 99.81 100.0 100.0 100.0
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approaches:

1) The TFD-CNN approach that has the same input and
structure as the pre-trained backbone network.

2) The TFD-local binary convolutional neural network
(LBCNN) approach that has the same input as the
proposed approach and uses the LBCNN for fault
identification. The used network structure is the same as
the model in Ref. [12].

3) The TFD-PCA-SVM approach that uses the
principal component analysis (PCA) method to acquire
the sample features from TFDs and adopts the SVM
method for fault identification. The penalty parameter and
kernel parameters in SVM are selected automatically by
grid searching.

4) The TFD-PCA-KNN approach that uses the PCA
features and the k-nearest neighbor (KNN) method for
fault identification.

5) The TFD-PCA-extreme learning machine (ELM)
approach that uses the PCA features and the ELM method
for fault identification. The weight matrix and bias of
hidden layers in the ELM model can be adjusted
automatically.

6) The time-features-SVM approach that uses 14
typical time-domain features of bearing signals, namely,
maximum value, minimum value, mean value, peak-to-
peak value, rectified mean value, variance, standard
deviation, kurtosis, skewness, root-mean-square, corruga-
tion factor, crest factor, impulse factor, and margin factor,
and the SVM method for fault identification.

7) The time-features-KNN approach that uses 14
typical time-domain features and the KNN method for
fault identification.

8) The time-features-ELM approach that uses 14
typical time-domain features and the ELM method for
fault identification.

9) The raw-data-wide deep convolution neural network

100
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(WDCNN) approach that uses the raw signal as input and
WDCNN [43,44] for fault identification. The used
network structure is the same as the model in Ref. [44].

The fault diagnosis performance of various approaches
under different ratios of training data is shown in Fig. 9.
The time—frequency analysis exhibits evident advantages
over the typical time-domain analysis method with the
same classifiers, showing that TFD is an effective data
analysis form for the joint diagnosis of bearing fault type
and bearing fault severity. The DL models, namely, CNN,
WDCNN, LBCNN, and DCTN, perform better than other
methods in accuracy. Although the SVM, KNN, and
ELM models are all typical small-sample-analysis
methods, the diagnosis performance is not satisfactory
when the sample size is small. The proposed DCTN
model shows overall higher fault diagnosis accuracies
than the CNN model with the same convolutional layers,
which fully illustrates that the proposed hierarchical
decision strategy is beneficial to improving the decision-
making ability of the model.

4.2 Case two: cross-severity fault diagnosis of bearings

The cross-severity fault diagnosis task attempts to
identify the fault type of the test samples with fault
categories that are unseen for the training samples. The
set of the cross-severity fault diagnosis tasks is shown in
Table 5. Specifically, for the aeronautical bearings with
failures on the inner ring or a roller, the monitored signals
corresponding to different fault severities are used for
training and testing. The test data in each task correspond
to two fault types, namely, defined data superclass I and
R, and the same fault severity, namely, 150, 250, or 450
pm. The training data contain all the fault types but lack
the fault severity of the test data.

Figure 10 shows the predicted superclass labels of the

Accuracy/%
2

o ~e— TFD-DCTN TFD-PCA-ELM
400 ~&+ TFD-CNN = Time-features-SVM
TFD-LBCNN =&~ Time-features-KNN
-©®-TFD-PCA-SVM  —£— Time-features-ELM
== TFD-PCA-KNN Raw-data-WDCNN
2%.] 0.2 03 0.4 0.5 0.6 0.7 0.8 09
Ratio

Fig. 9 Fault diagnosis performance of different approaches under different ratios of training data.
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test samples under condition C17 with six fault
categories. The model parameters used in the experiment
are consistent with those set in Section 4.1. Cross-severity
fault diagnosis is effective because most of the
predictions of the corresponding labels are correct,
especially for the bearing samples corresponding to R-5,
where the predictions of the superclass labels are all
correct. In addition, the incorrect predictions of the
samples corresponding to labels I-4 and R-7 are identified
as label N, which is reasonable for these two sets of data
corresponding to small faults of bearings. The predicted
labels show the effectiveness of the DCTN model in
superclass identification.

Figure 11 shows the prediction probabilities of the test
samples with six fault categories in three tasks. The bar
chart shows the mean of the prediction probabilities of all
the samples corresponding to each category. The error
bars show the range of the prediction probabilities for
each superclass label. The prediction probability of the

Table 5 Set of cross-severity fault diagnosis tasks

Task Categories of training bearings Categories of test bearings
1 N-1, I-3, I-4, R-6, R-7 I-2,R-5
2 N-1, I-2, I-4, R-5, R-7 1-3,R-6
3 N-1, I-2, I-3, R-5, R-6 1-4, R-7
+ Predicted label of I-2 - Predicted label of I-4 - Predicted label of R-6
%’ Predicted label of I-3 * Predicted label of R-5 © Predicted label of R-7
E : ) ;
2
S
|5}
9
7
=l
o}
3]
2= ‘ ‘ : ‘
E 0 100 200 300 400 500

Samples

Fig. 10 Predicted superclass labels of cross-severity fault
diagnosis tasks.
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superclass category corresponding to the test sample is
the largest, which is the fundamental basis for the
realization of cross-severity fault diagnosis because all
decisions are inferred according to the probability value.
The correct prediction probability of samples correspon-
ding to R-5 category is close to 1, which is the best
prediction performance among the six categories. The
predicted labels and probabilities fully demonstrate the
effectiveness of the proposed DCTN model for cross-
severity fault diagnosis tasks, which can support better
generalization of the model.

The proposed DCTN-based cross-severity fault
diagnosis approach can reduce the requirements for
labeled data in practical application and is more
consistent with engineering needs. Moreover, the three
cross-severity fault diagnosis tasks listed in Table 5 are
performed using the comparison methods selected in
Section 4.1. The fault diagnosis accuracies of all the
methods are shown in Table 6. The fault diagnosis
accuracies of each category, mean accuracies of each
task, and mean accuracies of each approach are listed in
Table 6. The highest mean prediction accuracies for the
whole work and each task are shown in bold form. The
following conclusions can be drawn from the results in
Table 6:

a) Most methods are completely ineffective in the

1.0 [ Superclass: N _ IError range of N
¢ -V | EdSuperclass: 1 I Error range of |
= Superclass: R IError range of R
=08
<
£0.6 l
s
5 0.4 l
5 ]

502 W
L
[0 0 1
I-2 I-3 1-4 R-5 R-6 R-7

Categories

Fig. 11 Predicted probabilities of cross-severity fault diagnosis
tasks.

Table 6 Fault diagnosis accuracies of different approaches in cross-severity fault diagnosis tasks

Fault diagnosis accuracy/%

Approach 12 R-5 Task 1 13 R-6 Task 2 1-4 R-7 Task3  Mean
TFD-DCTN 8600 1000 93.00 99.00 99.00 99.00 9600  83.00 89.50 93.83
TFD-CNN 2.00 98.00 50.00 2.00 11.00 6.50 9.00 1.00 5.00 20.50
TFD-LBCNN 8.00 98.00 53.00 5.00 97.00 51.00 0.00 100.0 50.00 5133
TFD-PCA-SVM 97.00 0.00 48.50 0.00 100.0 50.00 36.00 0.00 18.00 38.83
TFD-PCA-KNN 1900  93.00 56.00 0.00 96.00 48.00 0.00 0.00 0.00 34.67
TFD-PCA-ELM 97.00 0.00 48.50 20.00 52.00 36.00 0.00 1.00 0.50 2833
Time-features-SVM 1000 37.00 68.50 77.00 0.00 38.50 5800 38.00 48.00 51.67
Time-features-KNN 9200 2200 57.00 100.00 0.00 50.00 9200  22.00 57.00 54.67
Time-features-ELM 98.00  18.00 58.00 40.00 0.00 20.00 69.00  31.00 50.00 42.67
Raw-data-WDCNN 1200 100.0 56.00 24.00 96.00 60.00 0.00 100.0 50.00 55.33
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identification of most fault categories when the
corresponding results of samples in each category are
analyzed separately. The recognition rate of several
methods reaching 100% with ineffective fault classifi-
cation is realized. For example, the diagnosis accuracy of
the TFD-PCA-SVM approach in the R-6 fault category is
100%, but the accuracy of I-3 is 0 in the same task.
Analysis of the predicted labels reveals that the model
identifies the labels of all the samples as R, that is, the
classifier loses its discriminability. Hence, the mean
recognition accuracy of this method in Task 2 is 50%, but
this approach is not valid for this task.

b) The mean fault diagnosis accuracy of the proposed
DCTN-based approach is remarkably higher than that of
other methods. The mean fault diagnosis accuracy of the
proposed DCTN-based approach is up to 93.83%. The
results show that the proposed DCTN method is more
suitable for cross-severity fault diagnosis tasks. In the
three tasks, the proposed approach achieves the highest
recognition accuracy of 99%. In comparison, most of the
accuracies of the other methods are less than 50%, and
several methods are completely ineffective with an
accuracy of 0. Overall, the effectivity of the fault
diagnosis approach proposed in this paper is verified in
each task. Compared with the other approaches, it shows
an evident advantage in the cross-severity fault diagnosis
task.

5 Conclusions

Aiming at the problems of poor interpretability and weak
generalization ability that commonly exist in the deep-
learning-based fault diagnosis methods, this paper
proposes a DCTN-based hierarchical fault diagnosis
method that effectively merges the advantage of decision
tree and the CNN model. The proposed DCTN model
uses the convolutional layers in the CNN model for
sample characterization and replaces the fully-connected
layer in the CNN model with a novel tree-structured
decision layer, in which the leaf nodes and seed nodes are
set for fault type and fault severity identification,
respectively. The ability of hierarchical decision making
is given to these nodes in the model through pre-training
and fine-tuning with exclusive loss functions. The final
fault diagnosis decision is made according to the overall
path probabilities in the tree structure.

Hierarchical multiclass fault diagnosis experiments and
cross-severity fault diagnosis experiments are executed to
analyze the generalization of the proposed model. The
proposed DCTN-based fault diagnosis approach achieves
a relatively higher multiclass recognition performance. In
particular, the diagnosis accuracy of this model is even
higher than that of the backbone CNN, indicating that the
hierarchical decision-making strategy adopted in the
model is beneficial to fault diagnosis. Moreover, the
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proposed method shows a more powerful generalization
ability in the cross-severity fault diagnosis experiments,
which is meaningful in practice because the collection of
the training samples has difficulty covering all fault
severities. The experiment highlights the effectiveness
and superiority of the proposed method in fault diagnosis.
This paper makes a useful exploration of the decision
interpretability of the fault diagnosis model, and more
importantly, provides a feasible way to realize cross-
severity fault diagnosis of bearing. All these are
beneficial to improving the confidence level of the fault
diagnosis model and facilitating the solution of practical
engineering problems. As a complete data-driven method,
the proposed model has few limitations on the applied
objects; thus, it also has better generalizability for other
devices.

The purpose of this work is not to provide a complete
solution but rather to suggest an alternative approach to
deliver improved interpretability and generalization
performance of bearing fault diagnosis. Several issues are
still worthy of further exploration: 1) In terms of model
interpretability, the proposed method still has difficulty
explaining whether the convolutional layers have learned
useful fault-related knowledge or in which way the model
can effectively learn the knowledge. Therefore, the
interpretability of the CNN model and other DNN models
in fault diagnosis needs to be explored further. Certainly,
this is a very challenging task that many researchers
attempt to break through. 2) In terms of cross-severity
fault diagnosis task, the diagnosis results of the proposed
method remain in the accurate judgment of super class
labels, that is, fault types. It would be more meaningful if
the approximate range of the fault severity to which the
test sample belongs can be accurately identified, which
can be the direction of our next efforts.

Nomenclature

Abbreviations

CNN Convolutional neural network

CWT Continuous wavelet transform

DCTN Deep convolutional tree-inspired network
DL Deep learning

DNN Deep neural network

ELM Extreme learning machine

KNN k-nearest neighbor

LBCNN Local binary convolutional neural network
PCA Principal component analysis

SVM Support vector machine

TFD Time—frequency distribution

WDCNN Wide deep convolutional neural network
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Variables

a Stretch factor

b Shift factor

CWT(s(2)) CWT time—frequency function of signal s(#)

di(G=12,...,K) Distance between the feature and each
classification hyperplane

H(p, q) Cross-entropy loss function

H*(p(),q(),p(-),q(-)) Loss function of the tree-structured decision layer

K Number of sample categories

¢ Overall prediction

L Feature dimension of the fully-connected layer

N Number of samples

() Probability distribution of the predicted output

p (k) True labels of the pre-trained network

p© True labels of the tree-structured decision layer

P(0) Path probabilities of the tree-structured decision
layer

P (subclass) Probability of correct prediction for seed nodes

P (superclass) Probability of correct prediction of leaf nodes

q(")

a(k)

Probability distribution of the actual output

Predicted probabilities of the pre-trained network

q( 2) Predicted probabilities of the tree-structured
decision layer

R Dimension of the TFD matrix

s(9) Signal in time ¢

sw; Weight vector of the jth leaf note

W Weight vector of the jth vector in weight matrix W
of the fully-connected layer

wj. Weight vector of the jth tree-structured decision
layer after fine-tuning

w Weight matrix

X Input features of the Softmax classifier in the

cross-entropy loss

x Input feature vector of the tree-structured decision
layer

y Prediction probabilities by the Softmax classifier

Vi Predicted probability for the jth category

Zj Prediction scope corresponding to K categories

9] Weight adjusting the pre-trained decision and tree-

structured decision

v Mother wavelet
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