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Abstract The classification of visual human action is
important in the development of systems that interact with
humans. This study investigates an image-based classifica-
tion of the human state while using a walking support
system to improve the safety and dependability of these
systems. We categorize the possible human behavior while
utilizing a walker robot into eight states (i.e., sitting,
standing, walking, and five falling types), and propose two
different methods, namely, normal distribution and hidden
Markov models (HMMs), to detect and recognize these
states. The visual feature for the state classification is the
centroid position of the upper body, which is extracted
from the user’s depth images. The first method shows that
the centroid position follows a normal distribution while
walking, which can be adopted to detect any non-walking
state. The second method implements HMMs to detect and
recognize these states. We then measure and compare the
performance of both methods. The classification results are
employed to control the motion of a passive-type walker
(called “RT Walker”) by activating its brakes in non-
walking states. Thus, the system can be used for sit/stand
support and fall prevention. The experiments are per-
formed with four subjects, including an experienced
physiotherapist. Results show that the algorithm can be
adapted to the new user’s motion pattern within 40 s, with a
fall detection rate of 96.25% and state classification rate of
81.0%. The proposed method can be implemented to other
abnormality detection/classification applications that
employ depth image-sensing devices.

Keywords fall detection, walking support, hidden
Markov model, multivariate analysis

1 Introduction

The need to provide dependable and self-assistive devices
for the elderly is increasing due to population aging [1].
Among the different daily-life activities, physical support
in mobility-related tasks, such as walking, is still the main
challenge that should be tackled [2]. One problem that
must be considered is the frequent occurrences of hospital
admissions and injuries due to falls reported for this
vulnerable population. Approximately 30% of elderly
people fall at least once a year [3]. This percentage
includes 87% of users with walking support systems, who
are treated at hospital emergency departments for injuries
from falls that involve walkers and canes [4].
Researchers have proposed numerous fall detection

algorithms with various sensory setups for different
applications [5]. The use of accelerometers [6,7], gyro-
scopes [8], single and multiple cameras [9], laser range
finders [10], depth sensors [11,12], wireless networks [13],
and other novel sensory equipment (e.g., as sensing floors
[14]) has been investigated. The proposed algorithms
utilize threshold-based methods [15], multi-sensor data
fusion methods [16], and machine learning algorithms
[6,17]. A two-layer support vector machine has been
proposed in Ref. [18] to identify human posture (standing
vs. walking). Another recent work [19] proposed a
combination of threshold-based and machine learning in
a hierarchical framework for fall detection. However, the
detection occurs after the person has rested on the ground
(i.e., the rest phase) similar to other common algorithms
[19].
The aforementioned methods can be evaluated accord-

ing to accuracy, availability of sensory setup, and
applicability to different platforms. Many approaches
have improved the accuracy of results to a satisfactory
extent, and a quantitative comparison of different methods
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has been presented in Ref. [20]. However, the use of a
commonly wearable and expensive sensory setup [6,10]
questions the applicability of the proposed methods. In
addition, the lack of focus on real-time algorithms [9,21]
also disqualifies the methods for walking assistive devices,
such as the commonly utilized walkers.
Despite the variety in sensor technologies and classifica-

tion algorithms, few studies have investigated the follow-
ing concepts: Real-time fall prediction or detection before
the person has already fallen; implementation of fall
detection in assistive technologies for possible fall
prevention, and a dynamic model of walking that can
generate different falling scenarios.
Previous authors have proposed methods for the state

classification of a user by visual features extracted by
principal component analysis [11], in which the feature
extraction has comparatively higher computation cost and
requires a database. The upper body centroid of the user is
considered as the visual feature in Ref. [22]. However, the
state classification is not proposed.
Using the Microsoft Xbox sensor called Kinect, the

current authors propose several methods for real-time
abnormal state detection (i.e., sitting, standing, or falling)
based on depth image data. A recent study [23] compared
three types of common non-wearable sensor technologies
for fall detection among those living in elderly home care
facilities. The said study used a depth camera for an
ongoing investigation, in which depth camera systems
have been installed in 94 additional older adult apartments
[23].
In this work, the state classification algorithms are

implemented and tested on a previously designed passive
walker robot called “RT Walker” [24]. The robot is
equipped with servo brakes, which can be activated in any
non-walking state. The system can prevent the user from
falling and assist him/her in sitting down, standing up, and
regaining stability after falling in this manner.
The position of the upper body centroid is utilized as the

visual feature in the present work. Two different
probabilistic models are employed for the state classifica-
tion. First, it is proved that the upper body centroid position
during walking with a walker can be fitted by a
multivariate normal distribution function. The model is
adopted to detect any non-walking state and control the
walker’s motion accordingly. Considering the time depen-
dence of human behavior, a hidden Markov model (HMM)
is also utilized for the state classification. The model is then
applied for the non-walking states of detection and
recognition.
Among the different classifiers for visual human action

recognition, we specifically require an algorithm with low
computational cost for time-series data, in order to provide
fall detection/classification before the user has actually
fallen. HMMs have been reported, such as a classifier for
time-series data analysis in one-class classification [25]
(i.e., fall detection [6]) and multi-class classification [26]

(i.e., fall classification [11]). Then, the algorithms are
tested with four subjects, including an experienced
physiotherapist asked to imitate the falling accidents of
real users. The performance results of the methods are
discussed and compared.
The current study attempts to utilize a real-time fall

detection of an RT Walker user by using a vision system
(i.e., Kinect). Multi-class classification, which employs the
depth images of the user’s upper body, is adopted to
increase the dependability of walking support systems.
This classification requires experimental data, which are
extracted from 5 different users.
The rest of this paper is organized as follows. The

developed RT Walker is described in Section 2. Section 3
explains the algorithm framework utilized for the state
estimation and motion control of the walker. State
classification by normal distribution function fitting is
described in detail in Section 4. Aspects of the HMM-
based state classification and the walker’s motion control
are discussed in Sections 5 and 6, respectively. Experi-
mental results and their discussion are presented in
Sections 7 and 8, respectively. Finally, the concluding
remarks are presented in Section 9.

2 RT Walker

Inspired by the proposed concept of passive robotics by
Goswami et al. [27], we used servo brakes to control the
motion of a passive-type walker. Given that unintentional
movements of the system cannot occur, passive robots are
intrinsically safe and suitable for systems that physically
interact with humans. The developed RT Walker is a
prototype with a support frame, two passive casters, and a
controller (Fig. 1 [24). Unlike other passive robots, the RT
Walker does not require any servo motor to control the
servo brakes. Instead, the rear wheels are equipped with
powder brakes, which can be employed to change the
brake torques of the rear wheels according to the input
current.
The robot is equipped with a Microsoft Xbox sensor (or

Kinect) to obtain the user’s depth images (Fig. 2). The
sensor data are robust and reliable under different optical
conditions. Moreover, this option is considerably cheaper
than the previously adopted laser range finders [28].

3 Framework

Given that the walker is passive, motion control involves
the activation of brakes on the rear wheels for any non-
walking state. These states can be classified into six types
shown in Fig. 3 based on the common accidents that
involve walker users (i.e., four falling scenarios, sitting,
and standing). Figure 3 are taken from an experienced
physiotherapist who imitated typical accidents that befall
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real walker users. Falling can occur in many ways, but it
can be roughly classified as one of these typical cases.
Standing is referred to as either getting up from a sitting
state or regaining one’s stability after falling.
The algorithm employed for the state estimation and

motion control of the walker is shown in Fig. 4. These
states enable us to validate the accuracy of the state
classification algorithm by indicating whether the algo-
rithm detects all states as non-walking states. The
occurrence of falling accidents can be significantly
decreased by stopping the walker in non-walking states.
The walker can then be utilized as a support for standing
and sitting.

Fig. 2 Depth sensor installed on the RT Walker and the attached
coordinate system

Fig. 1 (a) Prototype of the RT Walker; (b) the rear wheel and servo brake system [24]

Fig. 3 Human states while using a walker, as demonstrated by an experienced physiotherapist. Fall side is categorized into fall right and
fall left. (a) Walk; (b) sit; (c) stand; (d) fall forward; (e) fall down; (f) fall back; (g) fall side
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We use two different methods for state classification at
this point. The upper body centroid position is the feature
extracted to classify a user’s state. With respect to the
classification methods, the first approach is based on a
multivariate normal distribution function fitted on the
upper body centroid position during walking. Classifica-
tion is performed by trained HMMs using data gathered
from users in the second approach.
The first step for both approaches is user segmentation,

which is mainly conducted by distance slicing. In
particular, a threshold is set on the distance of each pixel
from the sensor, which is given as a value in millimeters by
Kinect. All the pixels closer to the sensor than the threshold
are considered as the foreground, whereas the rest of the
pixels are set to zero (Fig. 5). Several parts of the walker
handle may get into the foreground. These parts are
omitted by basic morphological transformations [29],
because the handle position and shape are known before-
hand. The feature is then extracted from the user’s depth
image, and a probabilistic model is built for a specific state.
State classification involves verifying whether the
extracted feature from the current motion belongs to the
probabilistic model. Classification may occur at two levels.
The first level determines whether the user is walking,

regardless of the type of falling, sitting, or standing.
Consequently, the probabilistic model is built by using
only walking data, as is the case in any one-class
classification problem [25].
A second level of classification can be performed to

detect the actual type of non-walking state (i.e., sit, stand,
fall forward, and fall down) to improve the estimation
accuracy of the user’s state and the flexibility of the robot
response. In this case, a probabilistic model (i.e., HMM) is
built for each state to detect the state class that can be the
best match for the current motion state.

4 State classification by normal distribution
function fitting

Given that the upper part of the body does not move
significantly when walking with a walker and that the
centroid can be a suitable approximation of the center of
mass, we employ the upper body centroid position as the
main feature for the state classification. By fitting 3D
normal distribution functions on the obtained x, y, and z
values of the upper body centroid, we can detect any non-
walking state and control the walker’s brakes. For this
purpose, we must verify whether normality is a valid
assumption for a multivariate distribution fitting. There-
fore, several normality tests are conducted to validate this
approach. Moreover, a statistical analysis of the human
upper body centroid during walking is a potential task for
further applications that involve human motion analysis.

4.1 Extraction of the upper body centroid

The user must first be segmented from the background to
extract the feature. For this application, the user is always
within a specific range from the sensor, and no occlusions
or sources of interference are observed in the image.
However, the system is mobile, and the background
changes continuously during motion, thus making user
segmentation difficult. This scenario can be resolved by
applying a depth sensor. User segmentation is performed

Fig. 4 Framework for the state estimation and control of the
walker. PDF: Probability distribution function

Fig. 5 (a) Color image captured by Kinect; (b) the segmented user’s mask image obtained by distance slicing
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by adopting the distance slicing method with the depth
information from the sensor and probable distance of the
user from the robot during walking. Although the
foreground may still contain several pixels from the
environment, such as robot parts, they can be removed
using simple image-processing filters. The color image and
segmented user’s mask of the depth image captured by
Kinect are shown in Fig. 5. The results are robust and are
insensitive to light conditions or to the color of the user’s
skin/clothing.
The x, y, and z values of the foreground pixels (Fig. 4)

are taken from the sensor, and the average of these values is
taken as the centroid of the human upper body. The values
are calculated in accordance with the coordinate system
attached to the walker, as shown in Fig. 2.

4.2 Data mapping

The x, y, and z values of the upper body centroid are
calculated and obtained for a user while he/she is walking
normally with the walker. State classification is based on a
3D probabilistic model of the centroid location. Therefore,
we should determine whether a proper cumulative
distribution function can be fitted on the collected data.
Individual checks for the univariate normality of the x, y,
and z samples cannot guarantee the multivariate normality
of the sets unless the samples are independent from each
other [30].
The multivariate normal distribution function of order p

is defined as

gðxÞ ¼ 1

ð ffiffiffiffiffi
2π

p Þp ffiffiffiffiffiffijΣjp exp –
1

2
ðx –μÞTΣ – 1ðx – μÞ

� �
, (1)

where μ is the mean vector, and Σ is the p� p covariance
matrix of the samples. The contours of constant probability
are defined by ðx – μÞTΣ – 1ðx – μÞ ¼ const. For p ¼ 2, they
are ellipses centered at x ¼ μ with axes parallel to the
eigenvectors of the covariance matrix Σ. For the 3D case,
the contours are ellipsoids. For an independent dataset, all
non-diagonal values of Σ are equal to zero, and the axes of
the ellipses (2D case) or ellipsoids (3D case) are parallel to
the x, y, and z axes.
The covariance matrix is calculated, and a contour of

constant probability is drawn to check the dependence of
the data samples. The distribution of collected data and
ellipsoid of constant probability for a normal fitted
function in the xy, xz, and xyz planes are shown in Fig.
6. The data collected from a user while walking with the
RT Walker indicate that the x, y, and z coordinates of the
upper body centroid are dependent on one another. This
scenario can be obtained by plotting the contours of
constant probability of the data. If the data are dependent,
then the axes of the ellipsoid contour are not parallel to the
x and y axes (Fig. 6). In this scenario, the univariate
normality test for these data cannot guarantee the validity

of fitting a 3D normal distribution. Therefore, the data are
mapped such that they are independent, and univariate
normality tests are conducted on the mapped data. Linear
mapping is carried out based on decomposition of the
covariance matrix by its eigenvalues, and the test results
can be utilized to verify the validity of the multivariate
normality fitting.
The proposed mapping function is given by

X ¼ AUx, U ¼ v1 v2 v3½ �, 

A ¼

1ffiffiffiffiffi
l1

p 0 0

0
1ffiffiffiffiffi
l2

p 0

0 0
1ffiffiffiffiffi
l3

p

2
6666664

3
7777775
, (2)

where X ¼ X Y Z½ �T is the mapped vector of samples
x ¼ x y z½ �T, and vi and li (i ¼ 1,2,3) are the
eigenvectors and eigenvalues of the covariance matrix,
respectively. The distribution of the mapped data with the
contours of constant probability is shown in Fig. 7. As can
be seen, the contours of constant probability for the
mapped data are ellipsoids with horizontal/vertical axes.
By multiplying matrix A in Eq. (2), the ellipsoid becomes a
sphere, because the elliptical radii length is proportional to
the square root of the eignevalues.

4.3 Normality tests

Several univariate normality tests are employed to verify
the normality of the mapped data. However, relying merely
on the plots cannot ensure the normality of the data.
Therefore, we employ other quantitative tests to confirm
the validity of the normality hypothesis. With the test
results, we can determine whether the multivariate normal
distribution fitting can be applied on the data. This section
explains and applies the tests to the experimental results
gathered from four users while walking with the RT
Walker. The test results will be presented in Section 7.1.

4.3.1 Graphical methods

Apart from the bivariate scatter plots of the data (Fig. 7),
histograms and Q-Q plots are the most commonly adopted
graphical approaches for normality testing. Although
histograms provide a highly suitable visualization of the
distribution, their sole use is insufficient in determining
data normality. Therefore, we utilize several statistical
tools to ensure the normality of the collected data.
Meanwhile, the Q-Q plot compares the quantiles of a
sample against the population quantiles of the univariate
normal. A quantile denotes the point below which a given
fraction (or percentage) of samples lies. If the points are
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close to a straight line, then no indication of deviation is
observed from the norm [30].

4.3.2 Skewness and kurtosis

Other than graphical methods, several quantitative tests

can be used to calculate statistical measurements to
evaluate the normality of the dataset. These quantitative
measurements can be employed to calculate the adaptation
of the control system for new users. As this is a largely
important issue for such a system, this topic shall be
discussed later. Meanwhile, skewness and kurtosis are two

Fig. 6 Distribution of the data and contours of constant
probability for the normal fitted function in the (a) xy, (b) xz,
and (c) xyz planes

Fig. 7 Distribution of the mapped data and contours of constant
probability for the normal fitted function in the (a) XY, (b) XZ, and
(c) XYZ planes
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common parameters that quantitatively evaluate the
symmetry and flatness of the distribution [30]. They are
respectively computed by using the equations

ffiffiffiffiffi
b1

p
¼ ffiffiffi

n
p Xn

i¼1

ðxi –�iÞ3½
Xn
i¼1

ðxi –�iÞ2� –
3
2 , (3)

b2 ¼ n
Xn
i¼1

ðxi –�iÞ4½
Xn
i¼1

ðxi –�iÞ2� – 2, (4)

where xi, i ¼ 1, 2, :::, n are the data samples with a mean
value �. For normal data, the skewness and kurtosis are
given by

ffiffiffiffiffi
b1

p ¼ 0 and b2 ¼ 3, respectively.

4.4 State classification

This study assumes that the upper body centroid position
follows a normal distribution while someone is walking
using a walker. If the normality test results of the mapped
independent dataset confirm the validity of this assump-
tion, we can then determine whether the user is in a normal
walking situation. This mechanism is performed by fitting
a 3D normal distribution function on the data of the upper
body centroid during walking. The non-normal case for the
user can be categorized in the different states shown in Fig.
3. Falling may occur in many ways, and other possible
falling cases may be detected given that the criteria are
based on a multidimensional distribution of the upper body
centroid and that any other falling scenario would require
significant deviations from these distributions.
In this case, the state classification is a one-class type

[25], which is based on setting a threshold for the value of
Pxyzðx,y,zÞ. The value Pxyzðx,y,zÞ indicates the probability
that the current centroid position belongs to the fitted 3D
normal distribution function on normal walking data. For
the classification, we have

Pxyz > Pc
xyz   walk 

otherwise   fall  or  sit 

(
, (5)

where Pc
xyz is the critical threshold that separates normal

walking from other states. The threshold is similar for the
detection of all fall types; this must be sufficiently low so
that it does not hinder the walker during normal walking
and sufficiently high so that it does not miss any falling
incident. The user is asked to walk normally using the
walker to record i = 1, 2, ..., n successive frames. The
probability distribution value for such data is expressed as
Pwalk
i . The proposed formula for calculating this value is

given by

logPc
xyz ¼ 1þ βð Þmin

n

i¼1
logPwalk

i –
β
n

Xn
i¼1

Pwalk
i : (6)

The threshold value is adjusted based on each user’s

walking behavior, and Pc
xyz is calculated by using a safe

distance from the minimum probability distribution value
of normal walking. The distance is adjusted with the
coefficient β, which is set based on the experimental
results. More on this will be discussed in Section 7.
Meanwhile, the parameter n is the number of frame
samples obtained to set the threshold probability Pc

xyz of the
new user.

5 HMM-based state classification

HMMs have been widely employed by researchers in
vision-based human action recognition [6]. This approach
adopts a time sequence of features (observations) to
classify human actions. Falling accidents cannot be
accurately referred to as actions, because they indicate a
user’s unintentional behavior when falling. However, each
category could consist of similar patterns in the upper body
centroid motion by categorizing falling accidents (i.e., fall
forward, fall down, and fall right).
As discussed in Section 3, HMMs are utilized in this

study to classify the states for two levels. After explaining
the mathematical structure, the classification algorithm is
described for the one-class and multiclass classification
approaches. One-class classification refers to the detection
of any non-walking state regardless of its type. However, a
classifier that differentiates the non-walking states is
required to increase the system accuracy for possibly
more flexible motion control (Fig. 3).
The mathematical model applied in the present study is

based on that described in Ref. [21]. The observed data at
frame t, oðtÞ 2 R3, are defined by Eq. (7).

oðtÞ ¼ xðtÞ yðtÞ zðtÞ½ �T: (7)

The time series of the observed data, O ¼ foðtÞj
1£t£Tg, comprises the data stored from T successive
frames. The model is composed of hidden states S ¼
fs1,s2,:::,sKg that undergo a transition at every time step
with a Markov model. Note that these hidden states are
mathematical terms and do not refer to the motion states.
The observed dataset, O, is related to the hidden states
through a parameter set, which can be expressed as
l ¼ ðΠ,D,BÞ. Here, parameter Π is the probability
distribution for the initial state, D is the probability
distribution for state transitions, and B is the probability
distribution for the observed data. Given that the observed
data are assumed to have a mixed Gaussian distribution,
then parameter B ¼ fbiðtÞj1£i£K,1£t£Tg can be
formulated by using the equation

biðtÞ ¼
XM
j¼1

cijℵ
�
oðtÞ,�ij,�ij

�
, (8)

where �ij 2 RD and �ij 2 RD�D are the components of

Sajjad TAGHVAEI et al. Image-based fall detection and classification 433



Gaussian mean vector and variance matrix for the jth
mixture component in state Si, respectively, and D
indicates the dimension of the observed data.
The HMM training involves determining the parameter

set values l ¼ ðΠ,A,BÞ, which are required to maximize
the probability function of the observation sequence
PðOjlÞ. Obtaining the set of initial values for the HMM
parameters is important. The number of hidden states, K, is
set to be equal to the length of the time series T. The
training samples are clustered by using the K-means
algorithm, and the number of clusters is considered to be
equal to the number of hidden states, K. The parameters for
a mixture of Gaussians are calculated with the expectation
maximization algorithm. Elements of the transition matrix
A and initial probability distribution Π are randomly
selected to satisfy the conditions of Eq. (9)

XK
j¼1

aij ¼ 1, 
XK
i¼1

πi ¼ 1, (9)

where αij and πi are the elements of the transition matrix D
and initial probability distribution Π, respectively. The first
condition should be satisfied for all 1£i£K.
For one-class classification, the normal walking data

should be obtained. However, the data for all states are
required for the next level. The models, which are specified
by parameters li, 1£i£8, refer to each of the eight states
that are labeled as C ¼ 1 (walk), C ¼ 2 (sit), C ¼ 3 (fall
forward), C ¼ 4 (fall down), C ¼ 5 (fall right), C ¼ 6 (fall
left), C ¼ 7 (fall back), and C ¼ 8 (stand), respectively.
The model parameters are updated with the gathered data
and Baum-Welch algorithm [31]. The observation
sequence is updated at each frame by replacing the last
one with the current frame data and shifting all others by a
step back. Given the model parameters, PðOjliÞ, which is
the probability of the observation sequence, is calculated at
each frame by employing the forward algorithm [31]. The
state classification can be performed with a high frame rate
in this manner, which is required for the present
application.
Considering l1 as the model parameters trained with

normal walking data for the first level of classification, we
have

PðOjl1Þ > Pc C ¼ 1 ð  walk  Þ
otherwise C ¼ 2,3,:::,7 ð  fall,  sit  or  stand  Þ

(
:

(10)

The threshold Pc is set based on the experimental results
similar to the procedure in Eq. (6). Eight models are trained
for the next classification level. When the observation
sequence is detected to be either falling or sitting by Eq.
(10), other model probabilities are also calculated, and the
maximum value shows the state type. This scenario can be
described by

PðOjl1Þ > Pc C ¼ 1 ð  walk  Þ

otherwise C ¼ argmax
8

i¼2
PðOjliÞ

8<
: : (11)

6 Walker’s motion control

The results of state classification are utilized to control the
motion of the passive walker for fall prevention and sit/
stand support. The control algorithm is designed based on
the results of the one-class classification approach, where
any non-walking state is detected regardless of the type.
As soon as the non-walking motion state is detected, the

brakes are applied to stop the walker and prevent the user
from falling. Even after applying the brakes, the user can
still possibly fall, but the safety level is increased and can
be employed as a support by the user to regain stability.
Moreover, the control configures the walker to be a sit/
stand support for the user in case of standing or sitting.
The control system is similar to that proposed in Ref.

[15], and is designed such that the brake force generates a
maximum torque when the user’s state is shown to be non-
walking, based on Eqs. (5) and (10), for more than a certain
time period. The brake force fb to control the passive
walker is designed similar to Ref. [15]

fb ¼
eα – 1

eαmax – 1
fmax, (12)

where α is a variable that decreases or increases by Δα if
the user is in a walking or non-walking states, respectively,
and fmax is the maximum brake force generated when α is at
its maximum value, αmax. The said authors utilize the
notation C in Eq. (10) to refer to the states. Changes in α
are described as

α ¼

α –Δα ðC ¼ 1; α > 0Þ
αþ Δα ðC ¼ 2,3,:::,8; α<αmaxÞ
0 ðα£0Þ
αmax ðα³αmaxÞ

8>>>><
>>>>:

: (13)

Based on Eq. (13), the brake force fb increases or
decreases between 0 and fmax in an exponential manner.

7 Experimental results

The classification and motion control algorithms are tested
with four subjects, all of whom are healthy and have no
disabilities. One of the subjects is an experienced
physiotherapist who can skillfully imitate different walk-
ing abnormalities and falling accidents. The subjects’
characteristics are listed in Table 1, in which the
physiotherapist is labeled as User C.
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The subjects were first asked to walk with the walker for
several minutes to update the probabilistic model para-
meters according to each user’s walking data. As discussed
below, approximately 40 s of walking is determined to be
sufficient for the update, and this is referred to as system
adaptation.
Regarding the falling experiments, each user was asked

to start from a sitting position, stand up, walk for a while,
pretend to fall, and then regain his/her stability with the
help of the walker. Each user was then asked to repeat each
falling scenario four times. This process is shown in Fig. 8.

7.1 Normality test results

The data gathered from the four subjects are mapped
(Section 4.2) and tested for normality by using the methods
discussed in Section 4.3.
The histograms in Fig. 9 show the dispersion of the

upper body centroid positions of two subjects during
normal walking. Similar results are obtained for the other
two subjects. Results show an acceptable compatibility
with Gaussian distribution. Apart from the distribution, the
dispersion of the x, y, and z values (Fig. 6) indicates that the
locations of the upper body centroid for all four subjects do
not move significantly during walking. For instance, for
the case of User A with a height of 185 cm, the centroid
moves within a range of approximately 9, 5, and 6 cm in

the x, y, and z directions, respectively. Although these
values depend on the user’s characteristics and motion
patterns, they show a comparatively small range of
centroid displacement during walking (i.e., approximately
4% of the user’s height within a 210 cm3 space in this
case).
The Q-Q plots described in Section 4.3 can also be

employed to verify the sample normality. The plots shown
in Fig. 10 are Q-Q plots of the mapped x, y, and z data for
the same two subjects, whose histograms are shown in Fig.
9. The plots show a linear relationship between the sample
quantiles and those of a standard normal distribution for
majority of the domain.
The skewness and kurtosis values of the mapped data for

the X, Y, and Z values from all four subjects are shown in
Fig. 11.
The results indicate that the skewness and kurtosis

values are close to those for a normally distributed dataset
(i.e., 0 for skewness and 3 for kurtosis).

7.2 System adaptation for new users

Given that the motion of the upper body centroid during
walking varies for different persons, as shown in Fig. 12,
the probabilistic model (either normal distribution or
HMM) is also different for each user. A new user was
asked to walk with the walker for some time during the
data acquisition period, after which the probabilistic
model was updated based on his/her walking pattern.
The system control was then prepared for the falling
experiments.
For the normal distribution fitting, the adaptation

involves determining the mean value and covariance
matrix of the samples from the data acquisition period.
However, identifying how much data would be sufficient
for the normal distribution fitting is important. For a new

Fig. 8 Experiments with the RT Walker. (a) 0 s; (b) 6.0 s; (c) 7.8 s; (d) 10.0 s; (e) 14.3 s

Table 1 Characteristics of the experiment subjects.

User Height/cm Weight/kg Age

A 185 74 28

B 164 52 27

C 173 85 49

D 183 70 28

Sajjad TAGHVAEI et al. Image-based fall detection and classification 435



user, we used the variations in skewness and kurtosis of the
mapped version of the obtained data during walking as the
criteria to determine when the acquisition period should be
stopped. The variations in skewness and kurtosis values for
the data from the two subjects are shown in Fig. 13. As can
be seen in the figure, and in the results of the other two
subjects, the data gathered from 700 frames of normal
walking by each subject are sufficient for the normal

distribution fitting. Therefore, the system takes approxi-
mately 700 frames or 40 s to adapt to the walking pattern of
a new user.
In the HMM-based approach, training the HMM for

walking can be performed online with the Baum-Welch
algorithm [21]. The models for our experiments were
trained with an average number of 800 frames of normal
walking. Training the models for sitting, standing, and

Fig. 9 Histograms of the mapped data in the X, Y, and Z values for subject B. (a) User B-X; (b) User B-Y; (c) User B-Z

Fig. 10 Q-Q plots of the mapped data in the X, Y, and Z values for subject D. (a) User D-X; (b) User D-Y; and (c) User D-Z

Fig. 11 (a) Skewness and (b) kurtosis values of the X, Y, and Z data for all four subjects
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falling is also conducted by using the Baum-Welch
algorithm, after obtaining sufficient training data for each
state. For our experiments, the falling-type HMMs were
trained with an average of 135 frames.

7.3 Normal distribution classification

The experiments for the fall prevention control of the RT
Walker by using the normal distribution classification are
performed for all four subjects. As previously mentioned,
the subjects were asked to walk normally for 2 min to
update the distribution and threshold parameters according
to their specific walking patterns. For each type of falling
accident, the users were asked to resume from a sitting
position, stand up, walk with the walker, pretend to fall,
and regain their stability with the help of the walker
(stand). They were also asked to repeat the falling accident
four times.
When any abnormal state other than walking is detected,

the brakes are applied according to Eqs. (12) and (13), as

well as parameters set at αmax ¼ 1:5, α ¼ 0:2, fmax ¼ 150
N. The results for the five falling types (i.e., fall forward,
fall down, fall right, fall left, and fall back) for User C (i.e.,
the physiotherapist) are shown in Fig. 14.
Significant decreases in the logP values in each

experiment can be attributed to sitting, standing, and four
successive falling accidents. The braking force increases to
stop the walker in these instances. The results from the
user’s walking data are substituted in Eq. (6) to calculate
the threshold for each user. The coefficient β has to be the
same for all users and is set at β ¼ 3:0 in the experiments.,
the algorithm works better for several users than others, but
the results generally show that it can detect 96.25% of fall
accidents, as seen in Figs. 14 and 15. Approximately 2.5%
of false positive falling detections are also noted, where the
system activates the brakes even though the user is walking
normally.

7.4 HMM-based state classification

A similar set of experiments was performed to verify the
performance of the HMM-based state classification
method. The classification was conducted at two levels.
At the first level, any abnormal motion state was detected
based on Eq. (10), and the walker was stopped by applying
the brake forces (Eq. (12)). At the second level, the type of
non-walking state for each motion state was recognized
based on the trained HMMs.
The experimental results for the first level of the HMM-

based state classification for subject A are shown in Fig.
15. Similar to the case in the previous section, the subjects
were asked to start from a sitting position, stand up, start
walking, and perform falling actions on four successive
occasions. The threshold Pc in Eq. (10) was set by each
user’s walking data according to Eq. (6), with the
coefficient β ¼ 10:0 for all subjects.
The results from all four subjects show that the method

Fig. 12 Upper body centroid position for all subjects during walking

Fig. 13 Variations in the (a) skewness and (b) kurtosis values during the system adaptation of User C
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Fig. 14 Variations in the distribution probability (logPxyz) and brake force fb for User C. (a) Fall forward; (b) fall down; (c) fall right;
(d) fall left; (e) fall back

Fig. 15 Variations in the logPðOjl1Þ and brake force fb for User A. (a) Fall forward; (b) fall down; (c) fall right; (d) fall left; (e) fall back
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detects 98.75% of falling accidents and all of the sitting
states. A false positive fall detection rate of 8.75% is also
noted.
For the second level of the state classification, eight

HMMs were trained for each user by gathering data from
each subject. The observation vectors consisted of centroid
x, y, and z values from five successive frames (T ¼ 5).
Each model had four hidden states, and a Gaussian mixture
model of order 3 was fitted on the observation vectors (K =
4 and M = 3 in Eq. (8)). These values underwent a trail
error process to improve the results. The models for the
falling states were trained by an average number of 135
frames for each fall type.
As soon as the motion state was detected to be non-

walking, the HMM that was most compatible with the
observations is associated with the user’s state. For each
experiment, the sequence of states can be described by the
labels discussed in Section 5 as

The experimental results of the HMM-based state
classification for User B are shown in Fig. 16.
The performance of the recognition algorithm can be

evaluated by calculating the confusion matrix of the
results, which is calculated based on the number of true
and false recognitions for each state. The rows in the
matrix refer to true classes, whereas the columns refer to
the predicted classes identified by the algorithm. Table 2
shows the confusion matrix based on a dataset with a size
of 18733. The row-column number refers to state labels
defined in Section 5.
The confusion matrix indicates a total of 81.0% of the

correct classifications. The highest rate is for walking
(92.8%), whereas the lowest rate is for falling down
(34.2%), which is easily mistaken with sitting in 18.2% of
the cases.

8 Discussion

The normal distribution and HMM-based methods can
detect all non-walking states for the four subjects with a
high fall detection rate of 96.25% for the normal
distribution method and 98.75% for the HMM-based
method. The user’s normal walking motion should not be
interrupted by a high rate of false positive fall detection.
Therefore, the normal distribution method shows better
results (2.5%) than the HMM-based method (8.75%).
Considering a one-class classification level, the system

adaptation for a new user can be performed by approxi-
mately 700 frames for the normal distribution method and

Fig. 16 Variations in logPðOjl1Þ (blue line) and state recognition results (black *) for User B. (a) Fall forward; (b) fall down; (c) fall
right; (d) fall left; (e) fall back
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800 frames for the HMM-based method. Both methods can
be obtained within approximately 40 s. However, utilizing
the normal distribution method is much easier and
computationally simpler.
The HMM-based state classification results for the four

subjects show 81.0% of the correct state classification in
eight categories. The data were obtained from four healthy
subjects for each state, including five falling types.
However, building such a database for the elderly and
disabled users is much more difficult. The experiments
included five different types of 80 fall accidents, which
were performed by healthy subjects. However, the results
confirm the possibility of such classification, and that the
considered falling types are differentiable based on of the
upper body centroid motion patterns.

9 Conclusions

This study proposed an image-based state classification of
a user with a walking support system. We categorized the
human motion while using a walker into eight different
states: Walking, sitting, standing, and five falling types.
Utilizing the upper body centroid, which was extracted
from depth images, normal distribution and HMM-based
methods were proposed to classify the motion states. State
classification results were employed to control the motion
of a passive-type walker (i.e., RT Walker) by activating its
brakes at any detected non-walking state. The methods
were explained, and experimental results obtained from the
four subjects who used the RT Walker were presented and
discussed.
Performing several normality tests on the data from the

four subjects confirmed that the position of the human
upper body centroid while walking normally with a walker
can be fitted by a multivariate normal distribution function.
The fitted distribution function was successfully adopted to
detect any non-walking state. Furthermore, the algorithm
detected 96.25% of the fall accidents. The system can be
adapted to a new user’s characteristics after walking
normally for approximately 40 s.
The upper body centroid motion pattern was also

applied to train HMMs for state classification. The trained
HMM with normal walking data was utilized to detect any
non-walking state, including sitting, standing, and five
falling types. The algorithm detected 98.75% of fall
accidents in the experiments, which involved four subjects
using the RT Walker. Moreover, the users’ data were
utilized to train eight HMMs for each user and recognize
the motion state at each frame. The state recognition results
were evaluated by calculating the confusion matrix, which
indicated 81.0% of the correct classification for all users.
The proposed state classification methods can be used in

control systems for walking support systems. However, we
suggest that further investigation should be conducted with
data from real walker users, such as the elderly or disabled
people.
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