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Abstract Hydraulic servo system plays a significant role
in industries, and usually acts as a core point in control and
power transmission. Although linear theory-based control
methods have been well established, advanced controller
design methods for hydraulic servo system to achieve high
performance is still an unending pursuit along with the
development of modern industry. Essential nonlinearity is
a unique feature and makes model-based nonlinear control
more attractive, due to benefit from prior knowledge of the
servo valve controlled hydraulic system. In this paper, a
discussion for challenges in model-based nonlinear con-
trol, latest developments and brief perspectives of
hydraulic servo systems are presented: Modelling uncer-
tainty in hydraulic system is a major challenge, which
includes parametric uncertainty and time-varying distur-
bance; some specific requirements also arise ad hoc
difficulties such as nonlinear friction during low velocity
tracking, severe disturbance, periodic disturbance, etc.; to
handle various challenges, nonlinear solutions including
parameter adaptation, nonlinear robust control, state and
disturbance observation, backstepping design and so on,
are proposed and integrated, theoretical analysis and lots of
applications reveal their powerful capability to solve
pertinent problems; and at the end, some perspectives
and associated research topics (measurement noise,
constraints, inner valve dynamics, input nonlinearity,
etc.) in nonlinear hydraulic servo control are briefly
explored and discussed.

Keywords hydraulic servo system, adaptive control,
robust control, nonlinear friction, disturbance compensa-
tion, repetitive control, noise alleviation, constraint control

1 Technique background

Hydraulic servo system has been widely employed in
various industrial applications by utilizing the superiorities
of its large power-to-weight ratio and capability to generate
large force/torque, and its controller design determines the
final performance. To design an effective controller, a
priori modelling of the control plant is very useful even if
the final controller does not rely on the precise model
information, e.g., linear proportional-integral-derivative
(PID) controller. Actually, the perfect PID controller gains
have strong relationship with the dynamic structure
characteristics and parameters of the controlled plant.
A detailed description of the modelling of hydraulic

control system has been made in Ref. [1]. In addition, by
using the linearized hydraulic system model, the transfer
function based control methods have also been discussed
therein. Afterwards, various linear controllers, especially
the PID-based controllers, are successfully and widely
applied in numerous applications. However, traditional
linear controllers have become difficult to meet the
increasingly strict performance requirements. Moreover,
inherent nonlinear features and modelling uncertainties in
hydraulic systems show great challenge to the linear
controllers. Hence, there is a pressing need of nonlinear
based control to handle nonlinear behaviors and modelling
uncertainties, and achieve more attractive control perfor-
mance for high-end equipments and/or tasks in extreme
environment.
The nonlinear features of hydraulic system include

nonlinear pressure-flow characteristic of servo valve,
saturation, dead-zone and hysteresis of servo valve,
nonlinear friction in hydraulic actuators, backlash non-
linearity of mechanical connection, mechanism nonlinear-
ity, etc. In these nonlinearities, pressure-flow nonlinearity
is the most common as well as important nonlinear
characteristic affecting the control performance. Essential
nonlinearities highly prompt the development of model-
based hydraulic nonlinear servo control theories and
techniques. The core idea in this type of control method
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is that firstly building the system nonlinear model in the
state-space, cancelling all nonlinearities via full state
feedback, and then transforming the nonlinear system
dynamics to linear tracking error dynamics, finally
designing linear/nonlinear feedback control laws to
stabilize the system, and expecting high control perfor-
mance. However, this design procedure has an extremely
critical problem, that is the modelling uncertainty issue,
which may deteriorate the control performance and even
lead to instability. Hence, how to handle all modelling
uncertainties to ensure the successful cancellation effect of
nonlinearities is the key to the success of this kind of
design concept.
For hydraulic servo systems, the modelling uncertainties

include parametric uncertainties and uncertain nonlinea-
rities [2]. Parametric uncertainties include the unknown
driven mass load, friction coefficients which can be
explicitly modeled, and the hydraulic parameters (e.g.,
effective bulk modulus, internal leakage coefficient,
electrical gains of servo valve). Parametric uncertainties
have the unique features that the structure of this type
uncertainty is known, the value of the associated parameter
is unknown but constant or slowly changing and can be
thought as constant. Other general uncertainties, such as
unmodeled friction behaviors, complicated leakage fea-
tures and external disturbances, are called uncertain
nonlinearities or time-varying disturbances.
Nonlinear adaptive backstepping control techniques [3],

which can estimate the unknown parameters online, are
effective to handle parametric uncertainties. Therefore,
various adaptive based control schemes have been
proposed for hydraulic systems. However, the uncertain
nonlinearities (e.g., nonlinear frictions and external
disturbances) are neglected and only the parametric
uncertainties are taken into consideration in traditional
adaptive controller design. As a matter of fact, it is
impossible to obtain the accurate mathematical model of
practical hydraulic system since there always exist some
complicated effects that cannot be modeled by explicit
functions. Hence, the uncertain nonlinearities always exist
in hydraulic systems and restrict the control performance
improvements.
Nonlinear robust control techniques have also been

utilized for hydraulic servo systems in some occasions.
This kind of control method has some robustness with
respect to both parametric uncertainties and uncertain
nonlinearities. However, typical Nonlinear robust control
handle parametric uncertainties in a conservative way, i.e.,
using the nominal values of the unknown parameters, and
lumping the parameter deviation effects into generalized
disturbances. With the assumption that all generalized
disturbance is bounded, linear/nonlinear robust feedback
law can be designed, but the nonlinear robust controller
can only ensure the tracking error is bounded and the high
precision tracking is achieved by employing large feed-
back gains in these robust controllers.

As analysed above, hydraulic servo systems both exist
parametric uncertainty and uncertain nonlinearity. Hence,
how to handle modelling uncertainties by merging
adaptive control, nonlinear robust control, disturbance
observer technique, etc., is more attractive and useful in
practice. In this paper, the modelling and control
challenges are analyzed firstly, and some recent develop-
ments of nonlinear-model-based hydraulic servo control
proposed by the author and his team are reviewed, after
that some perspectives are made of opening problems.

2 Nonlinear model and challenges of
hydraulic servo system

2.1 Physical model

The servo-valve controlled hydraulic actuator is consid-
ered in this paper. It contains two physical types, i.e.,
double-rod hydraulic cylinder illustrated in Fig. 1(a) and
bidirectional hydraulic motor in Fig. 1(b). They have the
same architecture, and the modelling, control methods are
interchangeable. In the following, the valve-controlled
bidirectional hydraulic motor is taken as an example to
develop the nonlinear physical model.

Fig. 1 The schematic diagram of the hydraulic servo system. (a)
Servo-valve controlled double rod hydraulic cylinder; (b) servo-
valve controlled bidirectional hydraulic motor
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As shown in Fig. 1(b), an inertia load is driven by a
servo-valve controlled bidirectional hydraulic motor
whose structure is depicted in the right of Fig. 1(b). In
the hydraulic control system, the supply pressure Ps is
invariable, which is guaranteed by a relief valve and
accumulator. The return pressure Pr is small since it is
directly connected to the oil tank. The goal is to have the
inertia load to track any smooth motion trajectory as
closely as possible. The torque balance equation of the
inertia load is

m€y ¼ PLA – f ðtÞ, (1)

where m is the moment of inertia of the load, y is the
angular displacement of the load, PL = P1 – P2 is the load
pressure in which P1 and P2 are pressures inside the two
chambers of the actuator, A denotes the radian displace-
ment of the actuator and f(t) = fr(t) + fe(t) in which fr(t)
denotes the modeled friction effects and fe(t) denotes other
unmodeled disturbances. Various friction models have
been proposed in Ref. [4], and they typically contain
discontinuous signum function to describe the switching
effect at zero velocity point. However, non-differentiable
friction model cannot be used in backstepping design, and
hence is not suitable for hydraulic servo control. The
following smooth friction models have been widely
utilized in model-based hydraulic servo control:

frðtÞ ¼ B_y, (2)

or

frðtÞ ¼ B _y þ AfSf ð_yÞ, (3)

where B is viscous friction coefficient, AfSf is the
approximated nonlinear Coulomb friction in which Af is
the amplitude and Sf is a known continuous shape function.
It is worth noting that although various dynamic friction

models have been proposed in Refs. [5,6], they are non-
differentiable due to containing discontinuous sign func-
tion. That is why most nonlinear hydraulic control methods
do not employ them to complete friction compensation.
Considering the compressibility of oil, the pressure

dynamics inside the two chambers can be given by [1]

_P1 ¼
βe
V1

–A _y – qLðPLÞ þ q1ðtÞ þ Q1½ �
_P2 ¼

βe
V2

A _y þ qLðPLÞ – q2ðtÞ –Q2½ �

8>><
>>: , (4)

where V1 = V01+ Ay, V2= V02–Ay are the control volumes
of the two chambers of the actuator in which V01 and V02

are the initial control volumes, βe is the effective oil bulk
modulus, qL is the total internal leakage of the actuator
which is related to PL, q1(t) and q2(t) are the unmodeled
errors, Q1 is the supplied flow rate to the forward chamber,
and Q2 is the return flow rate of the return chamber. Since a
servo valve is utilized in this paper, its dynamics are

neglected in comparison to our interest frequency rang due
to the much faster valve response. Thus, it can be assumed
that the control input voltage u is proportional to the spool
valve displacement xv. Then, Q1 and Q2 can be expressed
as

Q1 ¼ ktu½sðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps –P1

p þ sð – uÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 –Pr

p �
Q2 ¼ ktu½sðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 –Pr

p þ sð – uÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps –P2

p �

(
, (5)

where kt is the total flow gain and the definition of the
function s(u) is

sðuÞ ¼ 1, if u≥0

0, if u < 0
:

(
(6)

Remark 1: In the pressure dynamic model Eq. (4),
potential external leakage is not explicitly expressed, and
its effects can be lumped into modelling errors, i.e., q1(t)
and q2(t). In addition, the internal leakage qL(PL) is
typically modeled as proportional to the load pressure PL,
i.e., qL(PL)= CtPL, where Ct is the internal leakage
coefficient of the actuator. This model might be not precise
for different actuators, see an example in Refs. [7,8]. The
other effects of internal leakage can also be lumped into
q1(t) and q2(t).
Besides Eqs. (4) and (5) describing the effects of

nonlinear pressure-flow characteristic of the servo valve,
there still exists a simplified nonlinear model with the help
of the load flow concept, the derivation can be found in
Ref. [1], in this case, the load pressure dynamics is

Vt

4βe
_PL ¼ –A_y –CtPL þ Qo þ Q tð Þ þ QL, (7)

where Vt= V1+ V2 is the total control volume of the
actuator, Q(t) is the modelling error caused by complicated
internal leakage, external leakage, etc., and QL=(Q1+Q2)/2
is the load flow. The relationship betweenQL and the spool
valve displacement xv is [1]

QL ¼ kqxv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps – signðxvÞPL

p
, (8)

where kq ¼ Cdw
ffiffiffiffiffiffiffiffi
1=�

p
is the flow gain and sign(xv) is

signðxvÞ ¼
1, if xv≥0

– 1, if xv < 0
,

(
(9)

where Cd is the discharge coefficient, w is the spool valve
area gradient, and r is the oil density.
As discussed above, the relationship between xv and u

can be approximated as xv= kiu, where ki> 0 is an
electrical gain. Therefore, Eq. (8) can be written as

QL ¼ ktu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps – signðuÞPL

p
, (10)

where kt= kqki is the total flow gain.
The model Eqs. (7)–(10) can be utilized in the case that
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only pressure sensor is mounted on the system, that is to
say, the information of P1 and P2 cannot be measured and
hence nonlinear feature defined by Eq. (5) cannot be
utilized in controller design. There is another case for
controller design by using Eqs. (7)–(10), i.e., the
estimation/observation of load pressure signal PL only
via position information, this case will be discussed later.

2.2 State-space model

Model-based nonlinear control for hydraulic systems is
typically developed from the state-space model, hence a
suitable state-space model is a favorable start-point for
hydraulic nonlinear control. However, there is no strict rule
about how to choose state variables, as long as the
dynamics of the chosen state variables could sufficiently
and necessarily describe the original system dynamics. The
following provides two common state-space models.

2.2.1 Load pressure based state-space model

From the physical model Eqs. (1), (4) and (5), it is known
that the state variables of the considered hydraulic system
include y, _y, P1, and P2. However, only y, _y, and PL are
necessary to control in practice. Hence, the state variables
can be defined as x =[x1, x2, x3]

T=[y, _y, PL]
T, then the state

equation describing the whole system can be written as

_x1 ¼ x2

_x2 ¼
1

m
½Ax3 – frðtÞ – feðtÞ�

_x3 ¼ βekt
R1

V1
þ R2

V2

� �
u – βe

1

V1
þ 1

V2

� �
ðAx2 þ Ctx3Þ

þ qðtÞ

,

8>>>>>>><
>>>>>>>:

(11)

where

R1 ¼ sðuÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps –P1

p þ sð – uÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 –Pr

p

R2 ¼ sðuÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 –Pr

p þ sð – uÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps –P2

p

q tð Þ ¼ βe
q1ðtÞ
V1

þ q2ðtÞ
V2

� �
8>>>><
>>>>:

: (12)

In Eq. (11), a reduced-order state-space model is built,
and based on this model, various nonlinear controllers
could be developed to stabilize the system Eq. (11) and
achieve advanced tracking performance based on the
model above. By the way, the system Eq. (11) is based on
the pressure dynamics in Eqs. (4) and (5), it can also be
developed from Eqs. (7)–(10), in which the load flow
concept is utilized. No matter whatever the case, it is worth
noting that there exists a zero dynamic problem since the
final controller can only ensure the boundedness of the
state variables, i.e., the developed controller can ensure the
signal PL is bounded, however, the boundedness of the

original state variables P1, P2 is still remained in theory
level. The boundedness of PL cannot ensure the bounded-
ness of P1 and P2. To complete the theoretical analysis,
singular value perturbation theory is suggested to help
analyzing the boundedness of P1 and P2. In practice, from
the viewpoint of engineering, it can be deduced that the
inside pressure P1 and P2 are almost always no more than
the supply pressure, hence, a practical assumption can be
made for the built state-space model, and this assumption
has been widely employed in model-based nonlinear
control for hydraulic systems.
Assumption 1: In normal working conditions, P1 and P2

are both bounded by Pr and Ps, i.e., 0<Pr<P1<Ps,
0<Pr<P2<Ps.

2.2.2 Acceleration-based state-space model

Besides the load pressure based state-space model, there
also exists acceleration based state-space model, and this
model is typical utilized for special control purpose, such
as velocity and acceleration constraint control, reduction of
unmatched disturbance. As discussed in Ref. [2]. it is
reasonable to assume the unmodeled term fe(t) is
continuously differentiable, then based on the dynamics
in Eqs. (1) and (2), combining the pressure dynamics in
Eqs. (7)–(10), the state variables can be defined as x =[x1,
x2, x3]

T=[y, _y,€y]T, thus the state equation to describe the
whole system can be written as [8]

_x1 ¼ x2

_x2 ¼ x3

mVt

4Aβekt
_x3 ¼ U –

A

kt
þ CtB

Akt

� �
x2

–
Ctm

Akt
þ VtB

4Aβekt

� �
x3 –Δ tð Þ

8>>>>>>>>>><
>>>>>>>>>>:

, (13)

where

U@u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps – signðuÞPL

p
,

Δ tð Þ@1

kt
q tð Þ þ Ct

Akt
fe tð Þ þ Vt

4Aβekt
_f e tð Þ: (14)

Remark 2: In Eq. (14), a new variable U is defined to
represent the control input to the system. Since pressure
sensors have been mounted in our system, i.e., (Ps–
sign(u)PL)

1/2 can be calculated in real-time, only if U is
determined, then u can be calculated byU/(Ps–sign(u)PL)

1/2.
Hence, the design mission is to achieve high tracking
performance by synthesizing a suitable signal U.

2.3 Control challenges

As pointed out in technique background, the hydraulic
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system exists lots of modelling uncertainties, and these
uncertainties are the main obstacles of developing model-
based nonlinear controllers for hydraulic systems.
Although there are lots of advanced nonlinear control
theories, such as adaptive control, sliding model control,
observer, they maybe not directly suitable for hydraulic
servo control, due to the specific characteristics of valve-
controlled hydraulic system. The control challenges are
reflected in
1) Unlike other mechatronic servo systems, such as

servo motor, hydraulic system exists heavy parametric
uncertainty and uncertain nonlinearity. The hydraulic
parameters, such as the internal leakage, the effective
bulk modules, are very sensitive to temperature, air/water
pollution and/or component wear, etc. The typical system
parameters, such as m, B, Af, βe, Ct, kt, may be all possible
to be unknown. Besides, one of the uncertain nonlinearity,
the large external disturbance may be not avoided in
practice, since the main task of hydraulic actuator is to
drive heavy external disturbances for some hydraulic
applications, such as aircraft actuator is to overcome
aerodynamic force, hydraulic machine tool is to overcome
cutting force during manufacturing; friction is also a main
source of uncertain nonlinearity, considering the sealing
effect, the friction force is very difficult to reduce for
hydraulic actuators. The friction force and the internal
leakage are a couple of contradictions: small friction
usually means large internal leakage, and vice versa. As
pointed out in Ref. [9], the friction force can reach 30% of
the total output torque of the hydraulic actuator in some
cases. Another difficulty for friction is that it is very hard to
precisely model it. Although there are lots of friction
models in literature, the exact model for nonlinear friction
is still debatable. The modelling complexity of friction is
an intractable problem, more complex to model the
friction, more precise to describe the nonlinear feature,
however, more difficult to be utilized in controller design,
and vice versa. The third source of the uncertain
nonlinearity is the unmodeled uncertainty in pressure
dynamics, the internal leakage and external leakage are
very difficult to be exactly described, in addition, the
nonlinear pressure-flow feature of servo valve is also an
approximation, there are lots of turbulent flow effects near
valve orifice. Overall, uncertain nonlinearity indeed exists
in hydraulic systems and typically cannot be ignored.
2) The hydraulic system exists complex input non-

linearity. No matter what the type of flow equation is
utilized, it possesses complex input nonlinearity. From
Eqs. (5) and (10), it can be found that the control input
voltage u times a nonlinear term which contains u again,
i.e., uf(∙, u), f(∙, u) is a nonlinear function with respect to u.
From this point, it is clear that the controlled nonlinear
system is non-affine. Non-affine feature makes lots of
nonlinear control theories and methods not suitable for
hydraulic systems. Current nonlinear control methods for

non-affine systems are very complex and difficult in
implementation in common, and these methods still stay at
the theoretical level. In practice, to develop model-based
nonlinear control methods for hydraulic system, the
researchers usually ignore the non-affine effects, and
deduce the final control input with a specific term over
the nonlinear function f(∙, u), just like the implementation
way given in Remark 2. This practical implementation
method is useful for most cases. However, if the valve-
spool xv does not proportion to control input u, at high
frequency as an example, and the spool position is
unavailable for measurement, then the control design will
be caught in the extremity by the non-affine feature.
Besides, the nonlinear effect sign(u), there are other input
nonlinearities, such as dead-zone effect of valve spool,
saturation and hysteresis, these nonlinear effects will be
coupled with the nonlinear function sign(u), and makes the
control problem more intractable and difficult.
3) Hydraulic systems typically exist mismatched

uncertainty. The so-called mismatched uncertainty can be
comprehended as the uncertainty that does not appear in
the dynamic channel with the final control input u. More
concrete for hydraulic system, see the system model Eq.
(11), all possible uncertainties in the second dynamic
equation are mismatched uncertainties, i.e., the unknown
case for m, A, fr(t) and fe(t). The mismatched uncertainty
will cause the control problem more inconvenient, since
the final control u cannot be designed to handle these
unmatched uncertainties directly. To complete the control
mission with mismatched uncertainty, backstepping design
has to be employed. Although backstepping design can
help greatly coping with mismatched uncertainty, its
unique feature may bring other troubles for controller
design in some ad hoc cases, e.g., differential explosion
issue. Although there exist available methods to alleviate
the difficulty in differential explosion, such as dynamic
surface control [10,11], command filtered backstepping
[12,13], their controller design and stability analysis are
more complex and difficulty. Usually, only one-step
backstepping is suitable for hydraulic systems. This is
one reason why servo-valve dynamics are ignored in most
literatures. If one-order, or second-order servo-valve
dynamics are taken into consideration, the whole order
of the considered hydraulic system model will increase,
and the mismatched uncertainty will become deep from the
final control input u, then differential explosion issue is
inevitable. Besides differential explosion in backstepping,
mismatched uncertainty will cause other practical pro-
blems when considering other control purpose, such as
state constraints, sliding mode concept design, observer
design. Hence, in some cases, the system model Eq. (13)
with the help of acceleration information is more welcome,
since this model does not exist mismatched uncertainty,
and can bring some convenience to controller design.
However, it has also to be admitted the system model
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Eq. (13) typically requires acceleration feedback for full
state feedback based controller design, which is not easy or
common in practice.
4) Besides above common control challenges, specific

control missions may cause more challenges, for example,
exact and uncomplicated nonlinear friction compensation
for low velocity tracking, more tracking accuracy require-
ments for repetitive tasks, output feedback tracking control
in the case that the system cost/weight/volume is limited,
output velocity/acceleration constraint requirement with
tracking control, etc. During the following controller
designs, it will be discussed some ad hoc control
challenges in detail when it suffered.

3 Model-based nonlinear control

Model-based nonlinear control is a powerful tool to handle
the nonlinearities in hydraulic systems, the problem is how
to handle various modelling uncertainties. As discussed
above, the uncertainty in hydraulic systems includes
parametric uncertainty and uncertain nonlinearity. Based
on the different uncertainty circumstances, the author will
discuss the model-based nonlinear control techniques in
the following cases:
Case 1: The considered hydraulic system possesses

simple structure, and its load structure is unitary and
known. Moreover, all system parameters can be precisely
identified, and their variations are not sensitive to the
working environment, or the whole run of the system is in
a very short time, and hence assuming the system
parameters are constant and known is acceptable. In
summary, the hydraulic system can be ideally and precisely
modeled, and the model exists little uncertainty, only
nonlinearity hampers the development of the high-
performance controller. In this case, feedback linearization
control is recommended, and high tracking performance
can be expected.
Case 2: A common case for hydraulic system is that the

system exists parametric uncertainties, i.e., the load
parameters and hydraulic parameters are unknown, m, B,
Af, βe, Ct, and kt are unknown. However, the system does
not exist uncertain nonlinearities. In summary, the
hydraulic system can be structurally modeled, and the
model only exists parametric uncertainty which along with
nonlinearity and hampers the development of the high-
performance controller. In this case, nonlinear adaptive
control is recommended, and adaptive law can be
synthesized to result in high tracking performance. The
traditional adaptive control can easily handle the para-
meters appearing in the system in a linear way, i.e., the
parameters m, B, Af, βe, Ct, and kt. However, there are still
some parameters such as V01, V02, Ps, and Pr, they appear
in the system via a nonlinear way, and if they are unknown,
to online estimate them by developing an adaptive law is
challenging, some possible solutions with this nonlinear

parameter adaptation can be found in Refs. [14–16].
Case 3: Another common case for hydraulic system is

that the system exists uncertain nonlinearities, i.e., the
systems are disturbed by unknown and time-varying
functions, e.g., fe(t), q(t) in Eq. (11) and Δ(t) in Eq. (13).
All system parameters are exactly known or their nominal
values can be utilized and the deviation effects with the
nominal values can be lumped into time varying
disturbances. With some suitable assumptions, such as
the boundedness of various time varying disturbances,
nonlinear robust controller can be developed along with
the system nonlinearity to enhance the robustness against
disturbances and improve the tracking performance.
Case 4: A more common case for hydraulic system is

that the system both exists parametric uncertainty and
uncertain nonlinearity, as discussed in the control chal-
lenges. The coupling effect between the parametric
uncertainty and uncertain nonlinearity make the develop-
ment of nonlinear advanced controller for hydraulic system
more challengeable. In this area, various combinations of
adaptive and robust control methods have been proposed
with the expectation that the parameter uncertainty can be
reduced by adaptive law and the uncertain nonlinearity
could be suppressed by nonlinear robust law.
Case 5: With a suitable assumption that the uncertain

nonlinearity is smooth, an enhanced robust mechanism is
developed by the author and his co-operators. The
enhanced robust control law combines a robust integral
of the sign of the error (RISE) controller which can
asymptotically compensate smooth disturbances, and
typically asymptotic tracking performance can be
achieved.
Case 6: The hydraulic systemmay execute some specific

tasks, for example, repetitive tasks. Although the system
both exists parametric uncertainty and uncertain non-
linearity, in repetitive tasks, all closed-loop system signals
approximately appear periodicity, and no doubt the state-
dependent disturbances will possess some periodicity. This
feature provides us an opportunity to precisely compensate
these disturbances via adaptive mechanism, i.e., develop-
ing an adaptive repetitive controller.
Case 7: Low velocity tracking performance is an

important capability for hydraulic systems, especially for
the hydraulic test equipments. In fact, friction can lead to
undesired stick-slip motion and limit cycles. How to
appropriately model and compensate friction is a hotspot in
mechanical low velocity tracking. Nonlinear friction
contains various friction actions, such as stiction friction,
Coulomb friction, and Stribeck effect. Since the LuGre
friction model proposed in Ref. [5] can represent the
majority of friction effects and is easy to be incorporated in
the control design, it has been widely employed in servo
control area. To handle the unmatched friction effects in
hydraulic systems, backstepping design method is often
utilized which requires differentiation operation on the
employed nonlinear friction model. However, the draw-
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back of the LuGre friction model is that it is piecewisely
continuous and thus non-differentiable. Hence, this greatly
limits the utilization of the LuGre friction model in
hydraulic control design. How to use the LuGre friction
model in backstepping controller design for hydraulic
systems to compensate the friction effects and then to
achieve tracking performance improvement is still a
pending issue. Therefore, it is necessary to develop new
continuously differentiable LuGre friction model for
hydraulic system.
Case 8: As we know, almost all nonlinear approaches for

hydraulic systems have used full-state feedback. It means
that those controller designs need velocity and pressure
signals besides position signal. However, in plenty of
practical hydraulic systems, only position sensor is
mounted due to some realistic restrictions such as cost
and/or structure. Moreover, the measured velocity and
pressure signals are usually contaminated by heavy noise
which has adverse effects on the control performance of
full-state feedback controllers. Thus, it is an imperious
demand to develop an output feedback nonlinear control
scheme which only requires the output measurement for
hydraulic servo system.
Case 9: Backstepping method has been widely

employed in controller design of hydraulic systems.
However, the controllers designed by directly applying
the standard backstepping method may be aggressive in
practice. Those controllers are not recommended for
practical hydraulic systems with hard constraints on the
system states and control input saturation. The practical
hydraulic systems, especially those testing equipments
which have interaction with the environment and the unit
under test (UUT), have potential risks due to their high
load and stiffness properties. The UUT may be damaged
by overlarge velocity and/or acceleration if their hard
constraints are ignored in the control design. Hence, it is
necessary to investigate the advanced nonlinear control
strategy for hydraulic servo systems with consideration of
both velocity and acceleration constraints.

3.1 Feedback linearization control

As described in Case 1, the mathematic model of the
discussed hydraulic system in this case is known. In order
to present the feedback linearization (FBL) control for a
more general case, it is considered the load pressure based
state-space model in Eq. (11), and the modeled friction fr(t)
in Eq. (3), then the system model for this case can be given
as

_x1 ¼ x2

_x2 ¼
1

m
½x3 –Bx2 –AfSf ðx2Þ�

_x3 ¼ βekt
R1

V1
þ R2

V2

� �
u – βe

1

V1
þ 1

V2

� �
ðAx2 þ Ctx3Þ

8>>>>><
>>>>>:

:

(15)

Assumption 2: The desired position command yd =
x1d(t) 2C3 is bounded.

3.1.1 Feedback linearization controller design

A set of error variables can be defined as

z1 ¼ x1 – x1d, z2 ¼ _z1 þ k1z1 ¼ x2 – α1,

α1@ _x1d – k1z1, z3 ¼ x3 – α2,
(16)

where x1d is desired motion trajectory and z1 is the output
tracking error, k1 is a positive feedback gain, α1 is the
virtual control law of the state x2, and z2 is the discrepancy
between the actual state x2 and virtual control α1, α2 is the
virtual control law of the state x3, and z3 is the discrepancy
between the actual state x3 and virtual control α2.
Combining the defined error variables in Eq. (16) and

the system model Eq. (15), the error dynamics can be
expressed as

_z2 ¼
1

m
½Aðz3 þ α2Þ –Bx2 –AfSf ðx2Þ� – _α1

_z3 ¼ βekt
R1

V1
þ R2

V2

� �
u – βe

1

V1
þ 1

V2

� �
ðAx2 þ Ctx3Þ – _α2

8>><
>>: :

(17)

Therefore, the feedback linearization controller u and
the virtual control law α2 can be synthesized as

u ¼ 1

βekt
R1

V1
þ R2

V2

� �

$ βe
1

V1
þ 1

V2

� �
ðAx2 þ Ctx3Þ þ _α2 – k3z3

� �

α2 ¼
1

A
Bx2 þ AfSf ðx2Þ þ m _α1 – k2z2½ �

8>>>>>>>>>><
>>>>>>>>>>:

, (18)

where k2 and k3> 0 are the feedback gains.
By substituting α2 and the actual control input u into the

error dynamics in Eq. (17), one obtains

_z1 ¼ z2 – k1z1, m_z2 ¼ Az3 – k2z2, _z3 ¼ – k3z3: (19)

It can be seen from Eq. (19) that the nonlinear error
dynamics have been transformed into linear ones by
utilizing the feedback linearization control method to
cancel the nonlinear terms.

3.1.2 Stability analysis

Theorem 1: By selecting large control gains k1, k2, and k3,
the matrix Λ1 defined below will be positive definite, then
the designed feedback linearization controller Eq. (18)
guarantees that all closed-loop system signals are bounded
and asymptotic tracking performance can be achieved, i.e.,
z1! 0 as t!1.
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Λ1 ¼

k1 –
1

2
0

–
1

2
k2 –

A

2

0 –
A

2
k3

2
666664

3
777775: (20)

Proof: Define a positive Lyapunov function V1(t):

V1 ¼
1

2
z21 þ

1

2
mz22 þ

1

2
z23: (21)

Combining Eq. (19), the time derivative of V1(t) can be
deduced as

_V 1 ¼ z1 _z1 þ mz2 _z2 þ z3 _z3

¼ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ Az2z3

¼ –ZTΛ1Z , (22)

where Z = [z1, z2, z3]
T.

Noting the matrix Λ1 is positive definite, thus we have

_V 1£ – lminðΛ1Þðz21 þ z22 þ z23Þ@ –W1, (23)

where lmin(Λ1) is the minimal eigenvalue of matrix Λ1.
Then, on the basis of the result in Eq. (23), according to
Barbalat’s lemma [3], W1! 0 as t!1, the results in
Theorem 1 can be obtained.

3.1.3 Experimental verification

To demonstrate the effectiveness of the developed FBL
control method, experimental results were obtained by
comparing the nonlinear feedback linearization controller
association with some suitable modifications and the
velocity feed-forward proportional-integral (VFPI) con-
troller in Ref. [17]. The two controllers were tested for a
cosine trajectory with the same 1° amplitude and a series of
different frequencies up to 20 Hz. The main experimental
results are presented as follows. Specifically, the trajectory
tracking and tracking error of the two controllers for 1°-
20 Hz motion are shown in Figs. 2(a) and 2(b). The

tracking performance indices of the two controllers are
summarized in Table 1. All the performance indices show
that the developed FBL control method achieves better
tracking performance than VFPI controller. The reader is
referred to Ref. [17] to get more details about the
experiments.

Fig. 2 Tracking performance of VFPI and FBL for 1°-20 Hz
motion. (a) Trajectory tracking; (b) tracking errors of FBL and
VFPI

Table 1 Performances summary with 1° amplitude testing

Frequency/Hz Max velocity/((° ) $s–1) Controller Max error/(° ) Phase lag

5 31.4 VFPI 0.100 0.5°

5 31.4 FBL 0.030 Invisible

10 62.8 VFPI 0.200 12.2°

10 62.8 FBL 0.026 Invisible

15 94.2 VFPI 0.300 16.8°

15 94.2 FBL 0.036 Invisible

20 125.6 VFPI 0.400 22°

20 125.6 FBL 0.050 Invisible
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3.2 Adaptive control

For Case 2, system parametric uncertainties are specially
taken into consideration and the uncertain nonlinearities
are ignored. Define the uncertain parameter set θ = [θ1, θ2,
θ3, θ4, θ5, θ6]

T, where θ1 = A/m, θ2 = B/m, θ3 = Af/m, θ4 =
βekt, θ5 = βeA, and θ6 = βect. Then the system model for this
case can be given by

_x1 ¼ x2

_x2 ¼ �1x3 – �2x2 – �3Sf ðx2Þ
_x3 ¼ �4f1u – �5f2 – �6f3

,

8><
>: (24)

where f1 = (R1/V1 + R2/V2), f2 = (1/V1 + 1/V2)x2, and f3 =
(1/V1 + 1/V2)x3.
Assumption 3: The defined parameter set θ satisfies

θ 2 Ω�@fθ : θmin£θ£θmaxg, (25)

where θ min = [θ1min, θ2min, …, θ6min]
T, θ max = [θ1max,

θ2max, …, θ6max]
T are known.

3.2.1 Adaptive controller design

Define the error variables as in Eq. (16), and note the
system model Eq. (24), the error dynamics can then be
described as

_z2 ¼ �1ðz3 þ α2Þ – �2x2 – �3Sf ðx2Þ – _α1

_z3 ¼ �4f1u – �5f2 – �6f3 – _α2
:

(
(26)

Based on the backstepping method, the traditional
adaptive controller u and the virtual control law α2 can
be designed as

u ¼ 1

�̂4f1
ð�̂5f2 þ �̂6f3 þ _α2 – k3z3Þ

α2 ¼
1

�̂1
�̂2x2 þ �̂3Sf ðx2Þ þ _α1 – k2z2�,
h

8>><
>>: (27)

where θ̂ is the estimate of θ, θ̂ ¼ �̂1,  �̂2,  �̂3,  �̂4,  �̂5,  �̂6
h iT

.

Design the parameter adaptation law for θ̂ as follows:

_̂θ ¼ Γτ, τ ¼ φ2z2 þ φ3z3, (28)

where Г> 0 is a diagonal adaptation rate matrix, is the
adaptation function, φ2 and φ3 are regressors of parameter
adaptation, and φ2 = [α2, –x2, –Sf(x2), 0, 0, 0]

T, φ3 = [0, 0,
0, f1u, –f2, –f3]

T.
Substituting the virtual control α2 and the actual control

input u into the error dynamics Eq. (26), that is

_z2 ¼ θ1z3 – k2z2 – ~θ
T
φ2

_z3 ¼ – k3z3 – ~θ
T
φ3

,

8<
: (29)

where ~θ ¼ θ̂ – θ is the estimation error of the unknown
parameter set θ.

3.2.2 Stability analysis

Theorem 2: Based on the adaptive law in Eq. (28),
selecting large enough control gains k1, k2, and k3, hence
the matrix Λ2 defined below will be positive definite,

Λ2 ¼

k1 –
1

2
0

–
1

2
k2 –

�1
2

0 –
�1
2

k3

2
6666664

3
7777775
, (30)

then the designed adaptive controller Eq. (27) guarantees
that all closed-loop system signals are bounded and
asymptotic tracking performance can be achieved, i.e.,
z1! 0 as t!1.
Proof: Define a positive Lyapunov function Va(t) as

follows:

Va ¼
1

2
z21 þ

1

2
z22 þ

1

2
z23 þ

1

2
~θ
T
Γ – 1~θ: (31)

Combing the error dynamics in Eq. (29) and applying
the adaptive law in Eq. (28), the time derivative of Va(t) can
be deduced as

_V a ¼ z1 _z1 þ z2 _z2 þ z3 _z3 þ ~θ
T
Γ – 1 _̂θ

¼ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3

¼ –ZTΛ2Z : (32)

Noting the matrix Λ2 is positive definite, thus

_V a£ – lminðΛ2Þðz21 þ z22 þ z23Þ@ –W2, (33)

where lmin(Λ2) is the minimal eigenvalue of matrix Λ2.
Then considering the result in the feedback linearization
control, it can be concluded that asymptotic tracking
performance can also be achieved with the developed
adaptive controller, i.e., z1! 0 as t!1.
The verification of this traditional adaptive control

method can be found in many of the author’s publications
listed in the references.

3.3 Nonlinear robust control

In Case 3, the hydraulic system only exists uncertain
nonlinearities and parametric uncertainties are neglected.
Utilize the true values or nominal values of the physical
parameters in the subsequent nonlinear robust controller
design. Define the nominal value set θ n= [θ1n, θ2n, θ3n, θ4n,
θ5n, θ6n]

T. The system model for this case can be given by
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_x1 ¼ x2

_x2 ¼ �1x3 – �2x2 – �3Sf x2ð Þ – feðtÞ
m

_x3 ¼ �4f1u – �5f2 – �6f3 þ qðtÞ
:

8>>><
>>>:

(34)

Assumption 4: The uncertain nonlinearities fe(t) and q(t)
satisfy

jfeðtÞj£δ1, jqðtÞj£δ2, (35)

where d1 and d2 are known positive constants.

3.3.1 Nonlinear robust controller design

The error variables can be defined as in Eq. (16), and note
the system model Eq. (34), describe the error dynamics as

_z2 ¼ �1ðz3 þ α2Þ – �2x2 – �3Sf ðx2Þ –
feðtÞ
m

– _α1

_z3 ¼ �4f1u – �5f2 – �6f3 þ qðtÞ – _α2

:

8<
: (36)

With the backstepping method, design the nonlinear
robust controller u and α2 as

u ¼ 1

�4nf1
�5nf2 þ �6nf3 þ _α2 – k3z3½ �

α2 ¼
1

�n
�2nx2 þ �3nSf ðx2Þ þ _α1 – k2z2½ �

:

8>><
>>: (37)

Substituting the virtual control α2 and the actual control
input u into the error dynamics Eq. (36), it is

_z2 ¼ �1z3 – k2z2 – ~θ
T
nφ2 –

feðtÞ
m

_z3 ¼ – k3z3 – ~θ
T
nφ3 þ qðtÞ

,

8<
: (38)

where ~θn ¼ θn – θ is the deviation between the true values
and the nominal values of the system parameters.

3.3.2 Stability analysis

Theorem 3: By selecting the large control gains k1, k2, and
k3, the matrix Λ3 defined below will be positive definite,

Λ3 ¼

k1 –
1

2
0

–
1

2
k2 –

1

2
–
�1
2

0 –
�1
2

k3 –
1

2

2
6666664

3
7777775
, (39)

then the designed nonlinear robust controller Eq. (37) can
achieve uniformly ultimately bounded tracking perfor-
mance. In addition, the positive function

Vb ¼
1

2
z21 þ

1

2
z22 þ

1

2
z23, (40)

is bounded by

Vb tð Þ£Vb 0ð Þexpð – l1tÞ þ
C1

l1
½1 – expð – l1tÞ�, (41)

where l1 = 2lmin(Λ3), in which lmin(Λ3) is the minimal
eigenvalue of matrix Λ3, and C1 ¼ h21=2þ h22=2 in which
h1 and h2 are positive functions introduced in the proof.
Proof: Noting the error dynamics in Eq. (38), deduce the

time derivative of Vb(t) as follows:

_V b ¼ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3

þ z2 – ~θ
T
nφ2 –

feðtÞ
m

� �
þ z3 – ~θ

T
nφ3 þ qðtÞ

h i
: (42)

Based on Assumptions 3 and 4, there exist positive
functions h1(x, t) and h2(x, t) satisfying

  ��� – ~θT
nφ2 –

feðtÞ
m
  ���£h1 x,tð Þ, j – ~θT

nφ3 þ qðtÞj£h2 x,tð Þ:
(43)

For example, let h1(x, t) = ||φ2 ||$||θ max –θ min|| + d1/m,
h2(x, t) = ||φ3 ||$||θ max – θ min|| + d2. Then the right side of
Eq. (42) can be upper bounded as

_V b£ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3

þ jz2jh1ðx,tÞ þ jz3jh2ðx,tÞ

    £ – k1z
2
1 – k2 –

1

2

� �
z22 – k3 –

1

2

� �
z23 þ z1z2

þ �1z2z3 þ
h21ðx,tÞ

2
þ h22ðx,tÞ

2

    £ –ZTΛ3Z þ h21ðx,tÞ
2

þ h22ðx,tÞ
2

£ – l1V þ C1,

(44)

which leads to Eq. (41) by employing the Comparing
lemma [3]. The result in Eq. (41) indicates that uniformly
ultimately bounded tracking performance can be obtained
by the designed nonlinear robust controller. That is to say,
the tracking error can be driven into a residual bounded set
with the size of the order of the uncertain nonlinearity
magnitude.

3.4 Nonlinear adaptive robust control

To handle uncertain nonlinearities and parametric uncer-
tainties simultaneously in one controller, the nonlinear
adaptive robust control method was synthesized in
Ref. [2]. The system model for Case 4 is the same as in
Eq. (34). To facilitate the nonlinear adaptive robust
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controller design, besides Assumptions 1, 2, 3 and 4, the
following discontinuous projection mapping is utilized.
Define the discontinuous projection as [2]:

Proj�̂ iðτiÞ ¼
0 if �̂i ¼ �imax and τi > 0

0 if �̂i ¼ �imin and τi < 0 ,

τi otherwise

8>><
>>: (45)

where i = 1, 2, …, 6, and is an adaptation function to be
designed later.
With the adaptation law given by

_̂θ ¼ Projθ̂ðΓτÞ with θmin£θ̂ð0Þ£θmax, (46)

where Г is a diagonal adaptation rate matrix, and Г> 0.
Therefore, the projection mapping proposed above with
any adaptation function can guarantee [2]

ðP1Þ θ̂ 2 Ωθ̂@ θ̂ : θmin£θ̂£θmaxg,
�

(47)

ðP2Þ ~θ
T
Γ – 1Projθ̂ðΓτÞ – τ�£0, 8τ:	

(48)

3.4.1 Nonlinear adaptive robust controller design

The error variables can be defined as in Eq. (16), and note
the system model Eq. (34), described the error dynamics as
in Eq. (36). Then based on the backstepping design
procedure, the virtual control law α2 and the nonlinear
adaptive robust controller u and can be synthesized as

α2 ¼
1

�̂1
ðα2a þ α2sÞ,

α2a ¼ �̂2x2 þ �̂3Sf ðx2Þ þ _α1,

α2s ¼ α2s1 þ α2s2,

α2s1 ¼ – k2z2,

α2s2 ¼ – ks2z2@ –
ψ2

2ε2
z2, (49)

u ¼ 1

�̂4f1
ðua þ usÞ,

ua ¼ �̂5f2 þ �̂6f3 þ _α2,

us ¼ us1 þ us2,

us1 ¼ – k3z3,

us2 ¼ – ks3z3@ –
ψ3

2ε3
z3, (50)

where ε2, ε3 are positive constants, ks2 and ks3 are positive

nonlinear gains, and y2 and y3 are smooth functions
satisfying

ψ2≥kθMk2kφ2k2 þ δ21=m
2

ψ3≥kθMk2kφ3k2 þ δ22
,

(
(51)

in which θM = θ max–θ min.
Substituting the virtual control α2 and the actual control

input u into the error dynamics Eq. (36), it is

_z2 ¼ �1z3 – k2z2 þ α2s2 – ~θ
T
φ2 – feðtÞ=m

_z3 ¼ – k3z3 þ us2 – ~θ
T
φ3 þ qðtÞ

:

8<
: (52)

3.4.2 Stability analysis

Theorem 4: Based on the projection type adaptive law in
Eq. (46) and adaptation function τ ¼ φ2z2 þ φ2z3, by
selecting large control gains k1, k2, and k3, the matrix Λ2

described in Eq. (30) will be positive definite, and the
designed nonlinear adaptive robust controller Eq. (50) can
guarantee:
A. Generally, all signals are bounded and uniformly

ultimately bounded tracking performance can be achieved.
B. Provided after a finite time, the system is only

subjected to the parametric uncertainties (i.e., fe(t) = 0, q(t)
= 0 after a finite time), asymptotic tracking performance
can be also obtained, i.e., z1! 0 as t!1.
Proof: For the general case, choosing the positive

Lyapunov function Vb(t) defined in Eq. (40) and its time
derivative can be written as:

_V b ¼ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3

þ z2 α2s2 – ~θ
T
φ2 –

feðtÞ
m

� �

þ z3 us2 – ~θ
T
nφ3 þ qðtÞ

h i
: (53)

Since the following inequality holds:

z2 α2s2 – ~θ
T
φ2 –

feðtÞ
m

� �
¼ –

ψ2

2ε2
z22 – ~θ

T
φ2z2 –

feðtÞ
m

z2

£ –
ψ2

2ε2
z22 þ k~θT

φ2kjz2j þ
δ1
m
jz2j:

£ –
kθMk2kφ2k2

2ε2
z22 þ k~θT

φ2kjz2j

–
δ21=m

2

2ε2
z22 þ

δ1
m
jz2j£ε2:

(54)

Similarly,

z3 us2 – ~θ
T
nφ3 þ qðtÞ

h i
£ε3: (55)
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Thus, combing Eqs. (54) and (55), the right side of Eq.
(53) can be upper bounded as

_V b£ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3 þ ε2 þ ε3

£ –ZTΛ2Z þ C2£ – l2Vb þ C2, (56)

where C2 = ε2 + ε3, and l2 = 2lmin(Λ2).
By employing the Comparing lemma [3], it can be

concluded from Eq. (56) that the positive function Vb(t) is
bounded by

Vb tð Þ£Vb 0ð Þexpð – l2tÞ þ
C2

l2
½1 – expð – l2tÞ�, (57)

which leads to Part A of Theorem 4.
Then, consider the proof of Part B of Theorem 4,

choosing the positive function Va(t) defined in Eq. (31) and
its time derivative can be written as

_V a ¼ – k1z
2
1 – k2z

2
2 – k3z

2
3 þ z1z2 þ �1z2z3

þ z2 α2s2 – ~θ
T
φ2


 �
þ z3 us2 – ~θ

T
nφ3


 �

þ ~θ
T
Γ – 1 _̂θ : (58)

Considering the property P2 in Eq. (48) and the
definition of , thus

_V a£ –ZTΛ2Z£ – lminðΛ2Þðz21 þ z22 þ z23Þ@ –W2: (59)

Similar to the proof of traditional adaptive controller, by
applying Barbalat’s lemma, the Part B of Theorem 4 can be
derived.

3.4.3 Experimental verification

In order to verify the effectiveness of the developed
adaptive robust control (ARC) controller, the experimental
results were obtained in Ref. [18] on a hydraulic load
simulator by comparing the ARC controller with industrial
PID controller. Although the torque tracking control was
considered in Ref. [18], the designed concept was the same
as the above nonlinear ARC control design. Hence, the
experimental results in Ref. [18] are utilized to illustrate
the high-performance feature of nonlinear ARC control.
The sinusoidal movement of the hydraulic actuator system
is with 20° amplitude and 1 Hz frequency. The torque
desired trajectory is the sinusoidal signal with 1000 N$m
amplitude and 5 Hz frequency. Figures 3 and 4
demonstrate the torque tracking performances under PID
controller and the proposed nonlinear ARC controller
respectively. As a result, the maximum tracking error about
50 N$m is obtained by nonlinear ARC controller, while
under the conventional PID controller, the maximum
tracking error is huge. Hence, the developed ARC
controller achieves better tracking performance than PID

controller. Referring to Ref. [18], the readers can see more
details about the experiments.

3.5 Nonlinear adaptive integral robust control

It can be found from Case 4 that although the developed
nonlinear adaptive robust controller can simultaneously
handle the parametric uncertainties and uncertain non-
linearities, only bounded tracking performance can be
obtained for the general case, i.e., the system is subjected
to both parametric uncertainties and uncertain nonlinea-
rities. Hence, in Case 5, a nonlinear adaptive integral
robust controller is present to obtain excellent asymptotic
tracking performance with both parametric uncertainties
and uncertain nonlinearities.

Fig. 3 Tracking performance under PID controller

Fig. 4 Tracking performance under ARC controller
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As mentioned in Remark 1, the internal leakage qL(PL)
is typically modeled by a linear term with respect to the
load pressure PL, i.e., qL(PL)= CtPL, however, this model
might be not precise for different actuators. Hence, in Ref.
[7], to improve the tracking performance, an internal
leakage identification experiment was conducted for a
valve-controlled bidirectional hydraulic motor to obtain a
more accurate internal leakage model which is given below

qL ¼ c1P
2
L þ c2PL þ c3, (60)

where c1, c2, and c3 are leakage coefficients.
Based on the physical model Eqs. (1), (4), (5), and (60),

it can be redefined the state variables as x =[x1, x2, x3]
T=[y,

_y, APL/m]
T, and the unknown parameter set θ = [θ1, θ2, θ3,

θ4, θ5]
T, where θ1 = βekt, θ2 = βe, θ3 = βec1, θ4 = βec2, and θ5

= βec3. In addition, the modeled friction fr(t) in Eq. (2) is
considered to verify the robustness of the designed
nonlinear integral robust term in this case. Then describe
the specific system model below:

_x1 ¼ x2

_x2 ¼ x3 – bx2 þ dðtÞ
_x3 ¼ �1g1u – �2g2 – �3g3 – �4g4 – �5g5

,

8><
>: (61)

where b = B/m, d(t)= fe(t)/m, and

g1 ¼
A

m

R1

V1
þ R2

V2

� �
,

g2 ¼
A2

m

1

V1
þ 1

V2

� �
x2,

g3 ¼
m

A

1

V1
þ 1

V2

� �
x23,

g4 ¼
1

V1
þ 1

V2

� �
x3,

g5 ¼
A

m

1

V1
þ 1

V2

� �
:

With the similar method to design the nonlinear
controller in Case 4, the discontinuous projection mapping
and parameter adaptation proposed in Eqs. (45) and (46)
are also utilized. In addition, make an assumption as
follows.
Assumption 5: The uncertain nonlinearities d(t) is

smooth enough such that

j _dj£�1,  j€d j£�2, (62)

where σ1 and σ2 are known positive constants.
For the rationality of the Assumption 5, one may argue

that the assumption is too strict since the friction is
typically discontinuous. It can be explained that although

frictions are modeled as discontinuous functions generally,
there are still some continuous friction models for model-
based controller design, because none of physical actuators
can produce discontinuous force to compensate the
discontinuous friction effects, an example of continuous
friction models will be given in the next section of this
paper.

3.5.1 Nonlinear adaptive integral robust controller design

Besides the error variables defined in Eq. (16), an auxiliary
error signal r is defined as follows to facilitate the nonlinear
adaptive integral robust controller design

r ¼ _z2 þ k2z2: (63)

Based on the backstepping design procedure, design the
virtual control law α2 and the nonlinear adaptive integral
robust controller u as

α2 ¼ α2a þ α2s,

α2a ¼ _α1 – k2z2 þ bx2,

α2s ¼ α2s1 þ α2s2,

α2s1 ¼ – krz2,

α2s2 ¼ –!
t

0
½krk2z2 þ βsignðz2Þ�d�, (64)

u ¼ ua þ us

ua ¼
1

�̂1g1
ð�̂2g2 þ �̂3g3 þ �̂4g4 þ �̂5g5 þ _α2Þ,

us ¼ –
k3z3
g1

8>>>>><
>>>>>:

(65)

where kr> 0 is a feedback gain, and β is a positive
feedback gain.
Substituting the virtual control law α2 and the actual

control input u into the dynamics of r and z3, it can be
obtained

_r ¼ –φT~θ – k3�1z3 – krr – βsignðz2Þ þ _d , (66)

_z3 ¼ –φT~θ – k3�1z3, (67)

where φ ¼ ½f1ua, – f2, – f3, – f4, – f5�T is the regressor for
parameter adaptation.

3.5.2 Stability analysis

Lemma 1: Define an auxiliary function L(t) as

LðtÞ ¼ r _d – βsignðz2Þ
	 �

, (68)
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where β is the gain and satisfies the following sufficient
condition:

β≥�1 þ
1

k2
�2, (69)

thus, the function P(t) defined below is always positive,

PðtÞ ¼ βjz2ð0Þj – z2ð0Þ _dð0Þ –!
t

0
Lð�Þd�: (70)

The detailed proof of Lemma 1 can be found in Ref. [7].
Theorem 5: Based on the projection type adaptive law in

Eq. (46) and adaptation function τ ¼ φðr þ z3Þ, if the gain
β satisfies Eq. (69) and the feedback gains k1, k2, k3 and kr
are large enough, the matrix Λ4 developed below is
positive definite

Λ4 ¼

k1 –
1

2
0 0

–
1

2
k2 –

1

2
0

0 –
1

2
kr

1

2
�1k3

0 0
1

2
�1k3 �1k3

2
6666666664

3
7777777775
, (71)

then the designed nonlinear adaptive integral robust
controller Eq. (65) guarantees that all system signals are
bounded, in addition, asymptotic output tracking perfor-
mance can be obtained, i.e., z1! 0 as t!1.
Proof: Define a positive Lyapunov function V2(t) as

follows:

V2 ¼
1

2
z21 þ

1

2
z22 þ

1

2
z23 þ

1

2
r2 þ 1

2
~θ
T
Γ – 1~θ þ P tð Þ: (72)

Note the error dynamics in Eqs. (16), (63), (66), and
(67), and the definition of P(t) in Eq. (70), the time
derivative of V2(t) can be expressed by

_V 2 ¼ z1 _z1 þ z2 _z2 þ z3 _z3 þ r _r þ ~θ
T
Γ – 1 _̂θ þ _P

¼ – k1z
2
1 þ z1z2 – k2z

2
2 þ z2r – krr

2 – k3�1z3r

– k3�1z
2
3 þ ~θ

T
Γ – 1 _̂θ –Γτ


 �
: (73)

Utilizing the property P2 in Eq. (48), it can be obtained

_V 2£ – zTΛ4z£ – lminðΛ4Þðz21 þ z22 þ z23 þ r2Þ@ –W3,
(74)

where lmin(Λ4) is the minimal eigenvalue of matrix Λ4.
According to Barbalat’s lemma, W3! 0 as t!1, the
results in Theorem 5 can be obtained.
Remark 3: Noting that the nonlinear adaptive integral

robust control presented above can achieve asymptotic
tracking performance only under matched uncertain
nonlinearity and the parametric uncertainty in the second

channel cannot handle by adaptive method. In addition, the
integral robust feedback gain β above nonlinear adaptive
integral robust controller needs to be selected by the
designer, which leads to some design conservatism and
difficulty of gain tuning in practical application. Based on
the acceleration based state-space model in Eq. (13), all the
uncertain nonlinearities and parametric uncertainties are
considered, and asymptotic tracking performance can be
obtained in Refs. [8,19]. The adaptation of the integral
robust feedback gain β was also realized in Refs. [20,21].

3.5.3 Experimental verification

In order to demonstrate the superiority of the developed
nonlinear adaptive integral robust controller, the experi-
mental results were present in Ref. [7] for a valve-
controlled bidirectional hydraulic motor. The nonlinear
adaptive integral robust controller or nonlinear adaptive
RISE-based controller (ARISE) was compared with non-
linear ARC controller and PID controller. The experiment
was divided into three parts based on the employed desired
motion trajectory. The three controllers were run to track a
normal-level sinusoidal-like trajectory, x1d= 10sin(3.14t)
$(1–exp(–0.01t3))°. The tracking performance of ARISE,
ARC, and PID are demonstrated in Figs. 5 and 6. The
parameter adaptation process of ARISE is presented in
Fig. 7. To further test the robustness of the developed
ARISE against unmodeled uncertainties, a slow motion
command x1d = 0.1sin(0.628t)(1–exp(–0.01t3))° is given.
For the slow-motion case, Figs. 8 and 9 demonstrate the
tracking performance of the three controllers. At last, The
three controllers are then required to track a fast motion
command given by x1d = 10sin(12.56t)(1–exp(–0.01t3))°.
Figures 10 and 11 show the corresponding tracking
performance. All the experimental results explain that the
developed ARISE controller obtains the best transient and
steady-state tracking performance. Referring to Ref. [7],

Fig. 5 Tracking performance of ARISE for normal motion
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the reader can see more details about the experimental
results.

3.6 Nonlinear adaptive repetitive control

In Case 6, the hydraulic system performing repetitive tasks
is considered. The nominal values of the system
parameters are assumed to be known, which can simplify
the controller design. That is, all system parameters

Fig. 7 Parameter estimation of ARISE for normal motion

Fig. 8 Tracking performance of ARISE for slow motion

Fig. 9 Tracking errors of ARC and PID controllers for slow
motion

Fig. 10 Tracking performance of ARISE for fast motion

Fig. 6 Tracking errors of ARC and PID for normal motion
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(including J, A, B, Af, V01, V02, βe, kt, and Ct) can be used
when designing the controller. However, because of the
changes in component wear and temperature, the system is
generally subjected to parametric uncertainties. Hence the
specific system model for this case can be given as

_x1 ¼ x2

m _x2 ¼ Ax3 –Bx2 –AfSf ðx2Þ – d1ðx1,x2Þ
_x3 ¼ F1u –F2 – d2ðx1,x2Þ

,

8><
>: (75)

where

F1 ¼
R1

V1
þ R2

V2

� �
βekt,

F2 ¼ βe
1

V1
þ 1

V2

� �
ðAx2 þ Ctx3Þ:

In Eq. (75), two additional terms d1(x1, x2) and d2(x1, x2)
are assumed to be continuous differentiable functions,
representing all modelling uncertainties. Therefore, when
designing the nonlinear adaptive repetitive controller, the
problem of unknown nonlinearities d1(x1, x2) and d2(x1, x2)
is the primary focus to be dealt with. The case with non-
periodic disturbanes will be discussed later.
In Eq. (75), although d1(x1, x2) and d2(x1, x2) are

unknown, because of the periodicity of the tracked
trajectory x1d, a certain periodicity will be observed after
some cycles. Therefore, repetitive control may be an
excellent tool to eliminate the periodic-like disturbances
d1(x1, x2) and d2(x1, x2). On the basis of this important
analysis, Eq. (75) can be rewritten as

_x1 ¼ x2

m _x2 ¼ Ax3 –Bx2 –AfSf ðx2Þ – d1 x1d, _x1dð Þ –Δ1

_x3 ¼ F1u –F2 – d2 x1d,_x1dð Þ –Δ2

,

8><
>: (76)

where D1 and D2 represent approximation errors defined by

Δ1@d1ðx1,x2Þ – d1 x1d,_x1dð Þ,

Δ2@d2ðx1,x2Þ – d2 x1d,_x1dð Þ: (77)

D1d(t) andD2d(t) are utilized to represent d1 x1d,_x1dð Þ and
d2 x1d,_x1dð Þ to simplify the controller design. For the
repetitive tasks, since the desired signal x1d is periodic, i.e.,

x1dðt –TÞ ¼ x1dðtÞ, (78)

where T is the known period, D1d(t) and D2d(t) are only
related to x1d and _x1d, the unknown nonlinear functions
D1d(t) and D2d(t) are also periodic, i.e.,

D1dðt –TÞ ¼ D1dðtÞ,

D2dðt – TÞ ¼ D2dðtÞ: (79)

By utilizing Fourier series, represent the periodic
nonlinear functions D1d(t) and D2d(t) as follows:

D1d tð Þ ¼ A0

2
þ
X1
n¼1

ðAncosnωt þ BnsinnωtÞ

D2d tð Þ ¼ C0

2
þ
X1
n¼1

ðCncosnωt þ DnsinnωtÞ
,

8>>><
>>>:

(80)

where ω= 2p/T. Denote D1d(t) and D2d(t) by finite
frequency components because the mechanical system is
physically equivalent to a low-pass filter, i.e., a Fourier
series can be used to approximate them with finite terms in
implementation [22]:

D1d tð Þ ¼ A0

2
þ
Xm
n¼1

ðAncosnωt þ BnsinnωtÞ, m < 1

D2d tð Þ ¼ C0

2
þ
Xm
n¼1

ðCncosnωt þ DnsinnωtÞ, m < 1
:

8>>><
>>>:

(81)

The unknown but constant parameter set θ can be
defined as θ = [A0/2, A1, B1, …, Am, Bm, C0/2, C1, D1, …,
Cm, Dm]

T to simplify the system design. Thus, with Eq.
(81), the system model Eq. (76) can be rewritten to

_x1 ¼ x2

m _x2 ¼ Ax3 –Bx2 –AfSf ðx2Þ –ΦT
1θ –Δ1

_x3 ¼ f1u – f2 –Φ
T
2θ –Δ2

,

8>><
>>: (82)

where

Φ1 ¼ ½1,cosωt,sinωt,:::,cosmωt,sinmωt,0,:::,0�T

Φ2 ¼ ½0,:::,0,1,cosωt,sinωt,:::,cosmωt,sinmωt�T
:

(
(83)

For the case with non-periodic disturbances, transform
the system model Eq. (75) to

Fig. 11 Tracking errors of ARC and PID controllers for fast
motion
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_x1 ¼ x2

m_x2 ¼ Ax3 –Bx2 –AfSf ðx2Þ – d1ðx1,x2Þ – η1ðtÞ
_x3 ¼ F1u –F2 – d2ðx1,x2Þ – η1ðtÞ

:

8><
>: (84)

In Eq. (84), the unknown nonlinear functions d1(x1, x2)
and d2(x1, x2) will present some certain periodicities
because they are state-dependent disturbances. In addition,
the unknown non-periodic effects in actual systems are put
in η1(t) and η2(t).
On the basis of the formulation method proposed in Part

A, transfer the design model Eq. (16) to

_x1 ¼ x2

m _x2 ¼ Ax3 –Bx2 –AfSf ðx2Þ –ΦT
1θ – ~Δ1ðtÞ

_x3 ¼ F1u –F2 –Φ
T
2θ – ~Δ2ðtÞ

,

8>><
>>: (85)

where ~Δ1 and ~Δ2 are lumped uncertain nonlinearities,
which are defined by

~Δ1ðtÞ@Δ1 þ η1ðtÞ,   ~Δ2ðtÞ@Δ2 þ η2ðtÞ: (86)

Assumption 6: The uncertain nonlinearities existed in
Eq. (85) are usually bounded by

j~Δ1ðtÞj£δ1ðtÞ,    j~Δ2ðtÞj£δ2ðtÞ, (87)

where d1(t) and d2(t) are bounded unknown functions.

3.6.1 Nonlinear adaptive repetitive controller design

Define the error variables as in Eq. (16), and note the
system model Eq. (82), the error dynamics can be written
as

m_z2 ¼ Aðz3 þ α2Þ –m _α1 –Bx2 –AfSf ðx2Þ –ΦT
1θ –Δ1

_z3 ¼ F1u –F2 –Φ
T
2θ –Δ2 – _α2

:

(

(88)

Following the design process of the backstepping
method, the virtual control law α2 and the nonlinear
adaptive repetitive control law u and can be given as

α2 ¼
1

A
m _α1 þ Bx2 þ AfSf x2ð Þ þ ΦT

1 θ̂ – k2 þ
1

2

� �
z2

� �
,

(89)

u ¼ 1

F1
F2 þ ΦT

2 θ̂ þ _α2c – k3 þ
1

2

� �
z3

� �
, (90)

where

_α2c ¼
∂α2
∂t

þ ∂α2
∂x1

x2 þ
∂α2
∂x2

1

J

$ Ax3 –Bx2 –AfSf ðx2Þ –ΦT
1 θ̂

	 �þ ∂α2
∂�̂

_̂θ : (91)

3.6.2 Stability analysis

Theorem 6.1: As the adaptation law mentioned in Eq. (46)
and the adaptation function given below

τ ¼ –Φ1z2 – Φ2 –
∂α2
∂x2

1

J
Φ1

� �
z3, (92)

then in the closed-loop operation, the mentioned control
law Eq. (90) can ensure that all system signals are in a
bounded range, and can also get asymptotic tracking
performance, i.e., z1! 0 as t!1; when the control gain
k1, k2, and k3 are defined sufficiently large, the matrix Λ1

defined in Eq. (20) can be guaranteed to be positive
definite.
Theorem 6.2: By choosing appropriate feedback gains

k1, k2 and k3, then the matrix Λ1 can be guaranteed to be
positive definite, then the raised control law Eq. (90) under
Assumption 6 ensures that
A. Generally speaking, all the signals are guaranteed

bounded. Furthermore, the Lyapunov function V1(t)
described in Eq. (21) is bounded by

V1 tð Þ£exp – κtð ÞV1 0ð Þ þ jjδðtÞjj21
κ

½1 – expð – κtÞ�, (93)

where k = 2min{lmin(Λ1), lmin(Λ1)/m} is the exponentially
converging rate, d(t) is an unknown but bounded function
satisfying

δ tð Þ≥max kΦ1k⋅kθMk þ δ1 tð Þ,kΦ2 –
∂α2
∂x2

Φ1

m
k⋅kθMk




þ δ2 tð Þ þ δ1ðtÞ
m

  ����∂α2∂x2
  �����: (94)

B. For a limited period of time, ~Δ1 ¼ ~Δ2 = 0, asymptotic
tracking performance can also be got, i.e., z1! 0 as
t!1.
The proofs of Theorems 6.1 and 6.2 are a little complex,

for more details, please see Ref. [23].

3.6.3 Experimental verification

In order to prove the usefulness of the developed nonlinear
adaptive repetitive controller (APC), experimental results
were obtained in Ref. [23] by comparing APC controller
with the other three controllers, i.e., PID controller, ARC
controller and feedback linearization controller (FLC).
Some indexes are used to assess the performance of the
control algorithm: The maximal value of tracking errorMe,
the average value of tracking error m, the standard
deviation value of the tracking error σ defined in Ref.
[23]. To test the performance of four controllers, a normal-
level sinusoidal-like periodic trajectory x1d = 10(1–
cos(3.14t))(1–exp(–t))° was used. The tracking perfor-
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mances of four controllers are presented in Fig. 12. Table 2
presents the tracking performance indices of four con-
trollers during the last three cycles. Figure 13 shows the
parameter adaptation of APC controller for normal motion.
To further test the control scheme of the proposed
algorithm in all work conditions, a fast motion trajectory
x1d= 10(1–cos(12.56t))(1–exp(–t))° was used. For the fast
motion case, the tracking errors of APC and ARC
controllers are given in Fig. 14, and the performance
indices were summarized in Table 3. All results demon-
strate that the developed nonlinear adaptive repetitive
controller achieves a better performance than the other
controllers. The reader can get more details about the
experiments in Ref. [23].

3.7 Nonlinear friction compensation

As described in Case 7, The traditional piecewise
continuous LuGre model cannot be utilized in the back-
stepping design for hydraulic control. Hence, a new
continuously differentiable LuGre friction model for
hydraulic system is developed in Ref. [24], which is
given as follows:

_z ¼ ω –NðωÞz
frðtÞ ¼ �0zþ �1 _z þ �2ω

,

(
(95)

Fig. 12 Tracking errors of APC, ARC, FLC and PID for normal
motion

Table 2 Performance indices for normal tracking case

Indices Me μ σ

PID 0.0896 0.0532 0.0274

FLC 0.0637 0.0198 0.0125

ARC 0.0136 0.0035 0.0026

APC 0.0089 0.0016 0.0012

Fig. 13 Parameter estimation of APC for normal motion

Fig. 14 Tracking errors of ARC and APC controllers for fast
motion

Table 3 Performance indices for fast tracking case

Indices Me μ σ

ARC 0.2899 0.0935 0.0623

APC 0.1084 0.0517 0.0244
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where σ0 represents the stiffness of the bristles, σ1
represents damping coefficient of the bristles, σ2 represents
the viscous coefficient, ω represents the angular velocity, z
represents the internal unmeasurable friction state which
means the average deflection of the bristles, N(ω)=ω/g(ω),
in which g(ω) represents the static friction force defined as

gðωÞ ¼ ðfs – fcÞ½tanhðc1ωÞ – tanhðc2ωÞ�
þ fctanhðc3ωÞ, (96)

where fc represents the Coulomb friction and fs represents
the stiction friction.
In addition, for this case, the internal leakage model is

given by

qL ¼ CtPL þ Cs

ffiffiffiffiffiffiffiffi
jPLj

p
signðPLÞ, (97)

where Ct and Cs represent the contraction coefficients for
round and slot type orifices.
The state variables are chosen as x =[x1, x2, x3]

T=[y, _y,
PL]

T, and with the friction and internal leakage model, the
entire system dynamic can be expressed as

_z ¼ x2 –Nðx2Þz
_x1 ¼ x2

m _x2 ¼ Ax3 –�0zþ �1Nðx2Þz – ð�1 þ �2Þx2 – feðtÞ
_x3 ¼ βektf1u – βef2 – βeCtf3 – βeCsf4 – qðtÞ

,

8>>>><
>>>>:

(98)

where f1, f2, f3 and f4 are known nonlinear functions
defined by

f1 ¼
R1

V1
þ R2

V2
, f2 ¼

1

V1
þ 1

V2

� �
Ax2,

f3 ¼
1

V1
þ 1

V2

� �
x3, f4 ¼

1

V1
þ 1

V2

� � ffiffiffiffiffiffiffijx3j
p

sign x3ð Þ:
(99)

The unknown parameter set was defined as θ = [θ1, θ2,
θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10]

T, where θ1 =σ0, θ2 =σ1, θ3
=σ1+σ2, θ4 = dn, θ5 = βekt, θ6 = βe, θ7 = βeCt, θ8 = βektu0, θ9
= qn, and θ10 = βeCs. Thus, the state-space form can be
formulated as

_z ¼ x2 –Nðx2Þz
_x1 ¼ x2

m _x2 ¼ Ax3 – �1zþ �2Nðx2Þz – �3x2 – �4 þ ~dðtÞ
_x3 ¼ �5f1u – �6f2 – �7f3 – �8f1 – �9 – �10f4 þ ~qðtÞ

,

8>>>>><
>>>>>:

(100)

where ~dðtÞ@dn – feðtÞ, ~qðtÞ@qn – qðtÞ represent the time-
variant modelling errors existed in Eq. (100).
Just as the parameter set θ is unknown. the internal

friction state z in Eq. (95) is also unknown. Therefore, it is

necessary to construct an observation scheme for the
unknown state z in the nonlinear controller design. Note
that two different terms θ1z and θ2N(x2)z have a relation-
ship with the state z. In order to construct an observation
scheme for z, robust observers with dual-observer structure
were proposed in Refs. [25,26]:

_̂z1 ¼ Projẑ1ðη1Þ, _̂z2 ¼ Proĵz2ðη2Þ, (101)

where ẑ1 and ẑ2 represent the estimation of state z, η1 and η2
will be designed later, the projection mapping in Eq. (101)
is expressed as:

Projẑ iðηiÞ ¼
0 if ẑi ¼ zmax and ηi > 0

0 if ẑi ¼ zmin and ηi < 0

ηi otherwise

8><
>: (102)

where the bounds for observation can be set as zmax= fs,
zmin= – fs [25], which are related to the physical bounds of
the friction state z.
As with the parameter adaptation, for any chosen

functions η1 and η2, the projection mapping defined in
Eq. (101) ensures [25]

P3 :
z1min£ẑ1£z1max

z2min£ẑ2£z2max,

(
(103)

P4 :
~z1ð _̂z1 – η1Þ£0

~z2 _̂z2 – η2Þ£0,
�

(
(104)

where ~z1 ¼ ẑ1 – z and ~z2 ¼ ẑ2 – z represent the estimation
errors, and the dynamics of the errors can be expressed as

_~z1 ¼ _̂z1 – _z ¼ Proĵz1ðη1Þ – ½x2 –Nðx2Þz�
_~z2 ¼ _̂z2 – _z ¼ Projẑ2ðη2Þ – ½x2 –Nðx2Þz�

(
(105)

3.7.1 Adaptive controller design with nonlinear friction
compensation

Define the error variables similar to Eq. (16),

e1 ¼ x1 – x1d,  e2 ¼ _e1 þ k1e1 ¼ x2 – α1,

α1@_x1d – k1e1, e3 ¼ x3 – α2: (106)

Note the systemmodel Eq. (100), the error dynamics can
be written as

m _e2 ¼ Ax3 –m _α1 – �1zþ �2Nðx2Þz – �3x2 – �4 þ ~dðtÞ,

_e3 ¼ �5f1u – �6f2 – �7f3 – �8f1 – �9 – �10f4 – _α2 þ ~qðtÞ:
(107)

Based on the backstepping design procedure, the virtual
control law α2 and the adaptive control law u and can be

.
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designed as

α2 ¼
1

A
α2a þ α2sð Þ,

α2a ¼ m _α1 þ �̂1ẑ1 – �̂2Nðx2Þẑ2 þ �̂3x2 þ �̂4,

α2s ¼ α2s1 þ α2s2,

α2s1 ¼ – k2e2,

α2s2 ¼ – ks2e2@ –
h2 þ 1

4ε2
e2, (108)

u ¼ ua þ us,

ua ¼
1

�̂5f1
�̂6f2 þ �̂7f3 þ �̂8f1 þ �̂9 þ �̂10f4 þ _α2  �,


us ¼
1

�5minf1
us1 þ us2ð Þ,

us1 ¼ – k3e3,

us2 ¼ – ks3e3@ –
h3 þ 1

4ε3
e3, (109)

where ε2 and ε3 are positive constants, ks2 and ks3 are
positive nonlinear gains, and h2 and h3 are smooth
functions satisfying

h2≥½kθMkkφ2k þ �1MzM þ �2MNðx2ÞzM�2,

h3≥jjθMjj2jjφ3jj2, (110)

in which θM = θ max – θ min, θ1M= θ1max – θ1min, θ2M=
θ2max – θ2min, zM= zmax – zmin.
Substituting the virtual control α2 and the actual control

input u into the error dynamics Eq. (107), it can be
obtained

m _e2 ¼ Ae3 – k2e2 þ α2s2 – ~θ
T
φ2

þ �1~z1 – �2Nðx2Þ~z2 þ ~dðtÞ, (111)

_e3 ¼ –
�5

�5min
k3e3 þ

�5
�5min

us2 – ~θ
T
φ3 þ ~q tð Þ, (112)

where φ2@ – ẑ1,Nðx2Þẑ2, – x2, – 1,0,0,0,0,0,0½ �T and φ3@
½0,0,0,0, f1ua, – f2, – f3, – f1, – 1, – f4�T are regressors for
parameter adaptation.

3.7.2 Stability analysis

Theorem 7: As the adaptation law mentioned in Eq. (46)

and the adaptation function τ ¼ φ2z2 þ φ3z3, the friction
state observation Eq. (101) and learning functions
expressed as

η1 ¼ x2 –Nðx2Þẑ1 – γ1e2
η2 ¼ x2 –Nðx2Þẑ2 þ γ2Nðx2Þe2

(
(113)

where γ1 and γ2 are learning gains, and the control gain k1,
k2, and k3 are defined sufficiently large, so the matrix Λ1

defined in Eq. (20) can be guaranteed to be positive
definite., the designed adaptive control with nonlinear
friction compensation guarantees that:
A. If there does not exist time-variant modelling errors in

the system, i.e., ~d ¼ ~q ¼ 0, there only exists parametric
uncertainties and nonlinear frictions in the system, all
system signals are in a bounded range, and can also get
asymptotic tracking performance, i.e., e1! 0 as t!1.
B. If the time-variant modelling errors does exist in the

system, i.e., ~d≠~q≠0, then the control law Eq. (38) ensures
that all system signals are in a bounded range under closed-
loop operation, and the upper bound of Lyapunov function
V1(t) defined in Eq. (21) can be expressed as

V1 tð Þ£V1 0ð Þexp – κtð Þ þ ε
1þ jjδðtÞjj1

κ
1 – exp – κtð Þ½ �,

(114)

where ε = ε2+ ε3, and κ@2lminðΛ1Þminf1,1=m,1g, δðtÞ@
maxfδ21ðtÞ,δ22ðtÞg.
Proof: First consider the proof of Part A, a positive

Lyapunov function is defined as

V3 ¼
1

2
e21 þ

1

2
me22 þ

1

2
e23 þ

1

2
~θ
T
Γ – 1~θ þ 1

2
�1γ

– 1
1 ~z21

þ 1

2
�2γ

– 1
2 ~z22: (115)

The time derivative of V3 is

_V 3 ¼ e1 _e1 þ me2 _e2 þ e3 _e3 þ ~θ
T
Γ – 1 _̂θ þ γ – 11 �1~z1 _~z1

þ γ – 12 �2~z2 _~z2

¼ – k1e
2
1 þ e1e2 – ðk2 þ ks2Þe22 þ Ae2e3

–
�5

�5min
k3 þ ks3ð Þe23 þ ~θ

T
Γ – 1 _̂θ

– ~θ
T
φ2e2 – ~θ

T
φ3e3 þ γ – 11 �1~z1 _~z1

þ γ – 12 �2~z2 _~z2 þ �1~z1e2 – �2Nðx2Þ~z2e2
£ – k1e

2
1 þ e1e2 – k2e

2
2 þ Ae2e3 – k3e

2
3 þ γ – 11 �1~z1 _~z1

þ γ – 12 �2~z2 _~z2 þ �1~z1e2 – �2Nðx2Þ~z2e2:
(116)

Note that the matrix Λ1 is positive definite, and with the
dynamics expressed in Eq. (105), we can get

,
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_V 3£ – eTΛeþ γ – 11 �1~z1½ _̂z1 – x2 þ Nðx2Þ̂z1 þ γ1e2�
þ γ – 12 �2~z2½ _̂z2 – x2 þ Nðx2Þẑ2 – γ2Nðx2Þe2�

– γ – 11 �1Nðx2Þ~z21 – γ – 12 �2Nðx2Þ~z22: (117)

Combing the definition of η1 and η2 in Eq. (113), the
property in Eq. (104), and noting that the positive
nonlinear function N(x2), the upper bound of the above
equation can be expressed as

_V 3£ – eTΛ1e – γ
– 1
1 �1Nðx2Þ~z21 – γ – 12 �2Nðx2Þ~z22

£ – eTΛ1e£ – lminðΛ1Þðe21 þ e22 þ e23Þ@ –W4: (118)

Based on Barbalat’s lemma, W4! 0 as t!1, which
derives the Part A of Theorem 7. Then consider the proof
of part B, the time derivative of V1(t) can be expressed as

_V 1 ¼ – k1e
2
1 þ e1e2 – ðk2 þ ks2Þe22 þ Ae2e3

–
�5

�5min
k3 þ ks3ð Þe23

– ~θ
T
φ2e2 þ �1~z1e2 – �2Nðx2Þ~z2e2

þ ~dðtÞe2 – ~θT
φ3e3 þ ~qðtÞe3

£ – k1e
2
1 þ e1e2 – k2e

2
2 þ Ae2e3 – k3e

2
3

–
h2
4ε2

e22 – e2 ~θ
T
φ2 – �1~z1 þ �2N x2ð Þ~z2

h i

–
1

4ε2
e22 þ ~d tð Þe2 –

h3
4ε3

e23

– ~θ
T
φ3e3 –

1

4ε3
e23 þ ~q tð Þe3: (119)

Based on the condition of h2, the upper bound of the
second term of above inequality can be summarized as

–
h2e

2
2

4ε2
– e2 ~θ

T
φ2 – �1~z1 þ �2N x2ð Þ~z2

h i
–
e22
4ε2

þ e2~d tð Þ£ε2 þ ε2δ21 tð Þ: (120)

Similarly,

–
h3
4ε3

e23 – ~θ
T
φ3e3 –

1

4ε3
e23 þ ~q tð Þe3£ε3 þ ε3δ22 tð Þ: (121)

Thus,

_V 1£ – eTΛeþ εþ ε2δ21ðtÞ þ ε3δ22ðtÞ

£ – lminðΛÞðe21 þ e22 þ e23Þ þ εþ εδðtÞ

£ – κV þ εþ εδðtÞ: (122)

By employing the Comparing lemma [3], it can be
concluded that V1(t) can be upper bounded by Eq. (114).

3.7.3 Experimental verification

In order to prove the usefulness of the designed nonlinear
adaptive controller with modified LuGre model based
friction compensation (ALuGre), the experimental results
presented below were obtained in Ref. [24] The ALuGre
controller was compared with the nonlinear adaptive
controller (AC), the FLC, and PI controller with velocity
feedforward (VFPI). To test the performance of four
controllers, a smooth normal motion trajectory x1d =
10(1 – cos(3.14t))(1 – exp( – t))° was used. The tracking
performances of four controllers are presented in Figs. 15
and 16, the performance indices during the last two cycles
are summarized in Table 4. To further test the control
scheme of the proposed friction compensation algorithm, a
slow motion trajectory x1d = 10(1 – cos(0.628t))(1 –
exp( – t))° was used. For the slow motion case, the
comparative tracking performance and performance
indices are given in Figs. 17 and 18, and Table 5. It can
be observed from the presented experimental results that
the developed ALuGre controller handles better than the

Table 4 Performance indices in normal tracking case

Indices Me μ σ

PIVF 0.0903 0.0531 0.0274

FLC 0.0663 0.0200 0.0132

AC 0.0123 0.0030 0.0024

ALuGre 0.0081 0.0019 0.0015

Fig. 15 Tracking performance of ALuGre for normal motion
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other three controllers considering both transient and
steady-state tracking performance, which demonstrate the
effectiveness of the proposed modified LuGre friction
model and the adaptive control method. The reader can get
more details about the experiments in Ref. [24].

3.8 Nonlinear output feedback control

In Case 8, only output measurement of the hydraulic

system is available. Hence, nonlinear output feedback
control is developed in this section. From the physical
model Eqs. (1), (7)–(10), choose the state variables as x
=[x1, x2, x3]

T=[y, _y, APL/m]
T, Then the system model for

this case is given as

_x1 ¼ x2

_x2 ¼ x3 þ f1ðx2Þ þ dðtÞ
_x3 ¼ gðu,x3Þuþ f2ðx2,x3Þ þ qo þ qðtÞ

,

8><
>: (123)

where f1(x2) = –F(x2)/J, d(t) = f (t,x1,x2)/J, qo= 4βeDmQo/
(Vt J), q(t) = 4βeDmQ(t)/(Vt J) and

g u,x3ð Þ ¼ 4Dmβekt
JVt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps – sign uð Þ J

Dm
x3

s
,

f2 x2,x3ð Þ ¼ –
4D2

mβe
JVt

x2 –
4βe
Vt

Ctx3: (124)

In the observer-controller design below, the nominal
values of the physical parameters can be utilized, and the
parameter deviations are included in the unmodeled terms,
i.e., d(t) and qo, q(t) in Eq. (123). Before the observer
design, at first the major modeling uncertainty qo+ q(t)
was extended as an additional state variable, i.e., define x4=
qo+ q(t), and the system state is changed to x =[x1, x2, x3,
x4]

T. The time derivative of x4 was represented by h(t). then
the original plant in Eq. (123) can be rewrote as

_x1 ¼ x2

_x2 ¼ x3 þ f1ðx2Þ þ dðtÞ
_x3 ¼ gðu,x3Þuþ f2ðx2, x3Þ þ x4

_x4 ¼ hðtÞ

:

8>>>><
>>>>:

(125)

Assumption 7: The function g(u, x3) is Lipschitz related
to x3 within its practical range; f1(x2) is globally Lipschitz

Fig. 16 Tracking errors of the other three controllers for normal
motion

Table 5 Performance indices in slow tracking case

Indices Me μ σ

PIVF 0.0213 0.0044 0.0047

FLC 0.0414 0.0050 0.0092

AC 0.0125 0.0013 0.0016

ALuGre 0.0041 0.0008 0.0006

Fig. 17 Tracking performance of ALuGre for slow motion

Fig. 18 Tracking errors of the other three controllers for slow
motion
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related to x2; and f2(x2, x3) is Lipschitz related to x2 and x3.

3.8.1 Nonlinear output feedback controller design

To estimate the unmeasurable states (i.e., x2, x3) and the
modeling uncertainty x4, a linear extended state observer
(LESO) in Ref. [27] is constructed. Define x̂ as the estimate
of x and ~x as the estimation error (i.e., ~x ¼ x – x̂). Firstly,
the extended system model Eq. (125) can be rewritten as

_x ¼ AoxþΦðxÞ þ Gðu,xÞuþDðtÞ
y ¼ Cx

,

(
(126)

where

Ao ¼

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

2
66664

3
77775, ΦðxÞ ¼

0

f1ðx2Þ
f2ðx2,x3Þ

0

2
66664

3
77775,

Gðu,xÞ ¼

0

0

gðu,x3Þ
0

2
66664

3
77775, DðtÞ ¼

0

dðtÞ
0

hðtÞ

2
66664

3
77775,C ¼

1

0

0

0

2
66664

3
77775:

Then based on Eq. (126), the LESO can be constructed
as

_̂x ¼ Aox̂ þΦðx̂Þ þ Gðu,x̂ÞuþH x1 – x̂1Þ,ð (127)

where Φðx̂Þ ¼ 0, f1 x̂2Þ, f2 x̂2,x̂3Þ, 0ð �T�	
, Gðu,x̂Þ ¼

0,½ 0, g u,x̂3Þ, 0ð �T and H is the observer gain given

by H ¼ 4ωo, 6ω2
o, 4ω3

o, ω4
o

	 �T, in which ωo> 0
representing the bandwidth of the observer is the only
tuning parameter.
From Eqs. (126) and (127), the differential of the state

estimation error can be given as

_~x ¼ Ao~x þΦðxÞ –Φðx̂Þ þ ½Gðu,xÞ –Gðu,x̂Þ�u

–H~x1 þDðtÞ: (128)

Define

~f1@f1ðx2Þ –f1ðx̂2Þ , ~g@gðu,x3Þ – gðu,x̂3Þ,

~f2@f2ðx2,x3Þ –f2 x̂2,x̂3Þ,ð (129)

and define the scaled estimation error as εi ¼ ~xi=ω
i – 1
o , i =

1, 2, 3, and 4, then Eq. (128) can be rewrote as

_ε ¼ ωoAεþ B2
~φ1 þ dðtÞ

ωo
þ B3

~φ2 þ ~guð Þ
ω2
o

þ B4
hðtÞ
ω3
o
,

(130)

where =[ε1, ε2, ε3, ε4]
T and

A ¼

– 4 1 0 0

– 6 0 1 0

– 4 0 0 1

– 1 0 0 0

2
66664

3
77775, B2 ¼

0

1

0

0

2
66664

3
77775,

B3 ¼

0

0

1

0

2
66664

3
77775, B4 ¼

0

0

0

1

2
66664

3
77775, (131)

in which A is Hurwitz. Thus, a positive definite matrix P
exists so that the following Lyapunov equation holds

ATP þ PA ¼ – 2I: (132)

Define the error variables as in Eq. (16), and note the
extended system model in Eq. (125), the virtual control law
α2 and the proposed nonlinear output feedback controller u
and can be given as

α2 ¼ –f1 x̂2Þ þ €x1d – k1x̂2 þ k1 _x1d – k2 x̂2 – α1Þ,ðð (133)

u ¼ 1

g u,x̂3ð Þ –f2 x̂2,x̂3Þ – x̂4 þ _α2c – k3 x̂3 – α2Þð �,ð½ (134)

where

_α2c ¼
∂α2
∂t

þ ∂α2
∂x1

x̂2 þ
∂α2
∂x̂2

_̂x2: (135)

Substituting the virtual control α2 and the actual control
input u into the dynamics of z2 and z3, then

_z2 ¼ z3 – k2z2 þ ~f1 þ ωoðk1 þ k2Þε2 þ dðtÞ, (136)

_z3 ¼ – k3z3 þ ω2
ok3ε3 þ ~guþ ~f2

þ ω3
oε4 –ωo

∂α2
∂x1

ε2: (137)

3.8.2 Stability analysis

From the definitions of f1(x2), g(u, x3), f2(x2, x3), ε2 and ε3
and based on Assumption 7, c1, c2, c3 and c4 are some
known constants so that the following formulas hold

jf1ðx2Þ –f1ðx̂2Þj£c1jε2j
jgðu,x3Þ – gðu,x̂3Þj£c2jε3j
jf2ðx2,x3Þ –f2 x̂2,x̂3Þj£c3jε2j þ c4jε3jð

8><
>: (138)

A set of known constants was defined as

.
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κ ¼ 1

ω2
o
ωoc1δ2 þ c3δ3 þ c4δ3 þ c2δ3jujmaxð Þ

γ1 ¼ k1ωo þ k2ωo þ c1

γ2 ¼ ω2
ok3 þ c2jujmax þ c4

γ3 ¼ ωoj
∂α2
∂x1

j þ c3

γ4 ¼ ω3
o

� ¼ 1

2
jd tð Þj2max þ

δ22
2ω2

o
jd tð Þj2max þ

δ24
2ω6

o
jh tð Þj2max

,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(139)

where δi=||PBi|| (i = 2,3,4), |u|max denotes the maximum
hardware constraint for the control input; and the following
performance theorem has been achieved.
Theorem 8: Based on the designed LESO in Eq. (127)

under the hypothesis that h(t) and d(t) are bounded, and
choosing gains k1, k2, k3 and ωo properly so that the
following defined matrix Λ5 is positive definite

Λ5 ¼
Λ1 0 Λ2

0 ωo – κ – 1 0

ΛT
2 0 Λ3

2
664

3
775, (140)

where 0 denotes zero vector with proper dimensions, and

Λ1 ¼

k1 –
1

2
0

–
1

2
k2 –

1

2
–
1

2

0 –
1

2
k3

2
666664

3
777775,

Λ2 ¼

0 0 0

–
γ1
2

0 0

–
γ3
2

–
γ2
2

–
γ4
2

2
66664

3
77775,

Λ3 ¼
ωo – κ – 1 0 0

0 ωo – κ – 1 0

0 0 ωo – κ – 1

2
64

3
75, (141)

then, the designed control strategy Eq. (134) guarantees:
A. When existing time-varying modeling uncertainties

in the controlled systems, i.e., q(t)≠0 and d(t) ≠0, the
state estimation error ε and the tracking error Z defined by
Z =[z1, z2, z3]

T are all bounded. Furthermore, the following
select positive definite function V4:

V4 ¼
1

2
ZTZ þ 1

2
εTPε, (142)

is bounded above by

V4 tð Þ£V4 0ð Þexp – τtð Þ þ �

τ
½1 – expð – τtÞ�, (143)

where τ = 2lmin(Λ5)min{1,1/lmax(P)} is the exponentially
converging rate, in which lmax(∙) and lmin(∙) represent the
maximum and minimum eigenvalues of a matrix respec-
tively.
B. If after a finite time t0, q(t) = d(t) = 0, i.e., there not

exist time-varying modeling uncertainties, then, not only
results in A can be obtained, but also asymptotic output
tracking is achieved, i.e., z1! 0 as t!1.
Proof: First consider the proof of A, the time derivative

of V4 is
_V 4 ¼ – k1z

2
1 – k2z

2
2 – k3z

2
3 –ωojjεjj2

þ z1z2 þ z2z3 þ ωoðk1 þ k2Þε2z2

þ ω2
ok3ε3z3 þ ω3

oε4z3 –ωo
∂α2
∂x1

ε2z3

þ ~f1z2 þ ~guz3 þ ~f2z3 þ
1

ωo
εTPB2

~f1

þ 1

ω2
o
εTPB3

~f2 þ ~gu
� �þ z2d tð Þ

þ εTPB2
dðtÞ
ωo

þ εTPB4
hðtÞ
ω3
o
: (144)

Based on inequality Eq. (138) and the definitions in Eq.
(139), then:

_V 4£ – k1z
2
1 – k2 –

1

2

� �
z22 – k3z

2
3

– ðωo – κ – 1Þjjεjj2 þ jz1jjz2j þ jz2jjz3j
þ γ1jε2jjz2j þ γ2jε3jjz3j þ γ3jε2jjz3j
þ γ4jε4jjz3j þ � ¼ – ηTΛηþ �, (145)

where η =[|z1|, |z2|, |z3|, |ε1|, |ε2|, |ε3|, |ε4|]T. Note that the
matrix Λ5 is positive definite, thus

_V 4£ – lminðΛ5Þðjjzjj2 þ jjεjj2Þ þ �

£ – lmin Λ5ð Þ jjzjj2 þ 1

lmaxðPÞ
εTPε

� �
þ �

£ – τV4 þ �, (146)

which leads to Eq. (143) through utilizing Comparison
Lemma [3]. Now for Part B, when q(t)= 0, it can be
inferred that h(t)= 0 through the definition of x4. Based on
d(t)= 0 and Eq. (144), and using the identical upper bound
method in the proof of A, thus

_V 4£ – lminðΛ5Þðjjzjj2 þ jjεjj2Þ@ –W5: (147)

Through utilizing Barbalat’s lemma, W5! 0 as t!1,
which leads to the Part B of Theorem 8.

202 Front. Mech. Eng. 2018, 13(2): 179–210



3.8.3 Experimental verification

For testing the effectiveness of the designed nonlinear
output feedback controller (OFRC), it was experimentally
compared with industrial PI controller in Ref. [28].
Firstly, the two controllers are tested for a sinusoidal-like
motion trajectory x1d = 10[1 – cos(3.14t)][1 – exp( – t)]°.
The comparative tracking errors and the performance
indices of the two controllers are shown in Fig. 19 and
Table 6, respectively. To further verify the performance of
the designed algorithm, a slow motion trajectory x1d =
10[1 – cos(0.628t)][1 – exp( – t)]° has been used. The
tracking errors of the two controllers were depicted in

Fig. 20. The performance indices for slow motion case
were summarized in Table 7. Finally, to farthest consider
the physical system existing complex working conditions
and verify the robustness of the designed algorithm against
to unmodeled disturbances, a fast motion trajectory x1d =
10[1 – cos(6.28t)][1 – exp( – t)]° is employed, meanwhile, a
disturbance 0.3+ 0.02x1d is added to the control input at t
= 10 s through modifying the output function of D/A
board, i.e., u+ 0.3+ 0.02x1d is actually applied to the test
rig after 10 s, in which u is calculated by OFRC/PI
controller. In this fast motion case with disturbance, the PI
controller was failed to handle such aggressive distur-
bance. Figure 21 gives the tracking error of OFRC

Fig. 19 Tracking errors of OFRC and PI controllers in normal
case. (a) Tracking errors during the whole period in normal case;
(b) tracking errors during the last two cycles in normal case

Table 6 Performance indices in normal case

Indices Me μ σ

PI 0.0501 0.0097 0.0072

OFRC 0.0383 0.0517 0.0065

Fig. 20 Tracking errors of OFRC and PI controllers in slow
tracking case. (a) Tracking errors during the whole period in slow
tracking case; (b) comparison of tracking errors

Table 7 Performance indices in slow tracking case

Indices Me μ σ

PI 0.0321 0.0019 0.0033

OFRC 0.0152 0.0008 0.0012
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controller. The following experimental results indicate that
the designed nonlinear OFRC controller can obtain better
tracking performance than the PI controller. For more
details about the experiments, the reader is referred to Ref.
[28].

3.9 State constraints control

The tracking control of hydraulic systems with constrained
velocity and acceleration is taken into consideration in
Case 9. To design the following adaptive backstepping
control procedure with state constraints, the acceleration
based state-space model in Eq. (13) and the modeled
friction fr(t) in Eq. (3) are utilized for this case. In addition,
it is assumed that the uncertain nonlinearities fe(t) and q(t)
are negligible. Thus, the system model for this case can be
given as

_x1 ¼ x2

_x2 ¼ x3

_x3 ¼ g3 x,PLð Þu – 4βeðA
2 þ CtBÞ
mVt

x2 –
B

m
þ 4βeCt

Vt

� �
x3

–
4βeCtAf

mVt
Sf x2ð Þ – Af

m
_S f x2ð Þ

,

8>>>>>>>>>><
>>>>>>>>>>:

(148)

where

g3 x,PLð Þ@4Aβekt
mVt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps – signðuÞPL

p
: (149)

Denote the unknown parameter set θ =[θ1, θ2, θ3, θ4]
T,

where θ1= 4βe(A
2+ CtB)/m/Vt, θ2 = B/m+ 4βeCt/Vt, θ3 =

4βeCtAf/m/Vt, θ4 = Af/m, the system model in Eq. (148) can
be written as

_x1 ¼ x2

_x2 ¼ x3

_x3 ¼ g3ðx,PLÞu – �1x2 – �2x3 – �3Sf ðx2Þ – �4 _S f ðx2Þ
:

8>><
>>:

(150)

In this section, the afore mentioned Assumptions 1, 2,
and 3 are also needed, and the discontinuous projection
mapping in Eq. (45) is also utilized.
Considering the magnitude constraints on the system

velocity and acceleration result of physical performance
limits or safety operation requirements as follows:

jx2j£Δv, jx3j£Δa, (151)

where Da and Dv denote the acceleration limitations and
pre-set known velocity.
A Barrier Lyapunov function [29] is employed to

prevent the system states from violating the constraints.
Definition 1. The scalar function V(x) which is defined

with respect to the system _x ¼ f ðxÞ on an open region Q
containing the origin is a barrier Lyapunov function, and it
is positive definite, continuous, has continuous first-order
partial derivatives at every point of Q, has the property
V(x)!1 as x approaches the boundary of Q, and meets
V(x)£c (c is positive constant), 8t≥0 along the solution of
_x ¼ f ðxÞ for x(0)2Q.

3.9.1 Adaptive backstepping control design with velocity
and acceleration constraints

Define the error variables as

z1 ¼ x1 – x1d,  z2 ¼ x2 – α1,  z3 ¼ x3 – α2: (152)

Define a function Vs1 [30] as

Vs1 ¼ b1z1arctanz1, (153)

where the designed constant gain b1> 0, the resulting
control function α1 is given by

α1 ¼ x2d – v1arctanz1, (154)

where v1> 0. Then the function α1 can be bounded by

jα1j <
π
2
v1 þ jx2dj: (155)

Then the time derivative of Vs1 is

_V s1 ¼ –�1 þ b1z2 arctanz1 þ
z1

1þ z21

� �
, (156)

where

�1 ¼ b1v1arctanz1 arctanz1 þ
z1

1þ z21

� �
: (157)

Then, the following function candidate which comprises
a barrier function is defined as

Fig. 21 Tracking errors of OFRC in fast tracking case with
disturbance
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Vs2 ¼ Vs1 þ
1

2
b2log

L22
L22 – z

2
2

: (158)

The derivative of Vs2 is given by

_V s2 ¼ –�1 þ b1z2 arctanz1 þ
z1

1þ z21

� �

þ b2z2 x3 – _α1ð Þ
L22 – z

2
2

, (159)

which is a valid Lyapunov function during the internal
( – L2, L2) which represents the constraint on z2, i.e.,
|z2|< L2. The resulting virtual control α2 is given by

α2 ¼ _α1 – v2z2 –
b1
b2
ðL22 – z22Þ arctanz1 þ

z1
1þ z21

� �
, (160)

where the constant v2> 0, and

_α1 ¼ x3d –
v1 _z1
1þ z21

: (161)

Based on Eq. (159), it can be obtained

_V 2 ¼ –�2 þ
b2z2z3
L22 – z

2
2

, (162)

where

�2 ¼ �1 þ
b2v2z

2
2

L22 – z
2
2

: (163)

Denote the following function Vs3 as

Vs3 ¼ Vs2 þ
1

2
b3log

L23
L23 – z

2
3

þ 1

2
~θ
T
Γ – 1~θ, (164)

where b3> 0.
It is easy to check that Vs3 is a valid Lyapunov function

during the internal ( – L3, L3) which represents the
constraint on z3, i.e., |z3|<L3. The time derivative of Vs3 is

_V s3 ¼ _V s2 þ b3
z3 _z3
L23 – z

2
3

¼ –�2 þ
b2z2z3
L22 – z

2
2

þ b3
z3 g3u – �1x2 – �2x3 – �3Sf – �4 _S f – _α2

	 �
L23 – z

2
3

þ ~θ
T
Γ – 1 _̂θ , (165)

where _α2 is given by

_α2 ¼ _x3d –
v1€z1
1þ z21

þ 2v1z1 _z
2
1

ð1þ z21Þ2
– v2 _z2

þ 2b1
b2

z2 _z2 arctanz1 þ
z1

1þ z21

� �
–
b1
b2

2_z1
1þ z21

�ðL22 – z22Þ 1 –
z21

1þ z21

� �
: (166)

Then design the control input as

u ¼ 1

g3
�̂1x2 þ �̂1x3 þ �̂3Sf þ �̂4 _S f þ _α2

h

–
b2
b3

L23 – z
2
3

L22 – z
2
2

z2 – v3z3  #, (167)

where v3> 0 and the adaptation law τ as

τ ¼ φz3, (168)

in which

φ ¼ –
b3x3
L23 – z

2
3

, –
b3 _Sf ðx2Þ
L23 – z

2
3

" #T

:

Substituting Eqs. (167) and (168) into Eq. (165),

_V s3 ¼ –�2 –
b3v2z

2
3

L23 – z
2
3

¼ –�3, (169)

where

�3 ¼ �2 þ
b3v2z

2
3

L23 – z
2
3

, (170)

is positive-definite and z is defined as z=[z1, z2, z3]
T. Then

the system acceleration x3 is bounded as z3 and α2 are
bounded.

3.9.2 Stability analysis

Theorem 9: If the initial conditions satisfy z(0)2Ωz0:
{z(0)2R3: |z2(0)|< L2, |z3(0)|<L3}, with the designed
projection type adaptation law Eq. (46) and adaptation
function Eq. (168), the devised controller Eq. (167) can
guarantee:
A. All closed loop signals in the system are bounded.

And the tracking errors z2 and z3 are bounded by

z2 < L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – e – 2Vs3ð0Þ=b2

p

z3 < L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – e – 2Vs3ð0Þ=b3

p :

8<
: (171)

B. Not only the results in A are obtained, but also the
asymptotic output tracking is achieved, i.e., z1! 0 as
t!1.
Proof: From Eq. (169), _V s3£0, it can be obtained that

Vs3(t) is bounded, which provides that Vs3(0) is a non-
increasing function and is bounded. Then Vs1(t) and Vs2(t)
are bounded. Thus, |z2(t)|< L2, |z3(t)|< L3. Then it can be
inferred that

1

2
b2log

L22
L22 – z

2
2

£Vs2£Vs3£Vs3 0ð Þ
1

2
b3log

L23
L23 – z

2
3

£Vs2£Vs3£Vs3 0ð Þ
:

8>><
>>: (172)
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Thus, through rearranging and taking exponentials on
both sides of the inequality Eq. (172), Eq. (171) can be
obtained. For the situation in B of Theorem 1, by
Barbalat’s lemma, X3! 0 as t!1, it leads to B of
Theorem 9 from Eq. (170).

3.9.3 Simulation verification

To test the effectiveness of the developed adaptive
backstepping controller (ABC) with velocity and accel-
eration constraints, simulation results were obtained by
comparing the ABC controller with the robust adaptive
controller (RAC). In the simulation, to verify how the
initial conditions affect the violation of system constraints,
it is fixed that z1(0) = –1, z2(0) = 0 and z3(0) = 0. In addition,
the constraints of acceleration and velocity are pre-set as
Da= 100 m/s2 and Dv= 5 m/s. To make the tracking error as
small as possible while respecting the system constraints is
the control objective. Figure 22 shows the comparative
tracking performance of the two controllers. The velocity
and acceleration output under the two controllers are given
in Figs. 23 and 24, respectively. The simulation results

show that the developed ABC obtains small tracking error,
same as RAC, except the start transient period, and ensures
that the velocity and acceleration constraints have never
been violated. More details of this simulation can be found
in Ref. [31].

4 Perspectives for opening problems

Although the proposed methods above can solve most
tracking problems of hydraulic servo systems, there are
still some opening problems remain unsolved, as discussed
bellow.

4.1 Enhanced adaptive control with disturbance observer

As presented in adaptive robust control for hydraulic
systems, the developed ARC controller can guarantee a
prescribed transient tracking performance and final track-
ing accuracy as well as asymptotic output tracking with
parametric uncertainties only. However, high-gain feed-
back issue also lies in ARC since large feedback gains have
to be used to speed up the transient response and reduce the
final tracking error when hydraulic servo systems are
subjected to large uncertain nonlinearities. It is known that
disturbance observer based control has also been exten-
sively researched to cope with large modelling uncertain-
ties. As shown in LESO design in output feedback control
for hydraulic systems, the ESO can estimate the
generalized disturbances and compensate them in a feed-
forward way, and the uncertainty estimation error can be
made small enough by increasing the observer bandwidth.
However, the parameterizable uncertainties are not con-
sidered explicitly in ESO-based design, which increases
the learning burden of ESO. Consequently, compared with
adaptive control, ESO-based design would perform worse
tracking performance for systems subjected to heavy
parametric uncertainties.
Hence, how to develop an advanced nonlinear controller

Fig. 22 Tracking errors with z1(0) = –1

Fig. 23 Velocity output with z1(0) = –1

Fig. 24 Acceleration output with z1(0) = –1
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for hydraulic systems to handle both heavy parametric
uncertainty and uncertain nonlinearity is still an opening
problem. An instinct thought is that if adaptive control and
ESO can be merged via full state feedback into one
controller in which parametric uncertainties and uncertain
nonlinearities are handled separately, then improved
tracking performance can be expected. However, their
fundamentally working mechanisms are totally different,
how to integrate these two control methods that can
preserve the advantages of both design approaches, while
getting over their practical performance limitations should
be given special attention.

4.2 Servo-valve input nonlinearity

The most nonlinear models for hydraulic systems assume
the servo valve is ideal, as like in Eqs. (5) and (10). This
assumption ignores any effects in servo valve, and directly
applies proportional relationship between the final control
input u and the valve spool position xv. However, any
actual valve contains some nonlinearities which typically
include input saturation, dead-zone, and hysteresis, etc.
These input nonlinearities may cause the controlled
hydraulic system to be unstable or present bad tracking
performance.
Input saturation is the most common nonlinearity in

control systems. The saturation in hydraulic system may be
caused by maximum velocity/force/power requirements.
At any case, during the saturation period, the hydraulic
system is uncontrollable. In general, there are two ways to
handle saturation problem: One is to make the controller
naturally possess the property that at any case, the
controller output will never exceed one pre-set value,
i.e., the saturation will never happen no matter the
maximum velocity/force/power requirements. The major
technique point in this design concept is: The trajectory is
first planned that the saturation cannot be caused by
demands, and the second is to make the feedback go into
the controller via saturation projections which can ensure
that the feedback control actions result in a bounded
control value no matter how large the tracking errors are.
Actually, this design concept is rather conservative, and the
design difficulty of this concept is how to cope with
various modelling uncertainty to result in a balanced
control input that as just perfectly as possible controls the
system to satisfy the demands and against various
uncertainties. The other way is to permit the occurrence
of input saturation, however, design a saturation compen-
sator which will be activated at the saturation point, and the
mission of this compensator is to ensure the closed-loop
stability during saturation while ideally restore the
previous control performance when the cause of saturation
disappears. The difficult lying in the second saturation
approach is the compensator design and the stability
analysis of the closed-loop system.
Dead-zone nonlinearity typically results from coulomb

friction and from overlap of valve ports in hydraulic
systems, and is a critical issue for high-accuracy tracking
control of hydraulic servo systems, especially in propor-
tional control fields driven by proportional valves.
Inappropriate action for dead-zone nonlinearity may
cause limit cycles. Hence suitable dead-zone compensation
technique possesses many practical meanings. To alleviate
the effect of dead-zone, there are generally two kinds of
ways in the literature. One is inverse function based
adaptive control. It is worth noting that most constructed
dead-zone inverses are discontinuous, which may cause
the control input chattering. Hence, a smooth dead-zone
inverse will be more popular for hydraulic systems, as
shown in Fig. 25. However, almost all active dead-zone
compensation based controllers can ensure the conver-
gence of the tracking error goes to a residual bounded set
only. The other way of eliminating the dead-zone effect is
to see the dead-zone as a time-varying disturbance-like
term. With this formulation, various robust feedback
control laws have been used to handle the disturbance-
like term. However, by treating the dead-zone as a
disturbance-like term if nonlinear system is subjected to
sever dead-zone may cause high gain feedback issue, i.e.,
large slopes or breakpoints. Hence, there is an imperative
pursuit for active smooth dead-zone compensation with the
enhanced robust feedback mechanism to further improve
the tracking performance of hydraulic systems, eliminate
potential instability caused by dead-zone.

Unlike the above discussed single-valued nonlinearities,
magnetic components, such as electric servomotors of
direct-driven valve and torque motors of nozzle flapper
servo valve, commonly have a multi-valued nonlinear
characteristic, i.e., hysteresis, as shown below in Fig. 26.
The input of this figure is the control voltage, and the
output of this figure is the applied voltage through the
hysteresis effect. The width of the hysteresis loop varies
directly with the input signal. Based on linear analysis, it is
known that the hysteresis nonlinearity is not a serious
threat to stability. However, the most adverse property of
hysteresis is a fixed amount of phase lag at low
frequencies. Typically, this phase lag can be ignored

Fig. 25 Dead-zone effects and its smooth inverse
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since the it is very small, meanwhile the hysteresis effects
are very small in nozzle flapper servo valves. However, it
should be noticeable when ultra-high accuracy tracking
performance is required, or as fashionable currently, when
proportional valves or proportional servo-valves are
utilized, the active compensation for hysteresis should be
paid more attention. Effective hysteresis models for model-
based nonlinear control, and the uncertainty handling
mechanisms associated with hysteresis are still opening
problems for high performance hydraulic servo control
system.

4.3 High dynamic control

Bandwidth is a meaningful, useful and powerful concept
for control engineering, resulted from frequency domain
design and analysis. As it is well known that this concept is
founded on the linear control theory and only suitable for
linear systems. However, nonlinear control methods for
hydraulic systems are time-domain based design and
analysis, there is no frequency concept. Hence, a valuable
proposition is that is it possible to deduce a frequency
bandwidth or develop a series tools to reflect the frequency
bandwidth for nonlinear controllers. To the author’s
opinion, the frequency concept is able to be discussed
for nonlinear control at least. This statement arises another
problem for nonlinear hydraulic servo control, i.e., the high
dynamic control. To the best of our knowledge, the
existing nonlinear methods verified by experiments only
related low frequency tracking performance. The high
frequency tracking experimental results are very little. The
theoretical results from nonlinear control methods also
puzzle people that their stability is irrelevant with
frequency, and the mathematical proof is rigorous. Does
this mean that the nonlinear controller can track any high
frequency trajectories? It seems correct to theorists,
however incorrect to practitioners. There is a huge gap

between theory and practice. That is to say, the tracking
performance will be what if continually increasing the
frequency of the desired trajectory.
In addition, at high frequency tracking stage, the valve

dynamics can be ignored any more, i.e., the dynamic
effects between the final control input and the spool
position of servo valve cannot be simplified by propor-
tional relationship. How considering the valve dynamics to
design nonlinear backstepping controllers for hydraulic
systems is a challenging issue result of the differential
explosion with backstepping if directly involving the valve
dynamics as first or second order differential equations.
Besides the valve dynamics, the mechanical stiffness
effects may be not ignored either at high frequency
tracking stage. Relying on different sensors layout, the
mechanical stiffness affects the system via inner-loop
effects or outer loop effects. How designing suitable
nonlinear controllers to actively compensate or passively
robust against these stiffness effects is an opening problem.

4.4 Noise alleviation

In almost all nonlinear control strategies for hydraulic
systems, the effects of measurement noise accompanied in
full state feedback are not specifically taken into
consideration. Practice reveals that measurement noise
has become the core problem in achieving high tracking
performance in some cases. For electro-hydraulic servo
systems, the noise mainly comes from the measurement of
velocity and pressure signals. Almost all nonlinear
controllers are based on the noise-free theoretical design,
while via various low-pass filters to alleviate noise effects
in practice. However, filters are not considered in the
design stage and will cause severe phase lag in high
frequency range.
To alleviate the noise effects, there are generally three

kinds of methods in the literature. The first is the dynamic
surface control (DSC) based schemes which can solve the
problem of “explosion of complexity” in the backstepping
design and avoid the feedback signal noise amplification
result of repeated differentiations of virtual controllers
through introducing a first-order filtering of the synthe-
sized virtual control law at each backstepping design
procedure. However, the full state feedback DSC schemes
can do nothing about the noisy states contained in the final
control law. Moreover, the phase lag issue caused by the
low-pass filters also lies in the DSC schemes. The second
is the output feedback control approach which only utilizes
the output measurement while the noise contaminated
velocity and pressure states are estimated by various state
observers. However, observer based nonlinear control
strategies suffer from the learning capability of the utilized
observer, and encounter bad performance during the
transient period of the observer and heavy parametric
uncertainties. Another good alternative way of attenuating
the effect of measurement noise is the desired compensa-

Fig. 26 Multi-valued effects of an example of hysteresis
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tion adaptive control which was first introduced by Sadegh
and Horowitz [32]. An excellent benefit is that desired
compensation can be easily integrated with adaptive and
robust control by constructing noise-free desired values to
replace noisy actual states, and hence possesses strong
capability to suppress various uncertainties. However, for
uncertain nonlinear systems with unmatched modeling
uncertainties and input nonlinearities, such as hydraulic
systems, the desired values of the intermediate state
variables cannot be predetermined based on the common
way as in Ref. [32]. Additionally, hydraulic system should
be thought as non-affine system due to the existence of
control input dependent nonlinear function, which further
complicates the design of adaptive desired compensation
controller. Typically, developing a desired value for
velocity state is not difficult, however, for pressure
information is still a pending problem.

5 Conclusions

In this paper, the author expressed his viewpoints on
hydraulic nonlinear modelling methods, control chal-
lenges, recent developments to handle various modelling
uncertainties for model-based nonlinear control of hydrau-
lic servo systems. Although various advanced nonlinear
control methods have been proposed, there are still lots of
opening problems associated with hydraulic nonlinear
control, such as further enhanced adaptive control with
disturbance observer to both handle heavy parametric
uncertainty and uncertain nonlinearity, input nonlinearity
control, high dynamic control, noise alleviation methods
for practical hydraulic systems. This paper hopes to initiate
other decent and creative inspirations to promote the
development of nonlinear control technology for electro
hydraulic servo systems.
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