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Abstract Two-sided assembly line is usually used for the
assembly of large products such as cars, buses, and trucks.
With the development of technical progress, the assembly
line needs to be reconfigured and the cycle time of the line
should be optimized to satisfy the new assembly process.
Two-sided assembly line balancing with the objective of
minimizing the cycle time is called TALBP-2. This paper
proposes an improved artificial bee colony (IABC)
algorithm with the MaxTF heuristic rule. In the heuristic
initialization process, the MaxTF rule defines a new task’s
priority weight. On the basis of priority weight, the
assignment of tasks is reasonable and the quality of an
initial solution is high. In the IABC algorithm, two
neighborhood strategies are embedded to balance the
exploitation and exploration abilities of the algorithm. The
employed bees and onlooker bees produce neighboring
solutions in different promising regions to accelerate the
convergence rate. Furthermore, a well-designed random
strategy of scout bees is developed to escape local optima.
The experimental results demonstrate that the proposed
MaxTF rule performs better than other heuristic rules, as it
can find the best solution for all the 10 test cases. A
comparison of the IABC algorithm and other algorithms
proves the effectiveness of the proposed IABC algorithm.
The results also denote that the IABC algorithm is efficient
and stable in minimizing the cycle time for the TALBP-2,
and it can find 20 new best solutions among 25 large-sized
problem cases.

Keywords two-sided assembly line balancing problem,
artificial bee colony algorithm, heuristic rules, time
boundary

1 Introduction

The assembly line balancing problem (ALBP) refers to
distributing assembly work among the workstations with
respect to a certain objective to reach the desired level of
performance. Two kinds of problem versions arise from
varying the objective of ALBP. ALBP-1 minimizes the
number of stations m given a fixed cycle time c, whereas
ALBP-2 minimizes c given m [1].
The assembly lines can be classified into two categories:

One-sided and two-sided assembly line, and the main
difference between them is that two-sided assembly line
owns pairs of stations that are located opposite to each
other on the two sides of the assembly line [2]. By contrast,
stations are distributed at only one side in one-sided
assembly lines. Although many algorithms have been used
to solve the one-sided ALBP, such as exact methods [3–5]
and heuristic methods [6–8], the applications of exact
methods heuristic methods to two-sided ALBP (TALBP)
are relatively small. Exact methods are suitable for solving
the exact solutions of small-sized problems, but they are
inefficient for solving large-sized problems. Heuristic
methods are highly efficient for solving one-sided ALBP,
but the effect is difficult to guarantee.
Compared with one-sided assembly line, two-sided

assembly line has the following advantages: Shorter line
length, reduced material handling, reduced throughput
time and set-up time, and lower cost of tools/fixtures.
Given these advantages, the assembly of large high-
volume products, e.g., automobiles, buses, and trucks, are
usually organized in two-sided assembly lines. Similar to
the ALBP, the TALBP is also a non-deterministic
polynomial hard (NP-hard) problem whose complexity
grows very fast with the problem size [9]. To design two-
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sided assembly lines, some complex restrictions should be
considered, such as the direction constraint, precedence
constraint, and cycle time constraint of the workstation.
When the two-sided assembly line is installed, the cycle

time should be adjusted following different requirements.
With the development of technological progress, the task
operation time is changed due to the utilization of new
equipment or new assembly process, causing the reconfi-
guration of the assembly line. In this case, the two-sized
assembly line needs to be reconfigured and the original
cycle time needs to be adjusted to satisfy the new
manufacture demands. Therefore, the TALBP-2 is required
for further research.
The TALBP is first presented and studied by Bartholdi

[10] with a first fit assignment rule implemented by an
interactive program. Kim et al. [11] developed a new
genetic algorithm to balance the operation time of the
TALBP. Wu et al. [12] investigated a branch-and-bound
algorithm for the TALBP-1 with the objective of
minimizing the length of the line. Baykasoglu and Dereli
[13] proposed an ant colony heuristic algorithm to solve
the TALBP-1 with the objective of maximizing work
relatedness. Özcan and Toklu [14] formulated the mixed
model of the TALBP-1 as a mixed integer program and
solved it with a simulated annealing algorithm. Kim et al.
[15] presented a mathematical model and a genetic
algorithm for the TALBP-2. Özcan [16] proposed a
chance-constrained, piecewise-linear, mixed integer pro-
gram for solving the TALBP-1 with stochastic task times.
Tapkan et al. [17] investigated the bee algorithm to handle
large instances of the TALBP-1. Khorasanian et al. [18]
applied a simulated annealing algorithm for solving the
TALBP-1 with task consistency. Yuan et al. [19]
constructed an integer programming model for the
TALBP-1 with constraints and solved it with the late
acceptance hill-climbing algorithm. Tang et al. [20]
proposed an improved algorithm with idle time reduction
techniques to solve the TALBP-2. Li et al. [21] provided an
iterated greedy algorithm to address the TALBP-2. Tang
et al. [22] proposed a hybrid teaching-learning-based
optimization algorithm to balancing the stochastic two-
sided assembly line problem. Li et al. [23] presented a
comprehensive review, and different meta-heuristics were
compared to solve the TALBP-1. Gansterer and Hartl [24]
considered the TALBP-1 with real-world constraints and
proposed a genetic algorithm to solve the problem.

Although many studies have been conducted on TALBP,
the TALBP-2 has received limited attention.
Artificial bee colony (ABC) algorithm was proposed by

Karaboga [25]. It has been successfully applied to solve
multimodal and multidimensional optimization problems,
such as image stegnalysis problems [26], scheduling
problems [27], and function optimization problems [28].
For the TALBP-2, the decreasing cycle time demands the
search precision to be good enough to find a feasible
solution quickly. The employed bees and onlooker bees of
improved ABC (IABC) can enhance the search precision
and accelerate the search speed. The current best solutions
may be obstacles in obtaining a new cycle time. The scout
bees of IABC can escape local optima by importing new
high-performing solutions.
The rest of this paper is structured as follows. Section 2

describes the mathematical formulation of the TALBP. The
original ABC algorithm is described in Section 3. Section 4
introduces the proposed heuristic rules and IABC
algorithm for the TALBP-2 in detail. Section 5 presents
experimental results for five benchmark instances. Finally,
Section 6 provides the conclusion and future directions for
related research.

2 Problem description

2.1 Problem definition

The two-sided assembly line has two sides in parallel to
simultaneously assemble different tasks of the same
product, as shown in Fig. 1. Two directly facing stations,
such as Stations 1 and 2, are called a mated-station.
The task of the TALBP has a different operation

direction compared with that of the one-sided assembly
line balancing (ALB). In the TALBP, some tasks must be
assigned strictly to the left side (L) or the right side (R), and
some tasks can be performed at either side (E) of the line.
For example, in a loader assembly line, such tasks as
barometer and oil-water separator must be assigned to the
left side of the line because these tasks are L-type tasks,
whereas the booster pump and throttle must be allocated to
the right side as these tasks are R-type tasks. E-type tasks,
such as engine and multiple valve, can be assembled to the
left or right side of the line.
To solve the TALBP, three constraints must be satisfied:

Fig. 1 Two-sided assembly line
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The assignment constraints (each task must be assigned to
exactly one station), cycle time constraint (the total task
times of all the tasks assigned to a station cannot exceed the
cycle time), and precedence constraint (no task is assigned
to an earlier position than any of its predecessors) [29].

2.2 Mathematical model

The notations used in this paper are listed in Table 1.

The objective of the TALBP is to minimize the cycle
time for a given number of mated-stations. The mathema-
tical model formulation is as follows:

Minimize CT : (1)
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xij1¼ 1, i 2 SL, j 2 J , (8)
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The objective Eq. (1) is to minimize the cycle time.
Constraint Eq. (2) is the occurrence constraint, which
means every task must be assigned to only one station.
Constraint Eq. (3) is the precedence constraint, which
ensures any task cannot be assigned before its predecessors
are completed. Constraints Eqs. (4)–(7) are cycle time
constraints, which ensure that each task is finished in the
cycle time and the sequence-dependent finish time of tasks
is satisfied [14]. For each pair of Tasks i and h, if Task h is
an immediate predecessor of Task i and the two tasks are
assigned to the same mated-station j, then constraint Eq.
(5) becomes active, i.e., fti≥fth+ ti. If the two Tasks i and r
have no precedence constraints and are assigned to the

Table 1 Notations in TALBP

Natation Representation

I Set of tasks, I ={1, 2, …, I, …, n}

J Set of mated-stations, J ={1, 2, …, j, …, m}

k Indicator for the side of stations, k = 1, if the station is left side;
k = 2, otherwise

(j, k) A station of mated-station j and its operation direction is k

SL Set of tasks assigned to a left station; SL � I

SR Set of tasks assigned to a right station; SR � I

SE Set of tasks assigned to either station; SE � I

P0 Set of tasks that have no predecessors

P(i) Set of immediate predecessors of Task i

Pa(i) Set of all predecessors of Task i

S(i) Set of immediate successors of Task i

Sa(i) Set of all successors of Task i

D(i) Set of tasks whose operations are opposite to Task i’s operation
direction

DðiÞ ¼
SL if i 2 SR

SR if i 2 SL

Æ if i 2 SE

8
><

>:

K(i) Set of all predecessors of Task i

KðiÞ ¼
f1g if i 2 SR

f1g if i 2 SL

f1, 2g if i 2 SE

8
><

>:

ti Processing time of Task i

fti Finish time of Task i

CT Cycle time

xijk xijk= 1, if Task i is assigned to station (j, k); xijk= 0, otherwise

zir zir= 1, if Task i is assigned earlier than Task r in the same station;
zir= 0, otherwise

φ A very large positive number
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same station (j, k), then constraints Eqs. (6) and (7) become
active. If Task i is assigned earlier than Task p, then
constraint Eq. (6) becomes ftp≥fti+ tm. Otherwise, con-
straint Eq. (7) becomes fti≥ftp+ ti. Constraints Eqs. (8)–
(12) are the integrality constraints.

3 Artificial bee colony algorithm

The ABC algorithm is a relatively new member of swarm
intelligence. It is inspired by the definite aggregate
behavior of honey bee swarms.
The ABC algorithm contains three types of bees,

namely, employed bees, onlooker bees, and scout bees.
In general, half of the colony is composed of employed
bees and the other half consists of onlookers. In the initial
population of the ABC algorithm, each of the randomly
generated individuals in the population is called a food
source and represented by an n-dimensional real-valued
vector, which represents a solution of the problem. Let
Xi={xi1, xi2, …, xin} represent the ith food source in the
population, and each solution is generated as follows:

xij ¼ LBj þ ðUBj–LBjÞr, (13)

where i = 1, 2,…, SN, j = 1, 2,…, n, r is a uniform random
number between [0, 1], and LBj and UBj are the lower and
upper bounds for the dimension j, respectively.
Each employed bee exploits a new solution Yi from the

neighborhood of a population solution and chooses a better
one by the greedy algorithm. The new solution Yi is
generated by the following expression:

yij ¼ xij þ ðxij–xkjÞ�, (14)

where k = 1, 2, …, SN and j = 1, 2, …, n are randomly
chosen indexes, k is different from i, and q is a uniform
random number in the range [ – 1, 1].
The fitness of each solution will be evaluated and shared

with onlooker bees. Each onlooker bee chooses a solution
depending on its probability value. The solution with the
bigger fitness value has a higher possibility to be selected
than that with a smaller fitness value. The probability value
pi of the solution is calculated as follows:

pi ¼
fitiXn

j¼1
fitj

, (15)

where fiti is the fitness value of the solution Xi.
As in the case of the employed bees, onlooker bees

exploit and update the corresponding solution by the
greedy algorithm.
If the solution cannot be improved after a certain number

of generations, then it will be abandoned and replaced by a
random solution using Eq. (13). The random solution is
explored by the corresponding bee as a scout bee.
Another iteration of the procedure repeats again until a

termination is satisfied. For more details on the ABC
algorithm, refer to Karaboga [25].

4 Improved artificial bee colony for TALBP-2

In the original ABC algorithm, the employed bee strategy
and onlooker bee strategy can be improved to enhance the
exploitation ability. The ABC algorithm demonstrates
enhanced convergence ability, and it generally traps in
local optima in the scout bee phase. Therefore, this paper
proposes an IABC algorithm to solve the TALBP-2.
In the IABC algorithm, the heuristic rules are applied to

the initial population to improve the quality of the
individuals. Meanwhile, artificial bees are adopted in the
neighborhood solution strategy to enhance the exploitation
ability of the IABC algorithm. This step differs from the
basic ABC algorithm, which adopts a random solution
strategy for the artificial bees. The flowchart of the
proposed IABC algorithm is shown in Fig. 2.

4.1 Encoding

To solve the TALBP, a permutation-based representation is
used. In this paper, each feasible solution is represented by
a string of integers, and the length of the string is equal to
the number of tasks. Each element consists of a task to be
assigned and the operation direction of the task. The
locations of elements are the assembly sequences of tasks.

Fig. 2 Flowchart of the IABC algorithm
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An example of P16 (16-tasks of TALBP) is depicted in
Fig. 3, where the number of each task in the circle is
labeled with (ti, d). ti means the operation time of Task i,
and d means the preferred operation direction. The arrow
represents the precedence constraints among tasks.
The solution of P16 can be represented as an individual

(Fig. 4). It means Task 1 is initially assigned to the left
station, followed by Task 4, which is also assigned to the
left station, and so on. Finally, Task 15 is assigned to the
left station.

4.2 Decoding

An encoding includes the assembly sequence and opera-
tion direction of each task, but it does not indicate the
number of mated-stations of a task. Therefore, the
assignment scheme of a solution should be interpreted by
decoding. The procedure of decoding is as follows:
Step 1: Activate a mated-station, set j = 1.
Step 2: Assign Task i to the specified station in

accordance with the assembly sequence.
Step 3: Evaluate the start time sti of Task i. If sti+

ti>CT, (the cycle time CT is determined under the

obtained solution), then activate the next mated-station,
and set j = j + 1, sti = 0. Assign the Task i to the new
mated-station.
Step 4: If all the tasks have been decoded, then stop the

procedure. Otherwise, go back to Step 2.
In Step 3, the start time is the latest finish time of all the

predecessor tasks.
Under the case in Fig. 4 as an example, we assume the

cycle time CT = 17. The corresponding assignment scheme
of ALB can be represented as Fig. 5. In this Gantt chart, the
value “1L” means the left station of mated-station 1, and
the number at the upper-right corner of Task i means the
finish time of the task.

4.3 Heuristic rule

In the procedure of encoding, the sequence of assigning
tasks is decided by the tasks’ priority values. The task with
the highest priority is first assigned. The tasks’ priority
values can be calculated by various heuristic rules, such as
the task time and precedence constraint. Some of the most
effective heuristic rules are MaxT rule (the task with the
longest operation time has the highest priority) [30], MaxF
rule (the task with the most successor tasks has the highest
priority) [31], and MaxRPW rule (the task with the
maximum ranked positional weight has the highest
priority) [32]. This paper develops a new heuristic
rule, namely, MaxTF rule. The rule combines heuristic
factors of MaxT rule and MaxF rule; hence, the priority
value of each task can be calculated by the following
expression:

Vi ¼ α
tiXn

i¼1
ti
þ β

NiXn

i¼1
Ni

, (16)

Fig. 3 Example of TALBP: P16

Fig. 4 Encoding of a solution of P16

Fig. 5 Gantt chart for a solution of P16
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where Ni is the number of successor tasks of the Task i, and
α and β is the weight of the heuristic factors (α + β = 1).
The task assignment rule is described clearly as follows.

If a task satisfies all assignment constraints, then it is added
into a candidate set. Subsequently, the priority value of
these tasks is evaluated. The task with the maximum
priority value Vi is selected preferentially in the set. When a
tie occurs, the task is selected randomly among the tasks
with the same Vi. If the selection task is an E-type task,
then it will be assigned to the direction with the earliest
start time. In case the earliest start time of both directions is
the same, then we assign the task to either left or right
direction with uniform probability.

4.4 Population initialization

To ensure the quality and diversity of the individuals in the
initial population, the IABC algorithm initializes the
population as follows:
Step 1: Activate a mated-station, set j = 1 and set Tms = 0

(Tms is the operation time of the mated-station). Create a
set of assignable tasks: AT.
Step 2: Select a Task i following the heuristic rules,

i2AT, and set Tms = Tms + ti.
Step 3: Compare Tms with the time boundary TB. If the

operation time Tms£
Xn

i¼1
ti=ð2mÞ þ

Xn

i¼1
ti=n, assign

the Task i to the mated-station j, and record the number and
direction of the task to the encoding. The location of the
element is the assembling sequence of tasks. Otherwise, set
j = j+ 1 and Tms = 0, and assign the task to the new mated-
station, set Tms = Tms + ti.
Step 4: If j = m, assign all the remaining tasks to the

mated-station m, stop the procedure, and obtain a feasible
solution. Otherwise, go to Step 5.
Step 5: Update the set AT, and go back to Step 2.
In Step 2, the MaxTF rule and random heuristic rule are

adopted in the combination with the proportion of 1:1. In
Step 3, the criterion of a new mated-station is Tms>Tmc,
Tmc ¼

Xn

i¼1
ti=ð2mÞ, where Tmc means the theoretical

minimum cycle time. The operation time of the first m – 1
mated-stations can be less than TB, but the last mated-
station will be seriously overloaded. Therefore, to better
control the workload of all the stations and ensure the
quality of the solution, the time boundary is revised as
TB ¼

Xn

i¼1
ti=ð2mÞ þ

Xn

i¼1
ti=n.

4.5 Neighborhood strategy

After the initial population procedure, each employed bee
and onlooker bee exploits a new solution in the neighbor-
hood of a current solution. In this paper, the new solution is
guaranteed not to violate the precedence constraints by
adopting two-point crossover and insert mutation as
neighborhood strategy to obtain a new solution.

The procedure of the two-point crossover is as follows:
Step 1: Divide parents P1 and P2 into head, middle, and

tail portions by two different random points from [1, n].
Step 2: The head and tail portions of offspring O1 are

copied from the elements at the same locations in parent
P1.
Step 3: The remaining elements of offspring O1 are

taken from the elements of parent P1 in the order of
elements as in parent P2, as shown in Fig. 6.
Step 4: A similar procedure is operated to offspring O2.
The procedure of insert mutation is as follows:
Step 1: Determine the mutation solution on the basis of

the individual mutation rate pm.
Step 2: Find all immediate predecessor and immediate

successor tasks of the mutation elements m. Record the
location m1 whose immediate predecessor task is the latest
assigned, and the location m2 whose immediate successor
task is the earliest assigned.
Step 3: Select a random integer from (m1, m2) and insert

the mutation element into the location.

4.6 Employed bee strategy

In the IABC algorithm, employed bees explores new
neighborhood solutions using the two-point crossover
strategy combined with the insert mutation strategy to
enhance the exploration ability. The procedure is detailed
as follows:
Step 1: Randomly select a current solution Sc(i) in the

population.
Step 2: Explore a neighborhood solution from the

current solution, as discussed in Section 4.5. Another
parent is selected from the initial population. Evaluate the
value of CT for these solutions, and select the best one as
the new solution Sn(i).
Step 3: Compare CT of Sc(i) and Sn(i). Update the

current solution by the greedy algorithm.
Step 4: Compare CT of the best solution Sbest until now

and Sn(i). Update the best solution by the greedy
algorithm.

4.7 Onlooker bee strategy

To improve the local search ability of the IABC algorithm,
onlooker bees further exploit the current population, which
is selected by the tournament strategy on the basis of the
selection probability value. In accordance with the 10 new
neighborhood solutions exploited by onlooker bees, the
best and worst solutions are refreshed. The detailed steps
are executed as follows:
Step 1: Select a current solution from the new popula-

tion using the tournament strategy, and the size is set to 3.
Step 2: Exploit 10 neighborhood solutions from the

current solution with the two-point crossover strategy.
Another parent is the best solution. Evaluate the value of
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CT for these solutions, and select the best one as the new
solution Sn(i).
Step 3: Compare CT of Sc(i) and Sn(i). Subsequently,

update the current solution by the greedy algorithm.
Step 4: Update the worst solution Sworst and the best

solution Sbest using the greedy algorithm.

4.8 Scout bee strategy

When a solution cannot be improved during limit
generation, the solution will be abandoned and replaced
and the employed bee will become a scout. To find a new
high-quality solution by the scout bee and escape from the
local optima, a set of new solutions will be generated
randomly and then the best one is selected. If the new
solution is better than Sbest, then Sbest is updated.

5 Experimental results

To evaluate the performance of MaxTF rule and the IABC
algorithm for the TALBP-2, computational experiments
are applied to five benchmark problems with different
numbers of mated-stations. These problems are P24, P65,
P148 [11], P16, and P205 [15], where P16 and P24 are
small-sized problems, and P65, P148, and P205 are large-
sized problems in practical applications. The IABC
algorithm is programmed by MATLAB 7.1 on a computer
with Intel Core i7 3.4 GHz, 8 GB RAM. To investigate the
stability of the proposed algorithm, each compared
algorithm is repeated 20 times for all experimental
problems. The performance measure of the algorithm is
relative percentage deviation (RPD). The RPD is calcu-
lated by

RPD ¼ Somesol –Best

Best
� 100%, (17)

where Somesol is one solution collected by a given
compared algorithm, and Best is the best solution obtained
among these algorithms.

5.1 Effectiveness of the proposed heuristic rules

A series of tests for the parameters is conducted to analyze
the influences of parameters α and β for the performance of

the proposed heuristic rules. The minimum cycle times
Tmc of the best, mean, and standard deviation of the best
solutions are reported in Table 2.
The efficiency of the MaxTF rule is the best when the

ratio of α and β is 2:8. The best solution and mean value (in
bold) at this ratio by heuristic rules are much bigger than
others.
To demonstrate the performance of the MaxTF rule, an

experiment is performed to compare the efficiency of three
other heuristic rules, as shown in Table 3. The last three
columns of Table 3 are improved rates of the MaxTF rule
compared with MaxT, MaxF, and MaxRPW rules. The
improved rate is computed by 100�(Mean of one heuristic
rule -Mean of MaxTF)/(Mean of one heuristic rule). Table
3 shows that the proposed MaxTF rule obtains all the best
solutions, and the improved rate demonstrates that the
MaxTF rule outperforms the other heuristic rules. The
MaxTF heuristic rule can improve the quality of the
solutions in population initialization.

5.2 Computational results of IABC and other algorithms

In the proposed IABC algorithm, the parameters are set as
follows: The size of initial population is set to Np = 50 on
the basis of preliminary experiments; the numbers of
employed bees, onlooker bees, and scout bees are set to
Np/2, Np/2, and 1, respectively; the number of neighbor-
hood solutions is set to Nns = 10; the limited number of
cycles through which a solution can be passed without
improvement is set to limit = 20; the stop condition is when
the computational times reaches Ts = n�n�15 ms, where n
is the number of tasks.
For small-sized problems, the optimal solutions are

compared with mixed-integer programming (MIP), which
is a discretized version of the basic ABC algorithm
(DABC) and IABC algorithms. The optimal solutions of
MIP are solved by CPLEX Version 12.6.
As shown in Table 4, all the algorithms can find the

optimal solution of five small cases. For P24, MIP finds
that the computational time of optimal solutions exceeds
3600 s, which is marked with an asterisk. The superiority
of IABC is proven by its lower computational time
compared with MIP.
Given that MIP cannot find the optimal solution for

large-sized problems within an acceptable computational

Fig. 6 Example for the two-point crossover
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time, the computational results for large-sized problems are
compared with FFR, DABC, n-GA, and IABC. For each
algorithm, the best, mean, and standard deviation of the
best solutions (in bold) are presented in Table 5.
As shown in Table 5, the IABC algorithm obtains 22

best solutions, including 20 brand new best solutions,
among 25 large-sized problem cases. The computational

results demonstrate that IABC obtains better solutions than
FFR and DABC for all the problems, and the experimental
values are close to the theoretical optima. However, the
IABC algorithm does not surpass n-GA for all problems.
The IABC algorithm has a slightly worse solution and
three negative improved rates for P148 with four and five
mated-stations and P205 with four mated-stations.

Table 4 Comparison of the performance for small-sized problems

Problem Nms LB
MIP DABC IABC

Best Mean Time/s Best Mean Time/s Best Mean Time/s

P16 2 20.50 22 22 0.16 22 22 3.84 22 22 3.84

3 13.67 16 16 0.97 16 16 3.84 16 16 3.84

P24 2 35.00 35 35 * 35 35 8.64 35 35 8.64

3 23.33 24 24 * 24 24 8.64 24 24 8.64

4 17.50 18 18 * 18 18 8.64 18 18 8.64

Note: LB = Lower bound

Table 5 Comparison of the performance for large-sized problems

Problem Nms LB
FFR DABC n-GA IABC

Time/s
Best Mean Std Best Mean Std Best Mean Std Best Mean Std

P65 4 637.4 661 665.7 1.60 645 637.4 2.69 641 643.7 0.39 640 641.4 0.34 63.375

5 509.9 528 531.9 1.29 527 509.9 1.98 515 518.4 0.40 514 515.9 0.47 63.375

6 424.9 436 440.3 1.30 435 444.7 2.01 432 434.8 0.52 430 432.4 0.59 63.375

7 364.2 375 378.2 0.94 375 377.6 0.80 372 377.7 0.83 370 372.1 0.56 63.375

8 318.7 335 338.4 1.18 334 335.9 0.44 327 334.2 0.90 324 326.7 0.72 63.375

P148 4 640.5 713 716.6 1.36 656 665.0 3.65 641 642.0 0.17 641 642.2 0.30 328.56

5 512.4 567 568.5 0.58 523 532.5 4.42 514 514.9 0.18 514 515.1 0.33 328.56

6 427.0 462 464.5 0.83 443 451.9 3.48 428 430.6 0.27 428 429.6 0.38 328.56

7 366.0 395 396.6 0.43 384 387.0 1.47 368 369.2 0.21 367 367.8 0.26 328.56

8 320.3 343 345.8 1.00 335 338.5 2.09 323 323.7 0.15 322 322.6 0.27 328.56

9 284.7 305 306.9 0.64 299 302.2 1.80 287 289.6 0.53 286 286.7 0.35 328.56

10 256.2 276 277.4 0.40 272 274.6 1.16 259 262.4 0.51 258 260.1 0.57 328.56

11 232.9 248 248.8 0.29 245 249.4 1.80 237 238.5 0.42 235 236.2 0.37 328.56

12 213.5 224 228.6 0.38 222 229.3 1.81 218 221.3 0.60 216 217.4 0.48 328.56

P205 4 2918.1 3513 3517.5 1.46 3016 3039.3 6.80 2946 2965.6 3.65 2953 2967.5 3.87 630.375

5 2334.5 2799 2815.0 5.37 2474 2494.9 4.79 2364 2374.0 3.55 2358 2364.1 2.94 630.375

6 1945.4 2353 2366.0 4.47 2060 2081.7 7.93 1984 2004.3 5.36 1980 1983.5 1.27 630.375

7 1667.5 1982 1999.5 5.70 1795 1814.3 8.37 1709 1723.7 2.99 1707 1718.4 3.04 630.375

8 1459.1 1750 1760.0 3.35 1560 1579.5 4.88 1507 1546.5 9.23 1496 1511.6 4.98 630.375

9 1296.9 1545 1553.1 2.62 1368 1380.6 4.17 1337 1362.7 8.84 1334 1346.2 4.63 630.375

10 1167.3 1385 1395.4 3.55 1247 1256.2 4.05 1189 1221.0 5.57 1186 1210.3 5.83 630.375

11 1061.1 1254 1262.8 3.00 1131 1140.5 2.18 1095 1122.5 7.95 1092 1114.3 6.82 630.375

12 972.7 1173 1176.0 1.02 1051 1066.3 6.12 1039 1061.1 3.45 1012 1027.2 4.49 630.375

13 897.9 1064 1071.7 2.71 984 993.8 5.01 944 975.8 4.73 944 955.4 3.34 630.375

14 833.8 998 1003.7 1.72 948 962.8 5.34 944 953.3 1.33 944 944.0 0.00 630.375

Note: Std = Standard deviation; LB = Lower bound
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Figure 7 presents the Gantt chart for the best solution of
P65 with four mated-stations obtained by the IABC
algorithm. Figure 8 presents the Gantt chart for the best
solution of P205 with 12 mated-stations obtained by the
IABC algorithm.

As shown in Fig. 7, the value “4R” on the Y-axis refers
to the right station of mated-station 4, which also indicates
that the assembly line has eight stations. The number of
rectangular boxes is the number of each task, and the order
of the boxes indicates the precedence constraint of tasks in

Fig. 7 Gantt chart for the best solution of P65 with four mated-stations

Fig. 8 Gantt chart for the best solution of P205 with 12 mated-stations
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each station. For instance, these tasks of the station “4R”
are assigned in the following order: 37–52–51–62–59–38–
35–40–65.
The number at the upper-right corner of Task i refers to

the finish time of the task. For each station, the finish time
of the last task is the operation time. For example, the finish
time of Task 65 is 640 units, which means that the
operation time of the station “4R” is 640 units.
The cycle time is the maximum operation time of all the

stations. Therefore, the cycle time of P65 with four mated-
stations is 640 units.
The Friedman test is applied to analyze these results, in

which the type of algorithm is considered a factor. Figure 9
presents the means of the average RPD of the best
solutions among different algorithms. The best solutions
obtained by IABC are significantly better than those by
FFR, DABC, and n-GA. As shown in Fig. 10, the FFR and
DABC algorithms obtain poor solutions on the average
solutions, and the best solutions are obtained by the IABC
algorithm. The p-value of the IABC algorithm is 0.01,
which is smaller than 0.05. This result verifies that the
proposed IABC is better than the other compared
algorithms in terms of statistical significance.

The convergence performance of these algorithms is
further verified. The computational time is studied in
Fig. 11 by solving P205 with 12 mated-stations. The IABC
algorithm finds the best solution quickly, and it can
converge fast. The comparisons of the convergence curve
of the algorithms verify the search abilities of the
employed bee strategy and onlooker bee strategy. Given
the random strategy of scout bees, optimization is minimal
with increasing time, which indicates that the scout bees
can help the IABC algorithm escape from the local optima.
The foregoing analysis demonstrates that the proposed

IABC algorithm is competitive with the other algorithms.

6 Conclusions

In this paper, the TALBP is discussed. This research aims
to minimize the cycle time of the two-sided assembly line
for a given number of mated-stations. To solve the NP-hard
problem efficiently, an improved ABC algorithm with the
MaxTF heuristic rule is proposed in this paper. The MaxTF
heuristic rule combined with the random rule can improve
the quality and diversity of the solutions in population
initialization. In the IABC algorithm, the employed and
onlooker bees adopt the neighborhood strategy to enhance
exploitation ability. By contrast, the scout bees generate a
new solution that can prevent the algorithm from being
trapped in local optima. The performance of the IABC
algorithm is compared with that of other algorithms
through various TALBP instances. Results show that the
MaxTF rule can promote enhanced cycle time in the search

Fig. 9 Means of the average RPD of the best solutions and 95%
least significant difference intervals for different algorithms

Fig. 10 Means of the average RPD of the average solutions and
95% least significant difference intervals for different algorithms

Fig. 11 Convergence curve for P205 with 12 mated-stations
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process. The results of the Friedman test of the best and
average solutions for different problems show that the
IABC algorithm is efficient and stable to solve the TALBP-
2.
As a limitation, this model does not consider some

realistic considerations, such as synchronous task con-
straints, probabilistic task times, different worker numbers
of every workstation, and walking times of workers.
Moreover, other objective optimizations can be consi-
dered, for example, maximizing the balancing efficiency,
minimizing the total idle time, and maximizing the
workload smoothness index. However, promoting the
algorithm to solve realistic problems is critical in future
research.
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