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Abstract A novel data-driven method based on Gaussian
mixture model (GMM) and distance evaluation technique
(DET) is proposed to predict the remaining useful life
(RUL) of rolling bearings. The data sets are clustered by
GMM to divide all data sets into several health states
adaptively and reasonably. The number of clusters is
determined by the minimum description length principle.
Thus, either the health state of the data sets or the number
of the states is obtained automatically. Meanwhile, the
abnormal data sets can be recognized during the clustering
process and removed from the training data sets. After
obtaining the health states, appropriate features are
selected by DET for increasing the classification and
prediction accuracy. In the prediction process, each
vibration signal is decomposed into several components
by empirical mode decomposition. Some common statis-
tical parameters of the components are calculated first and
then the features are clustered using GMM to divide the
data sets into several health states and remove the
abnormal data sets. Thereafter, appropriate statistical
parameters of the generated components are selected
using DET. Finally, least squares support vector machine
is utilized to predict the RUL of rolling bearings.

Experimental results indicate that the proposed method
reliably predicts the RUL of rolling bearings.

Keywords Gaussian mixture model, distance evaluation
technique, health state, remaining useful life, rolling bearing

1 Introduction

Bearing fault is a major source of failures in mechanical
drive systems; thus, predicting the remaining useful life
(RUL) of rolling bearings has been a key research topic in
condition-based maintenance [1–12]. The methods for the
prognosis of rolling bearing RUL can be classified into two
categories: Model-based methods [1–4] and data-driven
methods [5–12]. In model-based methods, the RUL is
estimated using physical laws or by solving several
deterministic equations obtained from empirical data. An
approach based on a finite element model and a bearing
spall propagation model was proposed by Marble and
Morton [1] for health state prediction of propulsion system
bearings. Liao et al. [2] developed an RUL prediction
method based on logistic and hazard regression models.
Tian and Liao [3] proposed a proportional hazard model to
predict the RUL of rolling bearings. Model-based methods
can significantly improve the accuracy of RUL prediction
if properly used. However, damage propagation processes
and equipment dynamic response are complex, thereby
bringing difficulty in building authentic models.
Data-driven methods are based on the data derived from

various conditions (e.g., vibration, temperature, and
pressure) and signal processing techniques. Compared
with model-based methods, data-driven methods can be
applied to more complex situations because of ignoring the
physical laws and equations of rolling bearings. Gebraeel
et al. [5] proposed an approach based on artificial neural
network to predict the RUL of bearings. Di Maio et al. [6]
developed a method based on relevance vector machine to
estimate the RUL of bearings. Ben Ali et al. [7] proposed
an approach based on Weibull distribution and artificial
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neural network. However, existing data-driven methods for
RUL prediction have no unified standards for estimating
the health state of rolling bearings. The health states are
determined empirically by qualified experts in experiment
[7,11].
Gaussian mixture model (GMM) has been widely

applied in many areas, such as clinical decision [13],
computer vision, [14], and mechanical fault diagnosis [8].
Considerable research has shown that GMM is suitable for
diagnosing bearing vibration signals [15,16], but most
previous works only focused on quantifying and modeling
of bearing degradation performance. In the current study,
GMM is used to cluster the extracted features of vibration
signals. The maximum likelihood estimation of GMM is
performed by expectation maximization (EM) [15,16], and
the number of clusters is determined by the minimum
description length (MDL) principle [13]. Thus, either the
health state of the data sets or the number of the states is
obtained automatically. Meanwhile, the abnormal data sets
can be recognized during the clustering process and can be
removed from the training data sets.
Not all features can positively contribute to the

prediction of rolling bearing RUL because some of them
may lower the identification accuracy and the computa-
tional efficiency. Thus, appropriate features (i.e., salient
features) should be selected before they are inputted into a
classifier. Distance evaluation technique (DET) [17–19] is
thus applied to obtain salient features in this study. The
main idea of DET is to select salient features that show low
intra-class variations and high intra-class variations by use
of effectiveness factor [18]. Least squares support vector
machine (LS-SVM) is widely used in the fault diagnosis of
rolling bearings and shows a satisfactory performance [11].
Thus, this method is used to estimate the rolling bearing
RUL in this study.
A novel adaptive method using GMM [14,20] and DET

[17–19] is proposed in this study to improve the
adaptability and validity of the current approaches. The
rest of the paper is organized as follows. The process of the
proposed method is presented in Section 2. The basic
theory of the relevant methods is also introduced in this
section. The experimental effectiveness of the method is
analyzed in Section 3. The conclusions and discussion are
provided in Section 4.

2 Methodology

2.1 Feature extraction

The features of the vibration signals should be extracted
prior to the clustering process. Empirical mode decom-
position (EMD) is a commonly used time-frequency
analysis method and is widely applied as a processing
approach for the feature extraction of mechanical vibration

signal diagnosis [21,22]; thus, the method is used to
decompose the data sets into a number of IMFs (intrinsic
mode functions) in the proposed method. Additional
details of EMD can be found in Refs. [21–24]. Given
that each IMF represents the natural oscillatory mode of
the original signal, features extracted from the components
are more effective than the features extracted from the
original signal for bearing vibration signal diagnosis in
some cases. The statistical parameters from the original
vibration signals and the IMFs generated by EMD are
extracted to obtain accurate physical features. For calcula-
tion convenience, all the statistical parameters are normal-
ized in the proposed method. The common frequency
domain and time domain statistical parameters applied in
this study are shown as below:
Frequency domain statistical parameters:
1) Mean value:

F1 ¼
1

N

XN
n¼1

xðnÞ:

2) Root mean square:

F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

x2ðnÞ
vuut :

3) Square root amplitude:

F3 ¼
1

N

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
jxðnÞj

p !2

:

4) Mean amplitude:

F4 ¼
1

N

XN
n¼1

jxðnÞj:

5) Maximum peak:

F5 ¼
1

2
ðmaxðxðnÞÞ –minðxðnÞÞÞ:

6) Standard deviation:

F6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N – 1

XN
n¼1

�
xðnÞ –F1

�2vuut :

7) Skewness:

F7 ¼
1

N – 1

XN
n – 1

xðnÞ –F1

F6

� �3

:

8) Kurtosis:

F8 ¼
1

N – 1

XN
n – 1

xðnÞ –F1

F6

� �4

:
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9) Crest factor:

F9 ¼
F5

F2
:

10) Clearance factor:

F10 ¼
F5

F3
:

11) Shape factor:

F11 ¼
F2

F4
:

12) Crest factor:

F12 ¼
F5

F4
:

Time domain statistical parameters:
13) Spectral amplitude mean value:

F13 ¼
1

M

XM
k¼1

sðkÞ:

14) Spectral amplitude standard deviation:

F14 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M – 1

XM
k¼1

ðsðkÞ –F13Þ2
vuut :

15) Spectral amplitude skewness:

F15 ¼
1

M – 1

XM
k¼1

sðkÞ –F13

F14

� �3

:

16) Spectral amplitude kurtosis:

F16 ¼
1

M – 1

XM
k¼1

sðkÞ –F13

F14

� �4

:

17) Spectral gravity frequency:

F17 ¼

XM
k¼1

f ðkÞsðkÞ

XM
k¼1

sðkÞ
:

18) Spectral root mean square frequency:

F18 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

f 2ðkÞsðkÞ

XM
k¼1

sðkÞ

vuuuuuuut :

19) Spectral root 4/2-moment ratio:

F19 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

f 4ðkÞsðkÞ

XM
k¼1

f 2ðkÞsðkÞ

vuuuuuuut :

20) Spectral standard deviation frequency:

F20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

ðf ðkÞ –F17Þ2sðkÞ

XM
k¼1

sðkÞ

vuuuuuuut :

21) Spectral frequency skewness:

F21 ¼
XM
k¼1

f ðkÞ –F17

F20

� �3

s kð Þ
XM
j¼1

sðjÞ
:

22) Spectral frequency kurtosis:

F21 ¼
XM
k¼1

f ðkÞ –F17

F20

� �4

s kð Þ
XM
j¼1

sðjÞ
:

The IMFs covering high-frequency bands are usually
generated first in the procedure of EMD. Furthermore,
bearing fault often induces high-frequency bands [18].
Therefore, the first several IMFs generated by EMD are
selected in practical applications. Considering the above-
mentioned fact, only the first three IMFs are selected for
extracting statistical features.

2.2 Health state clustering based on GMM

GMM is the sum of the weight of several Gaussian
components. The density of a specific random variable is
represented by the Gaussian components [14,20]. In
GMM, a group of Gaussian functions allow an improved
modeling capability while each Gaussian function has its
co-variance and mean matrix. GMM composed of three
Gaussian components is shown in Fig. 1. The mathema-
tical formula of GMM is as follows [14,20]:

PðxjΘÞ ¼
XM
i¼1

wiP  �xj�i,Σi  �, (1)

where M is the largest number of the Gaussian compo-
nents, and x is the random variable, Θ are the GMM
parameters including the covariance matrix ∑, the mean
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vector μ , and the weight w (w³0,     
XM
i¼1

wi ¼ 1), Pðxj�i,P
iÞ is the density function of the ith component, which

can be described as follows:

P  �xj�i,
X

i  � ¼ 1

ð2πÞD2 jPij
1
2

e –
1
2ðx –�iÞT

P – 1
i ðx –�iÞ, (2)

where D represents the dimension of the vector x.

EM [15,16] is the most common method for the
estimation of the parameters of GMM. Supposing the
number of data sets is N, the maximum likelihood of the
parameter Θ is obtained during the iterative process of EM
by optimizing the following likelihood function:

lðΘÞ ¼ log∏N
t¼1p

�
xðtÞjΘ

�
¼
XN
t¼1

logp
�
xðtÞjΘ

�
: (3)

The optimization process involves two steps. The
parameters of Θ are initialized first and then they are
updated iteratively until convergence. The parameters are
updated as follows in each iteration j:

wðjþ1Þ
i ¼

XN

t¼1
hðjÞi ðtÞ

N
, (4)

�jþ1
i ¼

XN

t¼1
hðjÞi ðtÞxðtÞXN

t¼1
hðjÞi ðtÞ

, (5)

Xjþ1

i
¼
XN

t¼1
hðjÞi ðtÞ  hxðtÞ –�ðjþ1Þ

i   i  hxðtÞ –�jþ1
i   iTXN

t¼1
hðjÞi ðtÞxðtÞ

, (6)

where hðjÞi is the posterior probability of the ith component
at the jth iteration, and its equation is as follows:

hðjÞi ðtÞ ¼
wðjÞ
i P
�
xðtÞj�ðjÞ

i ,
PðjÞ

i

�
XM

i¼1
wðjÞ
i P
�
xðtÞj�ðjÞ

i ,
XðjÞ

i

�: (7)

The number of the Gaussian components should be
identified first prior to adaptively clustering the health

states. In recent years, many approaches, such as MDL
principle, Akaike’s information criterion, and Laplace
empirical criterion [14], have been proposed to attain the
said goal. MDL is a classic algorithm and is used to select
the number of clusters, and the experimental results show a
satisfactory performance. MDL is described as follows:

MDL K,Θð Þ ¼ –
XN
t¼1

log
XK
j¼1

pðxðt, jÞjΘÞ
 !

þ 1

2
Llog NRð Þ,

(8)

where K is the clustering number, R is the number of the
selected features, and L is defined as follows:

L ¼ K 1þ Rþ ðRþ 1ÞR
2

� �
– 1: (9)

When the MDL principle is applied to obtain the number
of clusters, a maximum number of cluster Kmax should be
set first. Then, the data sets are clustered by GMM when
K ¼ 1, 2, :::,Kmax. The MDL of each clustering result
should be calculated, and the result corresponding to the
minimum MDL value is supposed to be the best.

2.3 Feature selection based on DET

The selection of DET [17–19] to obtain salient features in
this study has been explained in the introduction section.
As mentioned earlier, the main idea of DET is to select
salient features that show low intra-class variations and
high intra-class variations using effectiveness factor.
Assuming Fi, j, k    ði ¼ 1, 2, :::,C; j ¼ 1, 2, :::, J ; k ¼ 1, 2,

:::,NiÞ is the jth statistical parameter of the kth sample with
ith health state. C, J, and Ni are the number of conditions,
statistical parameters and samples, respectively. The
process of DET is as follows:
1) The average distance of the samples with the same

condition is calculated as

di, j ¼
1

NiðNi – 1Þ
XNi

k, l¼1

jFi, j, k –Fi, j, lj

ðk≠l; i ¼ 1, 2, :::,C; j ¼ 1, 2, :::, J Þ, (10)

and then the average distance of all conditions is obtained
as

dWj ¼ 1

C

XC
i¼1

di, j      j ¼ 1, 2, :::, Jð Þ: (11)

2) The average value of each parameter of all samples
with the same condition is calculated as

ui, j ¼
1

Ni

XNi

k¼1

Fi, j, k      ði ¼ 1, 2, :::,C; j ¼ 1, 2, :::, J Þ, (12)

and then the average distance between the average values
of parameters with different conditions is obtained as

Fig. 1 Illustration of GMM
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dbj ¼ 1

CðC – 1Þ
XC
i,m¼1

jui, j – um, jj     ði≠m; j ¼ 1, 2, :::, JÞ:

(13)

3) The effectiveness factor is calculated as

αj ¼
dbj
dWj

     j ¼ 1, 2, :::, Jð Þ, (14)

and then the effectiveness factor is normalized by its
maximum value as

αíj ¼
αj

maxðαjÞ
     j ¼ 1, 2, :::, Jð Þ, αíj 2 0, 1½ �: (15)

Large value of normalized effectiveness factor αíj
implies that feature pj can be used to effectively identify
different conditions. The first several features with large αíj
are chosen to be the salient features.
The salient features should be normalized as the value

ranges of the salient features vary.

f íi, j¼
fi, j

max
i¼1, 2, :::, n

ðjfi, jjÞ
, j ¼ 1, 2, :::, J#, f íi, j 2 – 1, 1½ �, (16)

where i and j indicate that fi,j is the jth feature calculated
from the ith sample, n is the number of the training
samples, and J# is the number of selected features.

2.4 Proposed method

In this study, a novel method based on GMM and DET is
proposed for predicting the RUL of rolling bearings. The
flowchart of the proposed method is shown in Fig. 2. The
main procedures of the method are as follows:
1) Decompose all the data sets into several IMFs by use

of EMD in consideration of the first M components.
2) Calculate the 22 statistical parameters of the original

data sets and the IMFs of the data sets generated by EMD.
Given that the first M IMFs are considered, the number of
the constructed feature vectors Fj is ðM þ 1Þ � 22. All the
statistical parameters are normalized in the proposed
method.
3) Obtain the health states of rolling bearings by

clustering the feature vectors with GMM. The number of
the health states is determined by theMDL principle. Then,
remove the abnormal signals from training data sets.
4) After identifying the health states, select the salient

features by DET. Calculate the normalized effectiveness
factor αíj ðj ¼ 1, 2, :::, ðM þ 1Þ � 22Þ of every feature
vector. If the αíj of a feature vector is larger than the
selected threshold value, then the corresponding feature is
chosen to be a salient feature.
5) Train and test the LS-SVM classifier with training and

testing data sets, and then output the RUL results.

3 Experimental analysis

The proposed method is evaluated by applying the data
sets provided by the Center for Intelligent Maintenance
Systems at the University of Cincinnati [25–27]. Rexnord
ZA-2115 bearings are used on the test rig. A total of 16
rollers are contained in each row of bearings. PCB 353B33
High Sensitivity Quartz ICP accelerometers are utilized on
the bearing housing. The test rig of the experiment is
shown in Fig. 3. Four rolling bearings are tested in the
experiment. The rotation speed is 2000 r/min, and the
radial load is 6000 lbs (1 lbs = 0.4535 kg). The test lasted
for 35 days until the bearings fail in obtaining run-to-
failure data sets of bearings.
The vibration signals are recorded every 10 min. A total

of 20480 data points are contained in each file, and the
sampling rate is 20 kHz. Three tests are implemented with
all the four rolling bearings in each test, thereby obtaining
12 data sets. Only three bearings fail in the experiment, and
thus, their corresponding data sets are utilized. The three
data sets are denoted as data sets 1, 2, and 3. The vibration
signals of the three data sets are shown in Fig. 4.
Additional information about the three data sets is
provided in Table 1. One-third of the individual files in
the data sets with the same interval are selected to be the
testing data sets, and the others are considered the training
data sets.
Features of the vibration signals should be extracted

Fig. 2 Flowchart of the proposed method
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prior to the clustering process. Thus, all the individual files
of the data sets are decomposed by EMD first. Then, the
features are extracted by calculating the 22 statistical
parameters. Considering that only the first three IMFs and
the original signals are considered, 22 features of the
original signals and 22�3 features of the IMFs are
obtained by EMD. Thus, combined with the features of
the original signals, 22�4 (i.e., 88) features of each data set
are obtained for testing the effectiveness of the proposed
method.
Each data set is clustered into several health states by

GMM with the calculated statistical parameters. The

classification of the health states generated by GMM and
the skewnesses of the three data sets are presented in
Figs. 5–7 for intuitively describing the clustering results.
Figures 5–7 show that the health states are closely related
to the fluctuation of the features. Furthermore, the numbers
of the abnormal data identified by GMM in data sets 1, 2,
and 3 are 76, 81, and 8, respectively. Thus, the abnormal
data can be removed from the training data sets prior to the
LS-SVM classification and prediction process. The

Fig. 3 Bearing test rig

Fig. 4 Vibration signals of three data sets. (a) Data set 1; (b) data
set 2; (c) data set 3

Table 1 Information of the experimental data sets

Data set Test Bearing Break time/min Degradation type Maximum magnitude/(m$s–2)

1 1 3 21560 Inner race 5

2 1 4 21560 Roller 4

3 2 1 9840 Outer race 5

Fig. 5 Clustering results of data set 1. (a) Clustered health state;
(b) skewness

Fig. 6 Clustering results of data set 2. (a) Clustered health state;
(b) skewness
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numbers of the data removed from the training data sets of
data sets 1, 2, and 3 are 50, 56, and 6, respectively. The
abnormal data in the testing data sets are retained because
determining whether the testing vibration signal is
abnormal beforehand is difficult in practical application.
After determining the health states, DET is applied to

select salient features in accordance with the health states.
The threshold value is set to be 0.5 in this study. If the
effectiveness factor αíj of a feature vector is larger than
0.5, then the corresponding feature is chosen to be a
salient feature. The feature selection results are shown in
Figs. 8–10. A total of 14, 44, and 29 salient features are
selected from the 88 features of data sets 1, 2, and 3,
respectively.

The validity of the proposed method is verified using
four methods: The proposed method (marked as Method
1), the proposed method without GMM clustering
(uniformly divided into three health states and marked as
Method 2), the proposed method without using DET to
select feature (marked as Method 3), and the proposed
method without removing the abnormal data from the

training data sets (marked as Method 4). The prediction
and classification results of the rolling bearing RUL are
generated by LS-SVM.
Figures 11–13 show the RUL prediction results (LP:

Life percentage) of the three data sets. The predicted
results of Methods 1 and 2 are obviously more approx-
imate to the real values compared with the two other
methods. Meanwhile, the fluctuations of the curves
generated by Methods 1 and 2 are small. Several
parameters generated from the classification and RUL
prediction results of the three data sets are presented in
Tables 2–4 for further demonstrating the effectiveness of
the proposed method. CAi is the mean classification
accuracy of the ith health state; CA is the mean
classification accuracy of all the health states; EE and
CC are the energy error and the correlation coefficient
between the predicted RUL and the real values, respec-
tively. EE and CC are defined in Eqs. (17) and (18).

EE ¼

XN
n¼1

ðSiðnÞ – IiðnÞÞ2

XN
n¼1

IiðnÞ2
, (17)

Fig. 7 Clustering results of data set 3. (a) Clustered health state;
(b) skewness

Fig. 8 Salient features of data set 1

Fig. 9 Salient features of data set 2

Fig. 10 Salient features of data set 3
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CC ¼

XN
n¼1

SiðnÞ – Si
� �

IiðnÞ – I i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

SiðnÞ – Si
� �2XN

n¼1

IiðnÞ – I i
� �2s , (18)

where N is the number of points in each data set, IiðtÞ
and SiðtÞ are the real values and the predicted RUL,
respectively, I i and Si are the means of Ii(t) and Si(t),
respectively. Tables 2–4 show that the classification
accuracy and the RUL prediction accuracy generated by
the proposed method are superior to those by the three
other methods. Meanwhile, the proposed method shows a
satisfactory performance in the experimental analysis.
Therefore, the proposed method is effective in classifying
health states and predicting rolling bearing RUL.

Fig. 11 RUL prediction results of data set 1. (a) Method 1; (b)
Method 2; (c) Method 3; (d) Method 4

Fig. 12 RUL prediction results of data set 2. (a) Method 1; (b)
Method 2; (c) Method 3; (d) Method 4

Fig. 13 RUL prediction results of data set 3. (a) Method 1; (b)
Method 2; (c) Method 3; (d) Method 4

Table 2 Experimental results of data set 1

Method CA1 CA2 CA3 CA EE CC

1 1.0000 1.0000 0.6583 0.9429 0.0258 0.9482

2 0.8912 0.6750 0.1674 0.5780 0.0517 0.8970

3 0.3826 0.9267 0.1667 0.7604 0.0371 0.9127

4 1.0000 0.9908 0.6417 0.9318 0.0332 0.9325
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Although the proposed method can improve the
accuracy of the classification of health state and the RUL
prediction, the computational cost is inevitably increased
because of the complexity of the method. The increased
computational cost is caused by the clustering process of
GMM and the feature selection of DET, which are
generated prior to applying SVM. The time costs of
GMM clustering process of data sets 1, 2, and 3 are
14.2389, 16.7022, and 15.3217 s, respectively. The time
costs of feature selection of data sets 1, 2, and 3 are 7.1319,
7.7799, and 7.5327 s, respectively.

4 Conclusions

In this study, a new approach based on GMM and DET is
proposed for predicting the RUL of rolling bearings. GMM
is used to cluster the health states and identify the abnormal
data sets from the training data sets. The MDL principle is
used to determine the number of clusters for dividing all
the data sets into several health states adaptively and
practically. After obtaining the health states, salient
features are selected by DET for increasing the classifica-
tion and prediction accuracy. In the prediction process, LS-
SVM is utilized to predict the RUL of rolling bearings by
inputting the salient features. The experimental results
indicate that the proposed method shows a reliable
performance in predicting RUL and classifying the rolling
bearings. This approach can also be applied to the
prognosis of other mechanical assets. The future work
will focus on seeking for improved and advanced feature
extraction methods, clustering methods, and mode recog-
nition methods to enhance the accuracy of RUL prediction.
Considering that the complexity of the proposed method
increases the computational cost, the computational
efficiency will also be improved.
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