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Abstract Given the weak early degradation character-
istic information during early fault evolution in gearbox of
wind turbine generator, traditional singular value decom-
position (SVD)-based denoising may result in loss of
useful information. A weak characteristic information
extraction based on µ-SVD and local mean decomposition
(LMD) is developed to address this problem. The basic
principle of the method is as follows: Determine the
denoising order based on cumulative contribution rate,
perform signal reconstruction, extract and subject the noisy
part of signal to LMD and µ-SVD denoising, and obtain
denoised signal through superposition. Experimental
results show that this method can significantly weaken
signal noise, effectively extract the weak characteristic
information of early fault, and facilitate the early fault
warning and dynamic predictive maintenance.

Keywords wind turbine generator gearbox, µ-singular
value decomposition, local mean decomposition, weak
characteristic information extraction, early fault warning

1 Introduction

The extraction of fault characteristics is directly related to
the veracity and reliability in mechanical fault diagnosis.
Considering the weak early degradation characteristic
information during the evolution of transmission system
fault in wind turbine generator, the deterioration character-
istic information is frequently consumed by such non-
deterioration information as variable condition. Moreover,
the large amount of noise in the vibration signal of wind
turbine generator acquired with sensor may lead to low

signal-to-noise ratio (SNR) and high complexity and
diversity. These factors may seriously affect the extraction
of deterioration state characteristic information. Effectively
reducing the background noise in vibration signal and
highlight state characteristic information is a key technique
that affects the running state deterioration characteristic
extraction for wind turbine [1–4].
In recent years, nonlinear filtering-based singular value

decomposition (SVD) has been proven an effective signal
processing tool that can extract the main characteristic
components of signal and is thus being widely used for
engineering signal processing [5–10]. The basic principle
of traditional SVD denoising is as follows: Subject
observation signal to phase space reconstruction; use
SVD to decompose observation signal space into noisy
signal subspaces and noise subspaces corresponding to a
series of singular values; reserve several large singular
values corresponding to noisy signal subspace, and set the
rest of the singular values to zero; attain pure signal matrix
estimate equation through SVD inverse process; and
recover the denoised signal through phase space inverse
reconstruction. Certain singular values reserved in tradi-
tional SVD denoising are principally associated with noise
contribution, and the resulting pure signal matrix estimate
equation contains much noise information. Accordingly,
traditional SVD denoising cannot provide favorable effect
of denoising under high noise.
Zeng et al. [11] proposed a universal SVD-based

subspace denoising, that is, μ-SVD denoising algorithm.
Traditional SVD denoising is only a special case of m-SVD
denoising when Lagrangian multiplier m = 0. When the μ
value is properly chosen, m-SVD denoising can provide
better denoising effect as compared with traditional SVD
denoising. However, considering that traditional SVD
denoising and m-SVD denoising “give up” a part of signal
represented by singular value and that such part of signal
may often contain useful information, especially in the
signal acquired in the background of strong noise on site,
the useful information in “given up” signal must be
rationally extracted. Zhu et al. [12] used empirical mode
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decomposition (EMD) in SVD denoising to extract the
weak information for the terms that are “given up” in SVD
denoising and contain weak useful information; the
method is proven effective. Hence, this study proposes a
weak characteristic information extraction based on m-
SVD and local mean decomposition (LMD) for early fault
by introducing the highly optimized LMD [13–16] as
compared with EMD into SVD denoising. The proposed
method is then used to analyze vibration signal of wind
turbine generator in a strong noise background and extract
the weak characteristic information of deterioration state
characteristic.

2 Weak characteristic information
extraction

2.1 µ-SVD

µ-SVD denoising is developed by applying time-domain
constraint estimate to SVD-based subspace denoising.
Traditional SVD denoising is a special case of μ-SVD
denoising when Lagrange multiplier μ = 0. μ-SVD denois-
ing involves filter value factor f� that filtrates the reserved
singular values and suppresses the information contribu-
tion of noise contribution-dominated singular values to
pure signal matrix estimate equation. μ-SVD denoising
involves five parameters: Delay time τ, embedding
dimension d, denoising order k, noise power �2w, and
Lagrange multiplier μ; these parameters determine the
ultimate denoising effect.
The procedure of μ-SVD denoising is as follows:
1) Determine embedding dimension d and delay time τ,

and subject observation signal x to phase space reorganiza-
tion to obtain observation signal matrix X.
2) Use SVD to decompose observation signal matrix X,

that is, X ¼ UΣVT.
3) Determine denoising order k, and extract the first k

column vectors of matrices U , Σ, and V to obtain
submatrices U1, Σ1, and V 1.
4) Determine noise power �2w and Lagrange multiplier

μ for computing matrix F� ¼ ðIk –�2
wΣ

– 2
1 ÞðIk – ð1 –�Þ�2w

Σ – 2
1 Þ – 1, Ik ¼ UTU .
5) Calculate the estimated pure signal matrix

Ŝ� ¼ U1F�Σ1V
T
1 , and obtain the denoised signal through

phase space inverse reconstruction of Ŝ.
The procedures for determining the abovementioned

parameters of μ-SVD denoising are provided as follows.
1) Delay time
Phase space reconstruction delay time is a key

parameter. Delay time is determined with extensively
used mutual information function (MIF) [17] and is
defined as

D τð Þ ¼
XN – τ

i¼1

p xi,xiþτð Þln pðxi,xiþτÞ
pðxiÞpðxiþτÞ

, (1)

where pðxiÞ, pðxiþτÞ, and pðxi,xiþτÞ represent probability.
This study uses the τ value corresponding to the first
minimum of MIF as the delay time τ0.
2) Embedding dimension
Embedding dimension d is another important parameter

of phase space reconstruction. Cao [18] proposed an
improved false nearest neighbor point method that
determines phase space reconstitution embedding dimen-
sion. The method is expressed as follows:

EðdÞ ¼ 1

N – dτ

XN – dτ

i¼1

kX iðd þ 1Þ –Xnði,dÞðd þ 1Þk
kX iðdÞ –Xnði,dÞðdÞk

, (2)

where X iðdÞ represents the ith reconstructed vector with
embedding dimension equal to d; Xnði,dÞðdÞ is the nearest
neighbor point of X iðdÞ. When delay time τ is determined,
EðdÞ is dependent on embedding dimension d only.
The ratio is defined as

E1ðdÞ ¼
Eðd þ 1Þ
EðdÞ : (3)

The d value obtained when d is slowly increased to
E1ðdÞ is the minimum embedding dimension. No clear
criterion is currently available for determining E1ðdÞ
through slow variation. Hence, a maximum embedding
dimension dmax is provided and gradually increased by d
until the E1ðdÞ values of all subsequent points vary within
the given range Δ, when the corresponding d value is the
minimum embedding dimension d0 .
3) Denoising order
In general, evaluating the denoising order k is necessary

in practice. The large singular k values in the front of
singular value sequence f�ig (i = 1, 2, …, d) are jointly
contributed by pure signal and noise, while the remaining
singular d – k values are entirely contributed by noise.
Singular value cumulative contribution rate is used to
determine denoising order in this study. Singular value is
corrected based on the following equation:

�#i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i –�

2
d

q
, i ¼ 1, 2, :::, d:

The singular value cumulative contribution rate after
correction is

η ¼

Xk
i¼1

�#i

Xd
i¼1

�#i

� 100%: (4)

The k value obtained when cumulative contribution rate
η reaches 80%–90% can normally be used as denoising
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order k0.
4) Noise power
In the event of ideal noise, all singular values

contributed by noise are completely equal to one another.
In practice, these singular values are not completely equal
to one another but exhibit a slowly decreasing distribution.
Accordingly, the mean value of these singular values can
be used to estimate noise power. When denoising order is
identified as k, the noise power estimation equation is

�2
w ¼ 1

d – k

Xd
i¼kþ1

�2
i : (5)

5) Lagrange multiplier
Lagrange multiplier � determines the final effect of μ-

SVD denoising to a large extent. The selection of Lagrange
multiplier � in μ-SVD denoising considers the following
empirical principles: The relatively small � value can be
selected for signal with high SNR. Appropriate � value is
ideally near � ¼ 1.

2.2 Local mean decomposition

LMD is adaptive decomposition based on the signal itself.
Each product function (PF) component attained is
physically significant, reflects the intrinsic nature of signal,
and features strong adaptability and low computing load.
LMD decomposes a complex signal into the sum of a

finite number of PF components, such that the character-
istic information of original signal is extracted. Therefore,
any signal xðtÞ should be subjected to LMD decomposition
as shown in Fig. 1 to obtain PF component.

2.3 Weak characteristic information extraction

2.3.1 Rationale

The rationale of weak characteristic information extraction
based on μ-SVD and LMD is identified on the basis of the
analysis above as follows: Build Hankel matrix for original
signal containing strong noise, and determine the denois-
ing order based on cumulative contribution rate of singular
value; decompose that matrix into two parts through SVD
decomposition, that is, the diagonal matrix containing
effective singular value, and the diagonal matrix con-
structed using the remaining singular values with the
effective singular values set to zero, as shown in Eq. (6).

Hm�n ¼ UΣVT

¼ U
Λ1 0

0 0

 !
VT þ U

0 0

0 Λ2

 !
VT: (6)

The part containing effective singular value must be

reversed to obtain useful signal with faint noise; the
reversal of the other part introduces residual terms that
contain useful signal. Hence, it is reconstructed into a new
Hankel matrix and reversed to obtain original signal
component under weak signal and strong noise. SNR is
enhanced through LMD, while the noise is substantially
found in a few effective PF; these PFs are denoised through
µ-SVD, and the PF signal component is reconstructed. The
reconstructed PF components and the remaining PF
components are superposed to obtain faint useful signal.
When the requirement is still not satisfied, then the
abovementioned process can be repeated for cyclic
decomposition of such weak signal until the effective
signal is attained. Finally, the first part of useful signals and
the said weak effective signal are reconstructed to obtain
original information.

2.3.2 Method and process

The flow chart of the method for weak characteristic
information extraction is shown in Fig. 2.
The weak characteristic extraction based on μ-SVD and

LMD is realized in the following procedure:
1) Build m� n-dimension Hankel matrix and perform

SVD for noisy signal xðtÞ, determine the effective singular
value, and decompose original signal with noise into two
parts using Eq. (6).
2) The first part of signal reconstruction obtains

superposed signal x1ðtÞ, and the second part of reconstruc-
tion obtains signal x2ðtÞ with noise.
3) Subject x2ðtÞ to LMD decomposition, use effective PF

component to perform �-SVD based signal denoising, and
superpose the denoised PF component and the rest of PF
components to weak information x3ðtÞ.
4) Superpose x1ðtÞ, x3ðtÞ, and trend term to obtain

denoised signal x#ðtÞ.
5) When denoised signal fails to satisfy the require-

ments, repeat steps 3) and 4) until effective signal is
extracted.
In this process, effective PF is selected in determining

the correlation of each PF with original signal; the
correlation �i computing method described in Ref. [19] is
used to distinguish useful component from false PF
component. The correlation value of each PF component
with original signal is calculated; if the correlation �i of a
certain PF component with original signal is below the
preset threshold l, then it must be eliminated as false
component. l can be used as a ratio of maximum
correlation and is expressed as follows:

l ¼ maxð�iÞ=η, i ¼ 1,2, :::,n,

where η represents a proportionality constant with a value
larger than 1. The correlation between sequences xðnÞ and
yðnÞ is expressed as
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�xy ¼

X1
n¼0

xðnÞyðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼0

x2ðnÞ
X1
n¼0

y2ðnÞ
s :

3 Simulation verification

The simulation signal is constructed as follows: The sine

signal modulated by the fundamental frequency is 70 Hz,
and the signal is modulated by the sine signal of 5 Hz,
which is a sine signal with the frequency of 120 Hz. The
expression is as follows:

X ¼ 0:7sin
�
140πt þ cosð10πtÞ

�
þ sinð240πtÞ:

Figure 3 shows source signal of time- and frequency-
domain waveforms. The waveforms show clear periodi-
city, and amplitude spectrum contains frequency of 70 Hz
and side band frequency interval for 5 Hz. Amplitude

Fig. 1 LMD algorithm flow chart
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declines from the dominant frequency of 70 Hz to both
sides, indicating that the signal of 70 Hz is modulated by
the sinusoidal signal of 5 Hz. Spectrum is clean with no
other interference frequency components.
White noise is added to the source signal. Figure 4

shows the time-domain waveform and frequency spectrum
of the actual observation signal. Given the noise

interference, some characteristics of the source signal are
submerged, and the time-domain periodicity becomes
insignificant. The frequencies of 65, 70, and 120 Hz are
still significant but do not form the side band. A source
signal in two main frequencies of 65 and 70 Hz exist at the
same time.
The signal with noise is subjected to phase space

Fig. 2 Pretreatment method flow chart

Fig. 3 Time-domain waveform and frequency spectrum of
source signal

Fig. 4 Time-domain waveform and frequency spectrum of signal
with noise

Xiaoli XU et al. Characteristic information extraction of wind turbine generator gearbox 361



reconstruction, and the singular value is calculated. The
cumulative contribution rate (CCR) of singular value is
calculated, and the denoising order in the aforementioned
way is determined to obtain denoising order.
As shown in Fig. 5, the cumulative contribution rate

decreases below 85% when denoising order is 5, such that
the denoising order k is identified as 4. The first four
singular values are used as effective singular values and are
decomposed into two parts using Eq. (6).

Figure 6 shows that the second part of signals is messy
and may contain useful information. However, further
processing is needed owing to the weakness of useful
information and the strong noise interference. The second
part of signals is decomposed using LMD to attain three PF
components and one residual component shown in Fig. 7.
The correlation of each of the three PF components with

the second part of signals is calculated; the detailed
numerical values are shown in Fig. 8.
A PF component with extremely low correlation is

removed, and the remaining two PF components are
subjected to weak characteristic information extraction
based on μ-SVD. PF1 is used as an example in describing
the denoising process in detail below.
The delay time τ needs to be determined first. As shown

in Fig. 9, the τ value corresponding to the first minimum of
MIF is considered the delay time τ0, τ0 ¼ 2.
To determine the embedding dimension d, a maximum

embedding dimension dmax is given and gradually
increased by d until the E1ðdÞ values of all subsequent
points vary within the given range Δ, when the
corresponding d value is the minimum embedding
dimension d0. In this study, dmax ¼ 20, and Δ ¼ 0:05.
As shown in Fig. 10, the embedding dimension d0= 9.
The k value obtained when CCR η reaches 80%–90%

can be regarded as the denoising order k0. As shown in Fig.
11, the denoising order k0 ¼ 9. In this study, the denoising
order is identified as k = 9, and the calculated noise power
σw= 10820. μ is determined based on the principle for
selection of μ = 0.9.
PF1 is subjected to weak characteristic information

extraction based on μ-SVD, and the weak information is
obtained and shown in Fig. 12. PF2 is subjected to weak
characteristic information extraction based on μ-SVD

Fig. 5 Relation between denoising order and cumulative con-
tribution rate (CCR)

Fig. 6 Waveform of the second part of signal

Fig. 7 LMD decomposition result of the second part of signals
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using the same method as used for PF1, and it is
superposed with the rest of the PF components and
residual terms to obtain denoised second part of signals;
the first and second parts of signals are then superposed to
attain the weak information of signal as shown in Fig. 13.
As shown in Fig. 13, the noise energy is suppressed to a

certain extent. The frequency signals of 60, 65, and 75 Hz
(nearby 70 Hz) are extracted. The source signal in the
presence of the frequency signal of 70 Hz is modulated by
the sine signal component of 5 Hz. The simulation results
show that, after the process with this method, and the noise
in the spectrum is filtered out to a certain extent. As a
consequence, the failure frequency characteristics are
extracted with ease.
The weak characteristic information extraction spectrum

indicates that the proposed weak signal extraction method
can effectively extract all frequency components. Original
signal is subjected to strong noise to weaken information
extraction using SVD denoising and μ-SVD denoising.
The comparison results between corresponding SNR and
RMSE (root mean square error) are shown in Table 1.

Weak characteristic information extraction based on μ-
SVD and LMD exhibits excellent noise suppression
performance in terms of waveform, frequency spectrum,
SNR, and RMSE after simulation signal noise suppression.
Thus, this method can be used to pretreat state character-
istic weak information of wind turbine generator.

4 Experimental verification

As a rotary device with high transmission ratio and power,

Fig. 8 Correlation of three PF components with the second part
of signals

Fig. 9 Determination of delay time

Fig. 10 Detemination of embedding dimension

Fig. 11 Denoising order of phase space reconstruction

Fig. 12 Signal after extraction of weak information with PF1

Table 1 SNR and RMSE after treatment using different methods

Processing method SNR/dB RMSE

Weak characteristic information extraction 27.492 0.063

SVD denoising 26.871 0.079

µ-SVD denoising 27.426 0.077

Fig. 13 Signal after extraction of weak information
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the gearbox in the transmission system of a wind turbine
generator has to constantly bear varying wind loads and
other loads; a large amount of data indicate that gearbox is
a weak section in the transmission system of a wind
turbine generator [20,21]. In consideration of its practical
operational complexity, a wind power speed-up gearbox
experiment table is established and used to verify the
effectiveness of the method based on vibration data
obtained at experiment table. Figure 14 shows the sensor
arrangement.

In the experiment, the type of rolling bearing is
SKF6205 deep groove ball bearings, single point damage
is produced by electric discharge machining, the damage
diameter is 0.1778 mm, and depth is 0.2794 mm. Under a
load of 0.74 kW inner ring fault, outer ring fault, and
rolling body fault data are obtained. The sampling
frequency is 12 kHZ, and the data length is 4096.
Figure 15 shows the time-domain waveform.

The fault data of the three kinds of states present certain
regularity, and the periodic impulse characteristics of the
fault signal of the inner and outer races are obvious.
The experimental bearing speed is 1773 r/min. Accord-

ing to the rolling bearing geometry in Table 2, the
frequency calculation of the type of deep groove ball
bearing fault is conducted. The faults of rolling body, inner
ring, and outer ring are 139.28, 160.02, and 105.93 Hz,
respectively. The cage failure is 11.77 Hz.
Figure 16 shows the fast Fourier transform of the three

sets of signals. The fault frequency is submerged in the
noise and is thus difficult to be extracted. The vibration
acceleration signal must be processed first to find the fault
characteristic frequency. Thus, the experimental data are
pretreated in each operating state of wind power speed-up
gearbox using weak characteristic information extraction
based on µ-SVD and LMD.
For the outer ring fault signal, the calculated fault

characteristic frequency is 105.93 Hz. Given the noise, the
fault characteristic frequency of 107.36 Hz and its
frequency multiplication are not obvious, and the fault
feature is submerged in the noise. As a result, accurately
identifying the fault is difficult.
After SVD of this group of signals, the second part of

signals is decomposed using LMD to attain four PF
components shown in Fig. 17. The relationship between
the PF components (PF1, PF2, PF3, and PF4) and the
original signal are 0.9963, 0.0271, 0.0024, and 0.0024,
respectively.
PF1 and PF2 are subjected to weak characteristic

information extraction based on μ-SVD, and they are
superimposed with the rest of the PF components to obtain
denoised second part of signals; the first and second parts
of signals are then superposed to attain the weak
information of signal as shown in Figs. 18 and 19.
The results show that, after noise reduction, the noise

components in the spectrum are eliminated. The number of
micro burr in the spectrum is also reduced. The highest
amplitude frequency point shows that the highest energy
component of the signal is 533.7 Hz. With the very close
outer ring fault characteristic frequency of 5 double
frequency 529.65 Hz, less than 0.8% error in the
acceptance range is obtained. Therefore, the proposed
theoretical method can effectively diagnose the fault signal
of rolling bearing of wind turbine generator.

5 Conclusions

1) Aweak characteristic information extraction based on

Fig. 14 Installation locations of sensors

Fig. 15 Time-domain waveform of three kinds of faults. (a) Ball
failure; (b) inner ring fault; (c) outer ring fault

Table 2 Deep groove ball bearing specification information

Model Diameter of inner ring/mm Diameter of outer ring/mm Rolling body diameter/mm Contact angle/(° ) Number of rolling elements

6205 25.00122 51.99888 8.18180 0 9
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μ-SVD and LMD is proposed for avoiding the consump-
tion of weak early degradation characteristic information
by such non-deterioration information as a variable
condition during operation status deterioration of transmis-
sion system in wind turbine generator. The method is
verified through simulation to identify its effectiveness.
Pretreatment method for extraction of weak characteristic
information from artificial signal is used, and the result of
this method is compared with that of characteristic mean
method and μ-SVD noise suppression. The simulation
results indicate that the proposed signal preprocessing
method can highlight state characteristic information.
2) Weak characteristic information extraction is used for

analyzing vibration signal at wind power speed-up gearbox
experiment table. The results show that the pretreated
signal suppresses substantive background noise and retains
the mutation component; hence, weak characteristic
information extraction based on μ-SVD and LMD can
pretreat the vibration signal of wind turbine generator. This
study provides the basis for studying running state
deterioration characteristic extraction.

Fig. 17 Second part of the original signal and the PF component. (a) The second part of the original signal; (b) PF1; (c) PF2; (d) PF3;
(e) PF4

Fig. 16 Three kinds of fault signal spectrum. (a) Rolling body
fault; (b) inner ring fault; (c) outer ring fault
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