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Abstract Injection molding is one of the most widely
used material processing methods in producing plastic
products with complex geometries and high precision. The
determination of process parameters is important in
obtaining qualified products and maintaining product
quality. This article reviews the recent studies and
developments of the intelligent methods applied in the
process parameter determination of injection molding.
These intelligent methods are classified into three
categories: Case-based reasoning methods, expert sys-
tem-based methods, and data fitting and optimization
methods. A framework of process parameter determination
is proposed after comprehensive discussions. Finally, the
conclusions and future research topics are discussed.
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1 Introduction

Injection molding is an important method used in
processing plastic products, which are widely used in
packaging, automobiles, electronics, and other applica-
tions. Once an injection mold is constructed, the most
important task is to find a set of appropriate process
parameters to produce qualified products. Dozens of
process parameters should be set up based on information
from material suppliers, mold designers, and machine
manufacturers. Traditionally, the molding process para-
meters are determined by trial-and-error method. For this
method, shots are taken during the start-up process, and the
product quality attributes are measured after each shot to

evaluate the quality of the produced products. The molding
personnel then uses his/her knowledge on the process to
adjust the process parameters and to improve the quality of
the product from shot to shot. This tuning exercise is
repeated until the specifications of product quality are
satisfied [1]. Such a procedure not only requires significant
amounts of time and money but also depends on the
proficiency of the molding personnel, who must undergo
years of practice to be an expert. However, the growing
demand for molding experts in the industry far exceeds the
supply. Moreover, in some circumstances, the injection
molding process can be extremely complicated that it is
beyond the range of personal experience.
Therefore, when determining the optimal process

parameters, many shortcomings have been encountered
in the traditional trial-and-error method, especially with the
rapid development of requirements for high product
quality and low production cost. In the last two decades,
many researchers have proposed various intelligent
methods to automatically determine the process para-
meters. In the present work, the current activities of the
intelligent methods for injection molding are reviewed.
These methods are classified into three categories: Case-
based reasoning (CBR) methods, expert system-based
methods, and data fitting and optimization methods.
The rest of this paper is organized as follows. In Sections

2–4, the existing results of intelligent methods for
determining the process parameters in plastic injection
molding based on the three methods are respectively
presented. In Section 5, the relevant discussions and a
proposed framework are presented. Finally, a brief
conclusion and some suggestions for future trends are
presented by referring to experiences from previous works
by the State Key Laboratory of Material Processing and
Die & Mould Technology.

2 Case-based reasoning

CBR refers to the use of old solutions to meet new
demands, explanation of new situations according to old
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cases, and evaluation of new solutions through the
applications of old cases [2]. The basic idea of CBR is to
use a case-based reasoner to solve a new problem by
adapting the solutions used to solve the old problems [3].
The new problem is matched against the cases in the case
library, after which one or more similar cases are retrieved.
The case that is most similar to the new problem is then
used to yield a solution. A typical CBR includes the
following processes: 1) Case representation and organiza-
tion: Organizing the case in pre-defined structure; 2) case
retrieval and matching: Retrieving the most similar case or
cases; 3) case reuse: Reusing the information and know-
ledge in the case to solve the new problem; 4) case
revision: Revising the proposed solution; and 5) case
retention: Retaining the useful parts of the experience and
using it for future problem solving.
CBR has been found to be extremely helpful in

determining the initial process parameters for injection
molding. Kwong et al. [4,5] first developed a CBR system
to obtain proper process parameters. This method was
subsequently adopted in the studies of Mok et al. [6,7],
Shelesh-Nezhad and Siores [8], and Zhou et al. [9]. The
flowchart for setting initial process parameters based on
CBR is shown in Fig. 1. The geometric characteristics and
the material physical properties are selected as the features
in an injection molding case. The optimal process
parameters are adopted as part of the solution. To facilitate
the case retrieval, all cases are indexed by defining
similarity metrics, such as the type of material, product
geometry, and configuration of the mold cavity. The
process parameters of the similar cases are then adapted to
fit the new problem by using several adaptation strategies.

CBR can quickly determine a set of process parameters
for injection molding based on previous successful cases.
The application of CBR has several benefits in terms of
determining the initial process parameters for injection
molding. First, solutions can be obtained quickly by the
reasoner, thus reducing the reasoning time. Second,
remembering previous experiences is particularly useful
in avoiding the repetition of past mistakes. Third, by
increasing the memory of old solutions and adapting them,
the CBR system makes the learning process more efficient.
Nevertheless, the effectiveness of CBR is mainly depen-
dent on the relevance of old cases, size of the case library,
and case retrieval algorithm [3].

3 Expert system

Expert system-based methods emulate the decision-mak-
ing process of a human expert. The basic idea of these
methods is that massive task-specific knowledge is
transferred from a human to a computer and then stored
in that computer. When users call upon the computer for
specific advice, the computer can make inferences, give
advice, and explain the logic behind the advice.
A variety of techniques have been used to develop an

expert system for the defect correction of injection
molding. In general, the expert system-based methods
can be divided into the following closely associated steps.
First, the user input information about the molding
material, the process parameters of the current setting,
and the product defects is observed. Then, the knowledge
base is deduced. Finally, the optimized process parameters

Fig. 1 Flowchart of the initial process parameters setting based on CBR

86 Front. Mech. Eng. 2018, 13(1): 85–95



are recommended. According to the different forms of
knowledge representation, the expert system-based me-
thods can be divided into knowledge-based reasoning
(KBR), rule-based reasoning (RBR), and fuzzy reasoning
(FR), etc. A survey on the expert system-based methods
and their applications in injection molding is listed in
Table 1.

3.1 Knowledge-based reasoning

KBR attempts to understand and initiate human knowledge
in computer systems. The KBR is mainly composed of four
components: User interface, inference engine, knowledge
database, and knowledge engineering tool [19]. The
development of a KBR system can be divided into the
following tightly linked substeps [11]. First, the form for
representing and constructing knowledge base should be
determined. Then, the inference mechanism is developed
based on the available knowledge database. Finally, the
facility programs are designed for experts, which can be
used to update the knowledge database and improve the
inference mechanism.
The KBR can reduce the demand for experimentation by

taking advantage of the a priori knowledge of injection
molding. For example, Pandelidis and Kao [11] presented
a knowledge-based system to diagnose multiple defects in
injection molding. Inaba et al. [20] proposed a knowledge-
based expert system that uses on-line measured process
parameters from the molding machine to make decisions
for eliminating molding defects. Yang et al. [1] developed
a knowledge-based tuning method to obtain the suitable
process parameters. The method provides an estimate of
the process window (process feasible region) and updates
its knowledge base during tuning.

3.2 Rule-based reasoning

RBR is a protocol that represents the information acquired
from a human expert in a defined form of a rule, such as if-
then. The rule can, in turn, be applied for the operations on

data to reach appropriate conclusions, and the inferences
can be provided with a computer program by reasoning
about information in the rule base and formulating
conclusions [21].
When setting the process parameter of injection

molding, RBR can provide useful guidance for the
molding personnel. Thus, RBR can greatly reduce the
requirements for the experience of molding personnel.
Shelesh-Nezhad and Siores [8] proposed the idea of using
RBR to eliminate part defects. However, due to its
incomplete integration of qualitative and quantitative
reasoning, a typical symbolic RBR system output contains
only the parameter types and associated correction
direction. No range of correction or crisp value is given.

3.3 Fuzzy reasoning

Based on the theory of fuzzy logic, the FR can efficiently
model the qualitative aspects of human knowledge and
reasoning processes via the fuzzy if-then rules, obtaining
less precise and logical computation by the computer than
the conventional ones. The decision-making process is not
always a matter of black and white or true or false; hence,
the approach can be used to deal with gray areas and the
terms. For instance, process parameters must be carried out
on the injection machine, and mold trial is indispensable.
Generally, many molding defects can be encountered
during mold trials. The defects can be defined as Di (i = 1,
2,…, m). To eliminate each defect Di, a number of process
parameters, such as Pj (j = 1, 2, …, n), should be adjusted.
Here, DPji is written as the adjustment of one of the relative
process parameters Pj, which results from a certain defect
Di. DPji consists of two parts: Adjustment range and
adjustment direction. The adjustment range is determined
by the seriousness of the defect and the current value of
process parameters and can be acquired through the fuzzy
inference. The adjustment direction is determined by the
type of defect and the process parameter and can be
acquired easily by the traditional RBR. The defects are
handled one by one, and each defect results in adjustments

Table 1 Expert system-based methods and their applications in injection molding

Methods References Applications

KBR Kim and Suh [10] Weld line

Pandelidis and Kao [11] Bubbles, cracking, shrinkage

Jan and O’Brien [12] Pit marks, surface ripples, flashing

Kameoka et al. [13] Short shot, sink mark, warpage

Yang et al. [1] Short shot, flash, dimension

RBR Shelesh-Nezhad and Siores [8] Burn streaks, weld line, jetting

FR He et al. [14,15] Short shot, sink mark, flash, flow mark, warpage

Tan and Yuen [16] Flash, short shot, black streak

Zhou et al. [9] Short shot, flash

Chen et al. [17] Weld line

Li et al. [18] Short shot, flash
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to its related process parameters. Finally, the adjustments
for the same parameter are integrated into its final
adjustment through the composition method. The frame-
work of a typical FR system is shown in Fig. 2 [9].
FR is an efficient method in eliminating product

aesthetic defects. It can obtain the correction direction of
process parameters and the adjustment range of process
parameters. However, the adjustment range of process
parameters are determined by the seriousness of defects,
which involves two potential problems. The first problem
is how to diagnose the degree of defects accurately. The
second problem is how to eliminate operator bias and
ensure the consistency of the diagnostic results.

4 Data fitting and optimization

Data fitting and optimization methods evaluate the
comprehensiveness of a variety of methods. These
methods mainly include three steps: Sampling, model
fitting, and optimization, as shown in Fig. 3. In the
sampling method, the initial molding parameters are
randomly selected in the feasible search space. The
quantitative relationship model between product quality
and process parameters is established by a fitting model.
The process iterates until the process parameters are found
to be capable of producing qualified products.

4.1 Sampling

Sampling is the process of obtaining sample data by
employing various experimental design methods. An
experimental design indicates a series of experiments,
which are expressed as the factors of specified levels.
Classical experimental designs originated from the theory
of design of experiments when physical experiments were
conducted. These methods focus on planning experiments,
and thus the random error in physical experiments has
minimal influence on the approval or disapproval of a
hypothesis. Fractional factorial design [22] and central
composite design (CCD) [23] are widely used classical

experimental design methods. These methods obtain a
sample at the boundaries of the design space. Compared
with random error in physical experiments, computer
experiments mainly involve systematic error. Thus, a good
experimental design tends to fill the design space rather
than focus on boundaries. The Taguchi method [24],
various Latin hypercube designs (LHDs) [25], and uniform
designs (UDs) [26] are three common types of space-filling
sampling methods.
By using the experimental design methods, good results

with less experiment times, short experimental period, and
low experimental cost can be obtained. Thus, experimental
design methods are widely used in injection molding. A
survey of experimental design methods for injection
molding from 2005 to 2016 is shown in Table 2. Among
these experimental design methods, the Taguchi method is
the most widely used. By integrating range analysis,
variance analysis, and signal-to-noise analysis, the Taguchi
method can be used to produce sample data, identify the
influence of different process parameters on product
quality, and determine the optimal process parameters for
specific product quality indicator. Chen et al. [27]
conducted experiments using the Taguchi method to
determine the significant factors. Zhao and Cheng [28]
utilized the Taguchi method to determine the effect of
process parameters on warpage. However, this method can
only find the best combinations of specified process
parameter level but not the global optimal solution.

4.2 Model fitting

Model fitting establishes the relationship model between
the process parameters and the product quality indexes.
Model fitting involves three main steps: Model choosing,
model fitting, and model validation.
Model choosing refers to the process of choosing the

appropriate surrogate model to establish the relationship
between the process parameters and product quality
indexes. The common surrogate model includes poly-
nomial regression (PR), Kriging, response surface metho-
dology (RSM), artificial neural network (ANN), support

Fig. 2 Framework of a typical FR system
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vector regression (SVR), and hybrid models, etc. A survey
of surrogate models used in injection molding is listed in
Table 3. The characteristics of the abovementioned
surrogate models are given in Table 4.

After the surrogate model is selected, the next step is
model fitting. The common model fitting methods include
least square regression, best linear predictor, best linear
unbiased predictor (BLUP), back propagation, and multi-
point approximation, etc. Each surrogate model has its
associated fitting method. For example, polynomial

functions are usually fitted by the weighted least square
method, and the kriging method applies the BLUP for
model fitting [89]. Simpson et al. [90] have already given a
detailed review with respect to the equations and fitting
methods for common surrogate models.
Once the meta-model is fitted, the model must be

validated before acting as a “surrogate” model. Model
validation is thought to be a challenge, and it shares
common challenges with the verification and validation of
other computational models [91]. Cross-validation is the
most commonly used validation method.

4.3 Optimization

Optimization works to search the optimal process
parameter setting to produce the best-qualified product
through various optimization approaches. Optimization
approaches can be classified into three categories accord-
ing to the methods of improving the optimal point within
each iteration. These categories include the deterministic,
stochastic, and hybrid optimization approaches.
For the deterministic approaches, the adjustment direc-

tion for each trial is determined. The commonly used
deterministic approaches include the Newton method or
the quasi-Newton method [51] and sequential quadratic
programming [52], etc. Deterministic approaches take
advantage of the analytical properties of the problem to
obtain a sequence of points, which can quickly converge to
the optimal solution. However, deterministic approaches
easily fall into a local optimum, rather than a global one.
For the stochastic approaches, the random variables are

generated and used. The widely used stochastic approaches
include genetic algorithm (GA) [92], particle swarm
optimization [86], artificial bee colony [78], and simulated
annealing [93], and so on. Compared with the deterministic
approaches, the stochastic approaches are more flexible
and efficient. However, stochastic approaches are ineffi-
cient. Sometimes, they probably cannot reach the optimum
because of their non-deterministic characteristic. More-
over, the probability of finding the global solution
decreases when the problem size increases [94].
Hybrid optimization approaches are combinations of the

deterministic and stochastic approaches. These approaches
maximize the single optimization technique while avoid-
ing its disadvantages [95]. Lam et al. [96] conducted GA/
gradient hybrid approach to search the optimal injection
molding process parameters and claimed that the optimiza-
tion results of hybrid is stable.

5 Discussions and framework

Based on previous successful cases, CBR can quickly
determine a set of feasible process parameters for injection
molding. CBR is especially suitable for determining a set
of initial process parameters, which would be further

Fig. 3 The main framework for the data fitting and optimization
methods

Table 2 Survey of experimental design methods for injection molding

Method classification References

Space filling Taguchi method [27–59]

LHD [60–68]

UD [69,70]

Classical CCD [71–73]

Others Full factorial experimental design [74,75]

Table 3 Survey of surrogate models used in injection molding

Fitting model Applications

RSM
[27,30,35,36,40,72]

Warpage, shrinkage

Kriging [28,64,67,76] Warpage, cycle time, deflection,
and max injection pressure

PR [46,71] Sink mark, waviness, weight

ANN
[32,33,37,38,61,77–86]

Warpage, shrinkage, runner volume,
weight, cycle time, strength

SVR [87,88] Weight, cycle time, max injection
pressure, shrinkage
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modified or optimized. The major difficulty in CBR refers
to the features in a case that are used to describe the
problem and define similarity metrics. Material, product
geometry, mold design, and injection machine are
consistently regarded as indispensable information that
should be considered. The manual definition of the strict
features of the information, especially for the product
geometry and mold design, seems to be impossible. This
finding also results in the lack of a case library with a
consistent structure and leads to difficulties in gathering
sufficient cases. Consequently, some transformation mo-
dels should be designed to compensate for the deviations
between the theoretical solution and the actual solution,
including case imbibition, case matrix, RBR, etc., accord-
ing to the number of similar cases and the corresponding
similarities.
Owing to the large amount of works relying on

experience and empirical knowledge, the expert systems
are thought to be suitable for process parameter optimiza-
tion. For example, expert systems have been successful in
emending initial process parameters to avoid aesthetic
defects (e.g., short shot, flash, sink marks, and burn),
which are difficult to measure quantitatively by regular
instrumentation methods. However, implementing an all-
encompassing expert system for the injection molding is
difficult because human experts are not a rule system. The
nature of the human experience is fragile and cannot be
acquired easily or readily transferred into a simple rule
format. In addition, to build an expert system, a know-
ledgeable engineer must interview the molding personnel
and try to elicit appropriate knowledge from them. Indeed,
the knowledge acquisition bottleneck hinders the con-
struction of expert systems.
The data fitting and optimization methods have been

widely applied to determine the process parameters in
plastic injection molding. Many researchers have achieved

great success in optimizing the process parameters for
injection molding by combining different sampling, fitting,
and optimization methods. However, they are mainly used
to obtain optimal process parameters for quantitative
product quality (e.g., warpage, dimensions, and weight),
whose quality indexes need to be quantified. Furthermore,
in an actual production process, the quality indexes hardly
undergo online feedback. The lack of corresponding
sensing equipment or measurement process is particularly
complex. Thus, data fitting and optimization methods are
mainly used for offline optimization.
Many existent methods that have been applied to

process parameter determination demonstrated that no
perfect method can solve all process parameter determina-
tion problems. CBR has mainly been used for initial
process parameter setting, whereas the expert system-
based methods have been successfully adopted to eliminate
qualitative defects. Data fitting and optimization methods
have been widely utilized to determine the optimal process
parameters for quantitative product quality. A complete
injection molding process consists of initial process
parameter setting, qualitative defect correction, and
quantitative defect optimization. Thus, a hybrid intelligent
system that covers all these aspects should be established.
The framework of the hybrid intelligent system is shown in
Fig. 4. Moreover, some aspects need to be emphasized in a
practical system.
1) The defect correction rules for qualitative defects

correction are mainly organized and collected by human.
However, human knowledge is limited and can easily be
affected by other factors.
2) The aesthetic quality is usually detected by machine

operator visual inspection, which can lead to two issues.
One issue is the complexity of establishing a precise
diagnosis of the defect degree. The other issue is the
elimination of operator bias and ensuring that the

Table 4 Advantages and disadvantages of several surrogate models

Approaches Advantages Disadvantages

PR Can be easily constructed, has clear rules on parameter
sensitivity, allows quick convergence of noisy functions

Instabilities that may arise for high-order polynomials;
difficulty in obtaining sufficient sample data for

high-order polynomials; cannot interpolate new sample
points and be restricted by the selected function type

Kriging Does not need to construct a specific mathematics model, is
extremely flexible in capturing nonlinear behavior, is accurate
for nonlinear problems under small sample with moderate

scale of variables

More complex compared with RSM

RSM Requires less manual intervention, does not need the trial-and-error
method to achieve a suitable model because of the benefit of data driven

Falls easily into the local minimum value

ANN Has learning capability, is best for repeated application, has a
highly nonlinear mapping capability, can approximate any function

High computational expense, lack of a complete and
mature theoretical system and high dependence on

experience, overfitting; it is a “black box” method and
cannot obtain explicit and meaningful models for

further analysis

SVR Has solid theoretical foundation, is suitable for small sample data,
has good generalization ability

Not suitable for large sample data
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inspection independent from the operator conduct.
3) The direct and online measurement of quantitative

product quality remains a challenging task, due to the lack
of corresponding sensors or the particularly complex and
time-consuming measurement process.
4) Data fitting and optimization methods still require

sample data to fit and validate the model, which has a high
demand for the number of sample data. In an actual mold
trial process, the mold trial data is limited for a particular
mold, material, and injection molding machine.
5) The effects of the data fitting and optimization

methods are easily affected by various parameters.
However, the setting of these parameters lacks theoretical
basis and mainly depends on experience. Thus, the
effectiveness of the method cannot be guaranteed.

6 Conclusions and future trends

This study reviews the advanced intelligent methods for
injection molding process parameter determination. Based
on the literature survey, great advancements have been
made in the modeling of intelligent methods for process
parameter determination. However, no commercial appli-
cation and systematic solution have been reported. Apart
from conducting fundamental studies, the following
suggestions on future research directions are proposed.
1) Sensor and sensing technologies

With the traditional technologies, obtaining direct and
online feedback of the product quality within the cycle
time in practical applications remains a challenge. In
addition, the diversity of product quality requirements
makes obtaining quality feedback difficult. Thus, the
sensor and the sensing technology should be taken into
consideration to provide more feedbacks for process
parameter determination.
2) Feature extraction technologies
The features in a case, which are used to define the

problem and describe similarity metrics, are mainly
determined by human. The commonly used features
include flow length, maximum thickness, projected area,
part volume, runner type, and size, etc. However, whether
these features are sufficient to characterize the case is
unknown. Thus, more sophisticated feature extraction
technologies should be developed to extract useful features
from molding material, part, and mold geometric informa-
tion.
3) Multi-objective optimization technologies
The injection molding process involves multiple-input

multiple-output (MIMO) features. Thus, many processing
parameters (e.g., injection pressure, injection velocity,
packing pressure, packing time), product qualities (e.g.,
aesthetic, dimensional, and performance), and require-
ments (e.g., efficiency, cost, and energy) should be
considered simultaneously. In recent years, some research-
ers have conducted various multi-objective optimization

Fig. 4 The framework of the hybrid intelligent system
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studies in injection molding [77,97]. However, most of the
researchers only considered a handful assorted process
parameters independently, along with the desired product
quality indices to simplify the problem. Injection molding
is a complex process with MIMO features [98]; hence, the
development of multi-objective optimization technologies
for injection molding is essential.
4) Knowledge discovery technologies
Many successful and failed mold trial cases in the

process parameter determination of plastic injection
molding have been conducted. More knowledge should
be automatically extracted from these cases, rather than
organized by experts or developers from the existing CBR
systems and expert systems. Hence, dedicated knowledge
discovery technologies need to be developed to extract
useful information from mold trial cases.
5) Online compensation technologies
In an actual production process, even the process

parameters are properly set up, and the product quality
might fluctuate. The injection molding process is a time-
varying process with various perturbations (e.g., material
property variations, machine wear, and manufacturing
circumstance change). Conventionally, unscheduled man-
ual interferers with process parameters are indispensable in
dealing with the aforementioned perturbations. However,
an unscheduled manual interferer could potentially be
costly and time consuming. Therefore, establishing auto-
matic compensation technologies for process parameters is
very important in ensuring the stability of product quality.
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