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Abstract This paper presents a new robust topology
optimization framework for hinge-free compliant mecha-
nisms with spatially varying material uncertainties, which
are described using a non-probabilistic bounded field
model. Bounded field uncertainties are efficiently repre-
sented by a reduced set of uncertain-but-bounded coeffi-
cients on the basis of the series expansion method. Robust
topology optimization of compliant mechanisms is then
defined to minimize the variation in output displacement
under constraints of the mean displacement and predefined
material volume. The nest optimization problem is solved
using a gradient-based optimization algorithm. Numerical
examples are presented to illustrate the effectiveness of the
proposed method for circumventing hinges in topology
optimization of compliant mechanisms.

Keywords compliant mechanisms, robust topology
optimization, hinges, uncertainty, bounded field

1 Introduction

Compliant mechanisms, which utilize strain energy to
transform input energy components into a desired output
displacement, are widely used in modern drive-train
systems, electronic equipment, and aerospace systems.
Similar structures are also applied in micro-electro-
mechanical systems (MEMS) [1,2], such as MEMS-
based microrobotics and bio-MEMS. Compliant mechan-
isms are used in engineering applications because of their
“jointless” connection, ease of batch fabrication, and
miniaturization.

As a powerful tool for determining the optimal material
distribution of continuum structures, topology optimiza-
tion has become particularly important and has been
applied to various structural and multidisciplinary design
problems in the past decades [3,4]. Familiar topology
optimization methods, including the solid isotropic
material with penalization (SIMP) approach [5,6], evolu-
tionary structural optimization [7,8], and level set method
[9–11], have also been successfully used to determine the
best configuration of compliant mechanisms through linear
or nonlinear finite element analysis for achieving desirable
output performance. An operational formulation of the
objective function in topology optimization is critical in
realizing the desired output performance and resisting
external loads. Several objective functions, such as
the flexibility-stiffness formulation by Saxena and
Ananthasuresh [12], the energy efficiency formulation by
Hetrick and Kota [13], and the artificial spring formulation
by Sigmund [14], have been addressed in existing studies.
However, a comparative study by Deepak et al. [15]
showed that all these formulations provide almost similar
topologies to rigid-body designs with localized compli-
ance. In other words, these topology optimization models
of compliant mechanisms tend to generate a not-truly
compliant design with small hinge-like regions or even
one-node connected hinges. This issue is due to the fact
that rigid bodies connected by localized one-node hinges
actually maximize the output work (or minimize the stored
strain energy) in the mechanism. Hinges in compliant
mechanisms introduce local high stresses, lead to the
breaking of the hinge region, and make the structure
difficult to be miniaturized. Many researchers [16–22]
have developed numerical techniques and optimization
models to prevent hinges in the topology design of
compliant mechanisms.
In practical engineering conditions, inherent uncertain-

ties are inevitable in structural systems during fabrication
and operation. Uncertainties in material properties, loading
conditions, and geometry play an important role in the

Received September 13, 2018; accepted November 11, 2018

Junjie ZHAN, Yangjun LUO (✉)
State Key Laboratory of Structural Analysis for Industrial Equipment,
School of Aeronautics and Astronautics, Dalian University of Techno-
logy, Dalian 116024, China
E-mail: yangjunluo@dlut.edu.cn

Front. Mech. Eng. 2019, 14(2): 201–212
https://doi.org/10.1007/s11465-019-0529-y



performance variation of practical engineering structures,
especially for compliant mechanisms with hinge regions.
Therefore, topology optimization models that consider
uncertainties [23–25] have been investigated as a possible
means to realize a hinge-free design for improving the
reliability or robustness of compliant mechanisms. Maute
and Frangopol [26] attempted to design MEMS by
considering reliability constraints in a topology optimiza-
tion model but obtained one-node hinges. Thus, the use of
reliability-based topology optimization does not solve the
problem. Lazarov et al. [27] proposed a robust topology
optimization formulation that considers material and
geometric uncertainties based on random field description.
For the data case presented, although several of the results
are hinge-free, hinge formation for compliant mechanism
designs is not prevented when material uncertainties are
considered.
Robust topology optimization has been applied to obtain

structures and mechanisms with the lowest variability
under loading, material, and manufacturing uncertainties.
In many studies [28–30], formulations of robust design
optimization were established based on the probability
distribution assumption of uncertain variables or fields.
Unlike random field theory [31–34] that requires precise
probabilistic characteristics, the non-probabilistic bound
field provides an alteration method to describe uncertain-
ties with limited sample information [35]. This study
investigates robust topology optimization for hinge-free
compliant mechanisms with material uncertainties
described by a bounded field model. The optimization
objective is to minimize the variation in output displace-
ment under constraints of the mean displacement and
predefined material volume. The artificial spring formula-
tion associated with the material interpolation scheme is
adopted for the optimization formulation. Then, the
topology optimization problem is solved by using the
method of moving asymptotes (MMA) [36] with obtained
sensitivity information. Numerical examples of an inverter
and a gripper mechanism are presented to validate the
proposed optimization model for the hinge-free design of
compliant mechanisms.

2 Non-probabilistic description of bounded
field uncertainties

2.1 Basic definition

Although random field theory [31] has been widely used
for spatially varying uncertainties in loading distribution,
material properties, and geometric dimensions, it requires
precise information on the probability distribution and
specified covariance function. In several real engineering
structures, the non-probabilistic bounded field model
provides an efficient alternation to describe uncertainties
with limited sample information objectively.

We use the function EðxÞ to define the uncertain
Young’s modulus at any material point x. EðxÞ is bounded
by

EL£EðxÞ£EU, (1)

where EU and EL are the upper and lower bounds of the
material uncertain field, respectively. The nominal value
of bounded field uncertainties EðxÞ is denoted by
E¼ðEU þ ELÞ=2, and the deviation is ΔE¼ðEU –ELÞ=2.
The material properties of structures are generally

spatially continuous. In this study, the correlation function
C is used to describe the spatial dependency of the
uncertain Young’s modulus. The correlation function
depends only on the distance between two observation
points x1 and x2, namely,

Cðx1, x2Þ¼exp –
kx1 – x2k2

lc
2

� �
, (2)

where lc is the correlation length of the uncertain field.

2.2 Discretization of bounded field uncertainties

Continuous field uncertainties can be discretized into a
finite number of uncertain variables Eðx1Þ,Eðx2Þ,:::,EðxN Þ
on observation points x1,x2,:::,xN , and the corresponding
correction matrix C is denoted by

C¼

Cðx1, x1Þ Cðx1, x2Þ ⋯ Cðx1, xN Þ
Cðx2, x1Þ Cðx2, x2Þ ⋯ Cðx2, xN Þ
M M ⋱ M

CðxN , x1Þ CðxN , x2Þ ⋯ CðxN , xN Þ

2
66664

3
77775
N�N

: (3)

The series expansion method is used, and the uncertain
field EðxÞ is expressed by

Eðx,ηÞ¼E þ
XN
j¼1

ηj
1ffiffiffiffi
lj

p ψT
j CdðxÞ, –Δ£ηj£Δ, (4)

where η¼½η1,η2,:::,ηN �T is the vector of uncorrelated

uncertain coefficients, Δ¼ min
i¼1,2,:::,N

ΔEffiffiffiffiffi
l1

p jψ1ðxiÞj
is the

allowable limit, CdðxÞ¼½Cðx,x1Þ,Cðx,x2Þ,:::,Cðx,xN Þ�T,
lj and ψj are the eigenvalues and eigenvectors of matrix
C, respectively, and they are obtained from

ψ1 ψ2 ⋯ ψN½ �TC    ψ1 ψ2 ⋯ ψN½ �

¼

l1

l2

⋱

lN

2
66664

3
77775: (5)
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The first eight modes ψj ðj ¼ 1,2,:::,8Þ of the uncertain
field in a square domain are illustrated in Fig. 1. As order
index j increases, the obtained eigenvalues decrease. Large
eigenvalues of the mode provide a large contribution.
Therefore, Eq. (4) should be truncated by reserving only
the first M eigenvalues and corresponding eigenvectors to
reduce the computational cost. Truncated number M
satisfies the following criterion.

XM
j¼1

lj³ð1 – εÞ
XN
j¼1

lj, (6)

where ε is a small real number. In this study, we set
ε¼1�10 – 2.
In accordance with Eq. (4), Eq. (1) can be expressed as

–ΔE£
XN
j¼1

ηj
1ffiffiffiffi
lj

p ψT
j CdðxÞ£ΔE: (7)

The truncation form of Eq. (7) is

–ΔE£
XM
j¼1

ηj
1ffiffiffiffi
lj

p ψT
j CdðxiÞ

 !
£ΔE, i¼1,2,:::,N : (8)

The matrix form of Eq. (8) is expressed as

–ΔE£ηTΛ – 1=2ψTCdðxiÞ£ΔE, i¼1,2,:::,N , (9)

whereM�M diagonal matrix Λ consists ofM eigenvalues
and N�M matrix consists of orthogonal eigenvectors ψj

ðj ¼ 1,2,:::,MÞ.
Characteristic matricesWi¼

1ffiffiffiffi
Λ

p ΨTCdðxiÞCdðxiÞT
ΔE2 Ψ

1ffiffiffiffi
Λ

p

are introduced to Eq. (9), and the uncertain coefficients
η¼ η1 η2 ::: ηM½ �T are restricted in the following N
multidimensional ellipsoid convex set, that is

η 2 E¼fη : ηTWiη£1, i¼1,2,:::,Ng: (10)

3 Robust topology optimization of
compliant mechanisms

When considering a compliant mechanism with bounded
material field uncertainty EðxÞ, the output displacement
response is characterized by a performance function
uoutðEÞ. EðxÞ can be expanded by a reduced number of
uncertain coefficients η, as shown in Eq. (4); therefore, the
performance function uoutðEÞ is mapped into the corre-
sponding normalized performance function uoutðηÞ. The
upper bound uUPPout and lower bound uLOWout of the output
displacement response are obtained by solving the
following optimization problems.

uUPPout ¼max uoutðηÞ
s:t: ηTWiη£1, i¼1,2,:::,N

–Δ£ηj£Δ, j¼1,2,:::,M

(11)

uLOWout ¼min uoutðηÞ
s:t: ηTWiη£1, i¼1,2,:::,N

–Δ£ηj£Δ, j¼1,2,:::,M

(12)

The nominal and deviation values of the performance
function uoutðEÞ are calculated as follows:

Fig. 1 First eight modes ψj ðj ¼ 1,2,:::,8Þ in the series expansion of field uncertainties
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uout¼ðuUPPout þ uLOWout Þ=2, (13)

Δuout¼ðuUPPout – uLOWout Þ=2: (14)

On the basis of the framework of non-probabilistic
uncertain field, the robust topology optimization problem
of compliant mechanisms is formulated using the nominal
value and the deviation of output displacement as follows:

min
ρ

Δuout,

s:t: K ~ρ,ηð Þ⋅u ~ρ,ηð Þ¼F,

uout þ u*£0,

XNe

e¼1

~�eVe£V *,

0£�e£1, e¼1,2,:::,Ne,

(15)

where the design variables ρ¼½�1,�2,:::,�Ne
�T are the vector

of elemental relative densities, ~�e is the result of Heaviside
projection filtering for the design variable �e, Ne is the
number of finite elements of the entire design domain, K
denotes the global stiffness matrix of the physical problem
obtained by the finite element discretization, u and F are
the displacement and force vectors, respectively, u* is a
given displacement constraint on the nominal value of the
output displacement response, Ve is the volume of element
e, and V * is the allowed total volume of the solid material.
The material Young’s modulus of the eth element, Ee, is

obtained by using the SIMP model [37] as follows:

Ee¼Emin þ ~�peðEðxeÞ –EminÞ, (16)

where EðxeÞ denotes the Young’s modulus of the fully
solid material in the eth element, which is an uncertain
variable, as described in Eq. (4). p¼3 is the penalty factor,
and Emin is given a small positive value to avoid stiffness
singularity in the finite element analysis.
The objective and constraint functions in the optimiza-

tion problem Eq. (15) are solved by the sub-problems in
Eqs. (11) and (12). Thus, robust topology optimization of
compliant mechanisms is considered a nested optimization
problem. In this study, we focus on the topology
optimization of compliant mechanisms in a linear elastic
setting.
The smoothed projection function [38] (approximate

Heaviside function) for filtering relative densities is
adopted in this study to suppress mesh dependency and
checkerboard patterns and acquire a clear topology.

~�e¼
tanhðβηÞ þ tanh β �e – ηð Þð Þ
tanhðβηÞ þ tanhðβð1 – ηÞÞ , (17)

where �e¼
XQ

i¼1
wðxiÞvi�iXQ

i¼1
wðxiÞvi

is the average density value of

the element e in the neighborhood region Q, wðxiÞ is the

weight, vi is the elemental volume, β denotes the
smoothing parameter, and η is the threshold. If parameter
β approaches zero, then the value of approximate
Heaviside function ~�e is approximately equal to average
density �e. In this study, the value of threshold η is 0.5. The
Heaviside functions for η¼0:5 with different values of β
are illustrated in Fig. 2. In a practical optimization process,
the initial value of parameter β is 1, and it increases to 128
by multiplying 2 every 40 iterations.

4 Sensitivity analysis and algorithm
flowchart

4.1 Sensitivity analysis of inner-loop optimization
problems

The adjoint method is used to calculate the sensitivity of
the objective function in the inner-loop optimization
problems in Eqs. (11) and (12). The chain rule of
differentiation is used, and the sensitivity of the perfor-
mance function uoutðηÞ with respect to uncertain coeffi-
cients ηj is

∂uout
∂ηj

¼ ∂uout
∂u

� �T du
dE

dE
dηj

, j ¼ 1,2,:::,M , (18)

where u is the nodal displacement vector of the compliant
mechanism and E¼½E1,E2,:::,ENe

�T is the vector of the
elemental elastic modulus.
By taking the derivative of the equilibrium equation

Ku¼F, we have

K
du
dEi

¼ dF
dEi

–
dK
dEi

u, i¼1,2,:::,Ne: (19)

In this study, external load F does not depend on the

Fig. 2 Approximate Heaviside function with different values of β
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material elastic modulus; therefore, the first term on the
right side of Eq. (19) must vanish.
Substituting Eq. (19) into Eq. (18), we obtain

∂uout
∂ηj

¼ ∂uout
∂u

� �T

K – 1
XN
i¼1

–
dK
dEi

u

� �
dEi

dηj
: (20)

The adjoint vector l is introduced to satisfy the equation

Kl¼∂uout
∂u

: (21)

Equation (20) becomes

∂uout
∂ηj

¼
XN
i¼1

– lT
dK
dEi

u⋅
dEi

dηj

� �
, j ¼ 1,2,:::,M : (22)

The observation point is assumed to coincide with the
finite element center point, and the sensitivity of structural
stiffness matrix K with respect to Ei can be obtained by
calculation from each element. Equation (22) can be
rewritten as

∂uout
∂ηj

¼
XN
i¼1

– li
TdK i

dEi
ui⋅

dEi

dηj

� �
, j ¼ 1,2,:::,M : (23)

where li is the adjoint vector of the ith element and K i and
ui are the element stiffness matrix and element displace-
ment vector, respectively.

4.2 Sensitivity analysis of the outer-loop optimization
problem

In the outer-loop optimization problem, the objective and
constraint functions include the calculation of the upper
bound uUPPout and lower bound uLOWout of the output
displacement. The sensitivity of the two bounds (generally
denoted by uoutðρ,η*Þ, where η* is the solution of the inner-
loop problem Eq. (11) or (12)) with respect to the design
variables is determined as follows.
The sensitivity of uoutðρ,η*Þ with respect to ~�e is

expressed as

duoutðρ,η*Þ
d~�e

¼∂uoutðρ,η*Þ
∂~�e

þ
XM
j¼1

∂uoutðρ,η*Þ
∂ηj

⋅
∂ηj
∂~�e

� �
: (24)

The minimum or maximum performance function
should satisfy Karush-Kuhn-Tucker conditions, that is

∂uoutðρ,η*Þ
∂ηj

þ
XN
i¼1

2γiη
TWi

∂η
∂ηj

¼0, (25)

γi³0, (26)

ηTWiη – 1¼0, i¼1,2,:::,N , (27)

where γi is the Lagrangian multiplier that corresponds to
the ith constraint.
Using Eqs. (24) and (25), we obtain

duoutðρ,η*Þ
d~�e

¼∂uoutðρ,η*Þ
∂~�e

þ
XM
j¼1

–
XN
i¼1

2γiη
TWi

∂η
∂ηj

⋅
∂ηj
∂~�e

 !
: (28)

Taking the derivative of Eq. (27) with respect to ~�e
yields

dðηTWiη – 1Þ
d~�e

¼
XM
j¼1

2ηTWi
∂η
∂ηj

⋅
dηj
d~�e

¼0: (29)

Submitting Eq. (29) into Eq. (28), we have

duoutðρ,η*Þ
d~�e

¼∂uoutðρ,η*Þ
∂~�e

: (30)

The sensitivity of the performance function can be easily
evaluated by using the adjoint method, namely,

∂uoutðρ,η*Þ
∂~�e

¼ –ψTdKðη*Þ
d~�e

uðη*Þ, (31)

where

ψ¼K – 1 η*
� �∂uout

∂u
: (32)

The sensitivities of the output displacement bounds with
respect to design variable �e are calculated by using the
chain rule

duoutðρ,η*Þ
d�e

¼
XQ
i¼1

∂uoutðρ,η*Þ
∂~�i

∂~�i
∂�i

∂�i
∂�e

, (33)

where

∂�e
∂�i

¼ wðxiÞviXQ
i¼1

wðxjÞvj
, (34)

and

∂~�i
∂�i

¼ β sech β �i – ηð Þð Þð Þ2
tanhðβηÞ þ tanhðβð1 – ηÞÞ: (35)

4.3 Flowchart of the optimization algorithm

The flowchart for solving the nested optimization problem
is shown in Fig. 3. In this figure, the left part is the outer-
loop process, which is used to update the material relative
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densities; the right part is the inner-loop iteration, which is
used to find the maximum and minimum values of output
displacement. In this study, the outer- and inner-loop
optimization problems are solved by using the MMA.

5 Numerical examples

We present two examples for robust topology optimization
of compliant mechanisms with an uncertain field in
material elastic modulus. The uncertain Young’s modulus
is bounded in the interval [0.5,0.9], and the Poisson’s ratio
is 0.3. In both examples, the structure is assumed to be
symmetrical, which means the upper and lower halves of
the design domain share the same design variables.
However, the uncertain material field applied to the entire
structure is asymmetrical.

5.1 Robust topology optimization of a compliant inverter

The design of a compliant inverter is considered in this
example, and the aim is to determine the optimal structure
that converts an input load on one side into a displacement
in the opposite direction on the other side. As shown in
Fig. 4, the dimension of the design domain is 120�120. A
horizontal load Fin¼1 is applied to the input point, and the
spring stiffness is set to kin¼kout¼0:02. The allowable
material volume fraction is 30%.
In this example, two different values of correlation

length, lc¼120 and lc¼60, are tested. We consider that the
truncation error is less than 1%. The first 6 eigenvectors are
selected in the series expansion of the bounded field

uncertainty when lc¼120, and the first 12 eigenvectors are
selected when lc¼60.
Figure 5 shows the optimal robust solutions of the

compliant inverter with the correlation length lc¼120 by
using the proposed method. In Fig. 5, the left column gives
the optimal topologies of the inverter considering different
displacement constraints (u*¼16, 15, 14, 13, and 12), and
the middle and right columns show the worst- and best-
case realization of the uncertain field, respectively. As
shown in Fig. 5, with decreases in the allowable nominal
value of output displacement u*, the objective value Δuout
of the obtained compliant inverter design decreases. The
output displacement becomes increasingly robust with
respect to variations in the Young’s modulus bound

Fig. 3 Flowchart for solving the nested optimization problem

Fig. 4 Design domain and boundary conditions of a compliant
inverter
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Fig. 5 Optimized topologies (left), worst-case realization (middle), and best-case realization (right) of uncertain field for the compliant

inverter when lc¼120. (a) u*¼16, Δuout¼1:562; (b) u*¼15, Δuout¼1:293; (c) u*¼14, Δuout¼ 0:965; (d) u*¼13, Δuout¼0:731;

(e) u*¼12, Δuout¼0:550
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[0.5,0.9]. The results also demonstrate that hinges in the
optimal design gradually vanish when the deviation value
of the performance function increases. Therefore, the
proposed robust topology optimization model is an
effective means of avoiding the appearance of hinges in
the design of compliant mechanisms.
The iteration histories of the optimization process for the

compliant inverter are plotted in Fig. 6. The histories show
a convergence of the objective function for each case. The
evolution histories present minimal turbulence because of
the changed parameter β in the Heaviside function.

Figure 7 shows the nominal value and corresponding
deviation range of the output displacement for topological
configurations in Figs. 5(a)–5(e) when lc¼120. The
nominal value of the output displacement response of the
topological configuration in Fig. 5(a) is greater than that of
the designs in Figs. 5(b)–5(e). The topological configura-
tion in Fig. 5(e) is the most robust because it gains the

smallest deviation value of output displacement. As
expected, the topological configuration in Fig. 5(a) has
obvious one-node hinges, whereas no hinges are found in
the topological configuration in Fig. 5(e).
The robust design solutions of the compliant inverter

when the correlation length is lc¼60 are shown in Fig. 8.
The left column indicates that no hinges exist in the
optimal topologies of the inverter in Figs. 8(c)–5(e). This
finding validates that the present robust optimization can
minimize the variation in the output displacement of
compliant mechanisms and thus avoid hinges that may lead
to serious losses arising from uncertainties. Compared with
the solutions in Fig. 5 with a relatively large correlation
length, the worst- and best-case realizations in Fig. 8 have
relatively intense changes in the distribution of material
field uncertainty when lc¼60.
Comparison of the optimized topologies (left) in Figs. 5

and 8 shows that the topological configurations differ and
have different correlation lengths when the same value of
u* is defined. The middle parts of Figs. 5 and 8 depict that
the worst-case realizations of the uncertain material field
for the compliant inverter are distinctly different. As a
result, the objective functions of the former with a large
correlation length are greater than those of the latter with a
small correlation length. Therefore, the correlation length
of the uncertain field plays an important role in the optimal
topology design of compliant mechanisms.

5.2 Robust topology optimization of a compliant gripper

The design domain and boundary conditions of a
compliant gripper are shown in Fig. 9. The size of the
design domain is 120�120, and the design domain is
correspondingly divided into 120�120 finite elements.
The size of the square hole in the gripper is 30�30. The
spring stiffness is set to kin¼0:02, kout1¼kout2¼0:012, and
the input force for the compliant gripper is Fin¼1. For
this compliant gripper, the performance function uout is
the relative difference between displacements uout1 and
uout2 of two output points, which is denoted as
uout¼juout1j þ juout2j. The allowable material volume
fraction is 30%. Two different correlation lengths, lc ¼
60 and lc ¼ 30, are considered for the bounded field
uncertainty in material elastic modulus.
In the case of lc ¼ 60, robust topology optimization with

different values of the nominal performance function
constraint, i.e., u*¼26, 24, and 22, is performed by using
the proposed method, and the results are shown in Fig. 10.
The corresponding optimal topologies, worst-case realiza-
tion, and best-case realization are plotted in the left,
middle, and right columns, respectively. The optimal
topologies in Fig. 10 imply that with the decrease in the
nominal value of the performance function, the compliant
gripper design gains improved robustness with respect to
uncertainties, and the hinges are prevented gradually. This

Fig. 6 Iteration histories for the compliant inverter when lc¼120

Fig. 7 Nominal value and deviation range of output displace-
ment versus Fin for topological configurations in Figs. 5(a)–5(e)
when lc¼120
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Fig. 8 Optimized topologies (left), worst-case realization (middle), and best-case realization (right) of uncertain field for the compliant

inverter when lc¼60. (a) u*¼16, Δuout¼1:495; (b) u*¼15, Δuout¼1:165; (c) u*¼14, Δuout¼ 0:900; (d) u*¼13, Δuout¼0:698;

(e) u*¼12, Δuout¼0:535

Junjie ZHAN et al. Robust topology optimization of hinge-free compliant mechanisms 209



result verifies that the proposed method is effective for
circumventing hinges in the topology design of compliant
mechanisms.

The robust design solutions for the compliant gripper
mechanism with different nominal output performances
when the correlation length of the uncertain material field
is decreased to lc ¼ 30 are shown in Fig. 11. The worst-
case realizations have a relatively intense change in the
distribution surface of the material field uncertainty
compared with that of the case of lc ¼ 60 in Fig. 9.
When the nominal performance function constraint is
u*¼26, the deviation in output displacement for the final
solution is large, i.e., Δuout¼2:882, and one-node hinges
can be observed clearly in the optimal topology. When
u*¼22, the deviation in output displacement for the final
hinge-free design decreases to Δuout¼1:617, which means
the compliant mechanism is more capable of resisting
uncertainties than that with u*¼26.

6 Conclusions

A robust topology optimization method for compliant
mechanisms with bounded field uncertainties in material

Fig. 9 Design domain and boundary conditions of a compliant
gripper

Fig. 10 Optimized topologies (left), worst-case realization (middle), and best-case realization (right) of uncertain field for the compliant

gripper when lc¼60. (a) u*¼26, Δuout¼2:804; (b) u*¼24, Δuout¼1:999, (c) u*¼22, Δuout¼1:468
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properties is proposed in this study. The method of series
expansion is employed for the dimension reduction of non-
probabilistic bounded field uncertainties. Robust topology
optimization of compliant mechanisms is considered a
nested optimization problem. In the optimization process,
we take the nominal value of the output displacement
response as a constraint and minimize the robustness of the
compliant mechanism. The effect of the correlation length
of bounded field uncertainties on the optimal topologies is
also investigated.
The applicability of the proposed robust topology

optimization for compliant mechanisms with material
bounded field uncertainties is illustrated by two numerical
examples. The results show that the robustness of the
optimal design of compliant mechanisms increases with
the decrease in the nominal value of the performance
function. Moreover, robust topology optimization of
compliant mechanisms considering material uncertainties
can successfully prevent the formation of hinges.
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