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Abstract Planetary transmission plays a vital role in
wind turbine drivetrains, and its fault diagnosis has been an
important and challenging issue. Owing to the complicated
and coupled vibration source, time-variant vibration
transfer path, and heavy background noise masking effect,
the vibration signal of planet gear in wind turbine
gearboxes exhibits several unique characteristics: Com-
plex frequency components, low signal-to-noise ratio, and
weak fault feature. In this sense, the periodic impulsive
components induced by a localized defect are hard to
extract, and the fault detection of planet gear in wind
turbines remains to be a challenging research work.
Aiming to extract the fault feature of planet gear
effectively, we propose a novel feature extraction method
based on spectral kurtosis and time wavelet energy
spectrum (SK-TWES) in the paper. Firstly, the spectral
kurtosis (SK) and kurtogram of raw vibration signals are
computed and exploited to select the optimal filtering
parameter for the subsequent band-pass filtering. Then, the
band-pass filtering is applied to extrude periodic transient
impulses using the optimal frequency band in which the
corresponding SK value is maximal. Finally, the time
wavelet energy spectrum analysis is performed on the
filtered signal, selecting Morlet wavelet as the mother
wavelet which possesses a high similarity to the impulsive
components. The experimental signals collected from the
wind turbine gearbox test rig demonstrate that the
proposed method is effective at the feature extraction and
fault diagnosis for the planet gear with a localized defect.

Keywords wind turbine, planet gear fault, feature
extraction, spectral kurtosis, time wavelet energy spectrum

1 Introduction

In view of global climate change and serious situation of
energy security, wind power, as a representative of clean
and highly-efficient energy source, is in the spotlight by
virtue of its unique advantages of the vast reserve,
pollution-free and being well-developed with sophisticated
techniques [1]. With a large amount of wind farms built
rapidly, numerous relevant issues appear in industrial
applications of wind turbines, such as poor reliability, low
efficiency, and high failure rate [2]. Moreover, as the most
critical and vital components, the wind turbine gearbox
remains the highest fault rate. Planetary stage transmission
plays a vital role in wind turbine drivetrains for its large
power transmission capacity in a relatively compact
structure. In general, planetary gearboxes always work
under harsh working conditions like heavy loads, wind
gust, and dust corrosion. Thus, planetary gearboxes are
often subject to potential damage, such as planet gear
pitting, crack and even tooth breakage [3]. The faulty
gearbox could lead to catastrophic failure of the entire
transmission system, and massive investment and produc-
tivity losses consequently. Therefore, condition monitoring
and fault diagnostics of the wind turbine gearboxes are
valuable for both wind turbine industry and academic
research.
Signatures of faulty wind turbine gearboxes can be

reflected by vibratory, thermal, acoustic, electrical signals
analysis and oil debris signature analysis [4–7]. Among
these methodologies, vibration measurement has been
proven to be one of the most effective and widely applied
techniques [8]. The vibrations of planetary gearboxes are
easily affected by the random alternating loads and their
complicated excitations from the interior and exterior.
Additionally, considering the influence of time variant
vibration transfer path induced by their complex structure,
the vibration signal of planetary gearbox exhibits several
unique characteristics: Complex frequency components,
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low signal-to-noise ratio, and weak fault feature [9].
Concerning the fault diagnosis for wind turbines, the most
challenging work is the fault diagnosis for the planet gear.
How to extract the weak fault feature and achieve precise
incipient fault diagnosis for faulty planet gears, especially
in the case of heavy noises and various modulation effects
caused by time variant vibration transfer path, is a hot
research topic and has been attracting increasing attention
of academic researchers.
A local fault at the meshing gear contact surface often

gives rise to the impulsive signature in the vibration signal.
Meanwhile, due to continuously rotating of the machine,
the impulsive components occur repetitively with a
particular period. Hence, extracting the repetitive transients
and identifying its frequency from the raw vibration signal
facilitates to identify the occurrence of the abnormal
condition of machine components correspondingly [10].
Such repetitive impulses usually locate in the high-
frequency band which is closely related to the machine
structure. Moreover, the local fault-induced transients are
often contaminated by heavy noises and various interfer-
ences. A practical approach to periodic transient extraction
is to filter the raw vibration signal through informative
frequency band [11,12].
Spectral kurtosis (SK) has been extensively applied as a

frequency band parameter indicator for band-pass filter
design to extrude the non-Gaussian components. Antoni
[13,14] proposed the formal definition of spectral kurtosis
for non-stationary signals, using the World-Cramer
decomposition and the paradigm of conditionally non-
stationary processes. Further, Antoni and Randall [15]
applied SK to provide a robust way of detecting incipient
faults even in the presence of strong masking noise and
introduced the concept of kurtogram to design optimal
filters for filtering out the mechanical signature of faults.
An adaptive SK technique was proposed to optimize filter
bandwidth and center frequency by means of right-
expanding an initial window in the frequency axis via
successive attempts to merge it with its subsequent
translated windows [16]. Barszcz and Randall [17]
detected a tooth crack in the planetary gear of a wind
turbine using the SK technique. An improved kurtogram
method adopting wavelet packet transform as the filter of
kurtogram was proposed to overcome the shortcomings of
limited accuracy using the original kurtogram, and its
improved performance was demonstrated by analyzing the
collected vibration signal of rolling element bearings [18].
As one of the most powerful non-stationary signal

processing methods, wavelet transform has been exten-
sively studied and successfully applied in rotating machine
fault diagnosis (RMFD). The applications of wavelet
transform in RMFD could be categorized into the
following aspects: Continuous wavelet transform-based
fault diagnosis, discrete wavelet transform-based fault
diagnosis, wavelet package transform-based fault

diagnosis and second generation wavelet transform-based
fault diagnosis [19]. Particularly, continuous wavelet
transform has been widely applied for signal denoising
and feature extraction of vibration signals, owing to its
flexible selectivity of base wavelet function [20]. Morlet
wavelet was selected as the mother wavelet and a
denoising method based on continuous wavelet transform
was applied to feature extraction of mechanical dynamical
vibration signals [21]. A novel denoising method based on
adaptive Morlet wavelet and singular value decomposition
was exploited to extract feature for wind turbine vibration
signal, and was proven to be an effective approach to
detecting the impulsive components hidden in heavy, noisy
vibratory signals [22].
In this paper, to address the problem that fault feature of

planet gear in the wind turbine gearbox is too weak to
extract, we propose a novel feature extraction method
based on spectral kurtosis and time wavelet energy
spectrum (SK-TWES). First, the kurtogram of the raw
vibration signal is computed, and the optimal bandwidth
and center frequency are determined according to the
maximum SK value. Second, the bandpass filtering is
performed to filter out the transient impulsive components,
using the optimal frequency parameters. Then, we adapt
continuous wavelet transform theory to propose the time
wavelet energy spectrum analysis method, with the Morlet
wavelet selected as the mother wavelet to realize the
optimal matching with the impulsive components. After
obtaining the time wavelet energy spectrum, we are
expected to identify the prominent fault characteristic
frequency. Finally, the experimental analyses of planet gear
with a localized defect in the wind turbine gearbox are
introduced to validate the effectiveness of the proposed
method in this paper.
The remaining parts of the paper are organized as

follows. In Section 2, the theoretical backgrounds of SK
and time wavelet energy spectrum are given respectively,
then the main procedures of the proposed feature
extraction method are introduced in the subsequent
subsection. In Section 3, the experiment setting about the
wind turbine gearbox test rig is described in detail. In
addition, the application of the proposed method to
experimental vibration signal of planet gear with a
localized fault is introduced; and some comparative
analyses with other conventional feature extraction
methods are given. Finally, the conclusions are drawn in
Section 4.

2 Proposal of feature extraction method
based on SK-TWES

2.1 Spectral kurtosis and kurtogram

To supplement the classical power spectral density which
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cannot detect and characterize transients in a non-
stationary signal, Dwyer [23] originally devised the SK.
The idea of SK is basically to compute the kurtosis at “each
frequency line” to discover the presence of hidden non-
stationaries and to indicate their locations in the frequency
domain. Therefore, the SK can indicate how the impul-
siveness of a conditionally non-stationary (CNS) process
varies with the frequency, and it has been extensively
applied to extract the transients out of mechanical
dynamical faulty vibration signal [24].
Based on the Wold-Cramer decomposition, any non-

stationary stochastic process Y ðtÞ can be described as the
output of a linear, casual, time-variant system excited by
non-stationary signal X ðtÞ [13]:

Y ðtÞ ¼ !
þ1

–1ej2πftHðt,f ÞdX ðf Þ, (1)

where Hðt,f Þ is the Fourier transform of the time-varying
impulse response hðt,sÞ, dX ðf Þ is an orthogonal spectral
process associated with X ðtÞ.
The SK is defined under the assumption that the process

is conditionally non-stationary. In this case, the fourth-
order spectral cumulant C4Y ðf Þ of a CNS process can be
defined as

C4Y ðf Þ ¼ S4Y ðf Þ – 2S22Y ðf Þ, f≠0, (2)

where S2nY ðf Þ (n = 1, 2, 3, …) is the 2n-order instanta-
neous spectral moment, it is a measure of the energy of
complex envelope and given by

S2nY ðf Þ@EfS2nY ðt,f Þg ¼ EfjHðt,f ÞdX ðf Þj2ng=df

¼ EfjHðt,f Þj2ngS2nX ðf Þ, (3)

with Ef$g standing for the time-average operator.
The energy-normalized fourth-order spectral cumulant

of a CNS process is defined as SK, which gives a measure
of the peakiness of the probability density function of a
CNS process at frequency f.

KY ðf Þ ¼
C4Y ðf Þ
S22Y ðf Þ

¼ S4Y ðf Þ
S22Y ðf Þ

– 2, f≠0: (4)

Another important tool based on SK is the kurtogram,
which presents SK values calculated for various para-
meters of bandwidth and center frequency. It is proposed as
the tool for identification of detection filters. The original
kurtogram is firstly calculated based on short time Fourier
transform. Afterward, the filter bank approach is proposed
to obtain the fast kurtogram, which requires less computa-
tion time and gives results on the same level of quality
[14]. In this paper, the filter bank approach is used to
compute the kurtogram and the program for implementing
the calculation for the fast kurtogram is downloaded from
Ref. [25] provided by J. Antoni.

2.2 Time wavelet energy spectrum analysis

2.2.1 Continuous wavelet transform

The wavelet transform of signal xðtÞ is defined as the inner
product of the signal and the wavelets in the Hilbert space
of the L2 norm, namely, it utilizes a series of oscillating
functions ψa,bðtÞ with different frequencies as window
functions to scan and translate the signal of xðtÞ, shown in
the following form

Wxða,bÞ ¼ hψa,bðtÞ,xðtÞi ¼ !
1

–1xðtÞψ*
a,bðtÞdt

¼ 1ffiffiffi
a

p !
1

–1x tð Þψ* t – b

a

� �
dt, a > 0,

(5)

where Wxða,bÞ is wavelet coefficient which measures the
similarity between the signal xðtÞ and the mother wavelet
ψa,bðtÞ, ψðtÞ is the mother wavelet, a is the scale factor, and
b defines a translation factor of the wavelet.
Wavelet transform has an adaptable time-frequency

resolution and its resolution depends on the frequency of
the signal of interest, which reinforces its important status
in the fault diagnostics field. According to the convolution
properties of Fourier transform, Eq. (5) can also be
represented as

Wxða,bÞ ¼
ffiffiffi
a

p
F – 1 X ðf Þψ̂ *ðaf Þ� �

, (6)

where X ðf Þ and ψ̂ *ðf Þ are the Fourier transform of xðtÞ and
ψ*ðtÞ, respectively, the asterisk stands for the complex
conjugate, and F – 1 denotes the inverse Fourier transform.
In this sense, the selected mother wavelet functions are
bandpass filters which are oscillatory in the time domain.
Additionally, the mother wavelet function ψðtÞ is

assumed to lie in L2ðCÞ and satisfy the admissibility
condition

Cψ ¼ !
1

–1jψ̂ðωÞj2=jωjdω<þ1, (7)

where L2ðCÞ is the space of square integrable complex
function.

2.2.2 Morlet wavelet

As for many mechanical dynamical signals, the periodic
impulsive component is always the symptoms of faults.
Therefore, it is vital to select a proper mother wavelet
function similar to the impulsive components. In this
paper, complex Morlet wavelet is used, expressed as
follows [26]

ψðtÞ ¼ π – 1=4ðe – jω0t – e –ω0
2=2Þe – t2=2: (8)

When ω0³5, e –ω0
2=2 � 0, the Morlet wavelet can be

simplified in the following form:
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ψðtÞ ¼ π – 1=4e – jω0te – t
2=2: (9)

Considering the Morlet wavelet function is a cosine
signal decaying exponentially on both sides in the time
domain (not considering the imaginary part of the complex
Morlet wavelet function), it appears like an impulse
component, which demonstrates that the continuous
wavelet transform based on Morlet wavelet will have a
high potential for feature extraction in machine fault
diagnosis applications.

2.2.3 Time wavelet energy spectrum

The continuous wavelet transform possesses the energy
preservation property, i.e., the Parseval equation, which
can be described in the form:

!
1

–1jxðtÞj2dt ¼ 1

Cψ
!

1

–1!
1

–1
jWxða,bÞj2

a2
dadb: (10)

According to Eq. (10), the left part of the equation
represents the energy of signal xðtÞ. Thus, jWxða,bÞj2=ðCψ

a2Þ can stand for the energy density function which
describes the distribution of energy in (a, b) plane. Further,
Eq. (10) can be rewritten as the integration of time wavelet
energy function EðbÞ along the axis of translation
parameter b in the following form.

!
1

–1jxðtÞj2dt ¼ !
1

–1EðbÞdb, (11)

E bð Þ ¼ 1

Cψ
!

1

–1
jWxða,bÞj2

a2
da, (12)

where EðbÞ gives the signal energy’s distribution with time
varying, and it is so called as the time wavelet energy
distribution function.
Obviously, the impulse signal which occurs at a certain

moment in the time domain is equally stretched in the
whole frequency domain. Therefore, by means of
integrating the energy density function along the scale
(frequency) axis a, the distribution of signal energy with
time varying can be obtained and contributes to identifying
the time location of impulse occurrence. Furthermore, we
can obtain the time wavelet energy spectrum ESðf Þ to
acquire the repetitive frequency of periodic impulsive
components, which is deduced by the Fourier analysis of
time wavelet energy distribution function EðbÞ. The time
wavelet energy spectrum ESðf Þ and its discretization form
ESðkÞ are expressed as follows.

ESðf Þ ¼ !
þ1

–1EðbÞe – j2fbdb, (13)

ES kð Þ ¼
XN – 1

n¼0

E nð Þexp – j
2π
N

nk

� �
: (14)

Consequently, the time wavelet energy spectrum is
capable of identifying the frequency of periodic impulsive
components, and fault diagnosis can be achieved using this
approach, combined with the fault characteristic frequency
of various machine components such as bearings and
gears.

2.3 The proposed method of feature extraction based on
SK-TWES

Motivated by the advantages of kurtogram and the
proposed time wavelet energy spectrum approach, a
novel feature extraction method based on SK-TWES is
proposed in the paper, and its main procedures are
illustrated in Fig. 1 and the concrete steps for fault feature
extraction of planet gear using the proposed method based
on SK-TWES are also provided as follows:

Step 1: Collect the raw vibration signal (in the experi-
mental validations of this paper, we collect the vibration
signal of one planet gear with a localized fault and healthy

Fig. 1 Flowchart of the proposed feature extraction method
based on SK-TWES
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planet gears in the wind turbine gearbox test rig,
respectively).
Step 2: Calculate SK of the filtered vibration signals

with various center frequency and bandwidth using the
filter bank approach, and obtain the kurtogram of the raw
vibration signal measured in Step 1.
Step 3: Select the optimal filter parameters including

the center frequency and bandwidth, which correspond to
the maximum spectral kurtosis value in the kurtogram
derived in Step 2, and then utilize them to design a
bandpass filter to preliminarily filter out the periodic
transient impulse components from the raw vibration
signal measured in Step 1.
Step 4: Apply the Morlet wavelet transform to analyze

the filtered signal obtained in Step 3 using Eqs. (5)–(9), and
obtain the wavelet coefficients Wx(a,b).
Step 5: Integrate the energy density function jWxða,bÞj2

=ðCψa
2Þ along the scale axis and obtain the time wavelet

energy function EðbÞ using Eq. (12), for the purpose of
further extruding the impulsive components. Then, we
conduct the Fourier analysis to the time wavelet energy
distribution function EðbÞ and obtain the time wavelet
energy spectrum ESðkÞ using Eq. (14).
Step 6: Identify the repetitive frequency of transient

impulses to implement the fault diagnosis of machine
components, from the time wavelet energy spectrum.

3 Experimental signal analysis

In this section, we analyze the experimental signal with
healthy planet gears and signal with a damaged planet gear
in the wind turbine gearbox test rig, respectively, which are
measured at the Machinery Dynamics and Fault Diag-
nostics Laboratory at Tsinghua University, to validate the

effectiveness of the proposed method.

3.1 Experiment settings

The vibration measurement experiment with a localized
planet gear fault is conducted in the wind turbine gearbox
test rig illustrated in Fig. 2. The wind turbine gearbox test
rig has the same configurations as one of the actual gearbox
applied in the practical wind power generation, except its
equally shrunken size. It mainly consists of six parts: Two
wind turbine gearboxes mounted symmetrically and
inversely, loader, loading motor, cooling system, variable
frequency controller, and alternating current (AC) motor.
In our test rig, the variable frequency controller is utilized
to change the rotating speed of AC motor by varying the
frequency of power source. The load is applied to the
output shaft by means of loading motor injecting high-
pressure oil into the loader which is connected with the
output shaft of the gearbox. The right gearbox decreases
the rotating speed of AC motor, whereas the left gearbox
increases the rotating speed and is installed to simulate
both the normal and faulty wind turbine gearbox with
various configurations, respectively.
The wind turbine gearbox is composed of one planetary

transmission stage (low-speed stage) and two parallel
transmission stages (middle- and high-speed stages). The
sketch map of transmitting routine in the wind turbine
gearbox are shown in Fig. 3. Table 1 lists the gear
parameters of the wind turbine gearbox.
As for the experimental operating condition when the

gearbox is assembled with seeded planet gear tooth
breakage, the variable frequency controller is set as 50
Hz, correspondingly, and the AC motor spindle is
constantly rotating at 1492 r/min with small fluctuation
shown in Fig. 4(c); and the pressure of oil injected into the

Fig. 2 Wind turbine gearbox test rig for fault diagnosis
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loader pump is as high as 0.15 MPa. The vibration signals
of the wind turbine gearbox with tooth breakage in a planet
gear (shown in Fig. 4(a)) are acquired by accelerometers
mounted on the casing of the supporting bearing of the sun

gear, and the sampling rate is 16384 Hz. The installing
location of accelerometers is illustrated in Fig. 4(b) and
the specifications about the accelerometers are listed in
Table 2. In contrast, the baseline data is also collected as a
reference when the wind turbine gearbox operates in a
healthy condition. This measurement is performed when
the AC motor spindle rotates at constant speed 1478 r/min

Fig. 3 Transmitting routine in wind turbine gearbox

Table 1 Parameters of gears in the wind turbine gearbox

Stage Gear type Tooth number

Low-speed Sun gear 17

Planet gear 31(3)

Ring gear 79

Middle-speed Gear 73

Pinion 21

High-speed Gear 66

Pinion 23

Fig. 4 (a) Planet gear with tooth breakage; (b) acceleration sensors placement; the rotating speed of AC motor: (c) Experiment on faulty wind
turbine gearbox; (d) experiment on healthy wind turbine gearbox
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with small fluctuation shown in Fig. 4(d), and other
operating condition is the same as the case with planet gear
tooth breakage.
The characteristic frequencies of the wind turbine

gearbox include the meshing frequency of each meshing
pair, rotating frequency of each shaft, and characteristic
frequency of gears with a localized defect. The character-
istic frequency of gears is very crucial to its fault diagnosis,
which refers to how many times its faulty tooth meshes
with the mating gear(s) per second [3]. For the fixed-axis
gearboxes, the characteristic frequency of gear with
localized fault is the rotating frequency of the gear of
interest. As for planetary gearboxes, the characteristic
frequency of gears depends on not only the gearbox
running speed but also its configuration, such as the
number of planet gears and the tooth number of each gear.
According to the wind turbine gearbox configurations

(see Table 1) and the rotating speed of AC motor shaft
1496 r/min when the gearbox is assembled with seeded
planet gear tooth breakage fault, the characteristic
frequencies in the wind turbine gearbox can be calculated
[3,9], as listed in Table 3. fmi represents the meshing
frequency of the ith stage gear transmission; fpf stands for
the localized fault characteristic frequency of planet gear;
fil and fih is the rotating frequency of the low-speed shaft or
high-speed shaft in the ith stage gear transmission; filf and
fihf is the localized fault characteristic frequency of gears

installed on the low-speed shaft or high-speed shaft in the
ith stage gear transmission.

3.2 Signal analysis based on the SK-TWES

To validate the performance of the feature extraction
method based on the spectral kurtosis and time wavelet
energy spectrum, we analyze the experimental vibration
signals collected from the wind turbine gearbox test rig
with a faulty planet gear and healthy gears simultaneously.
From Fig. 5(a), it can be seen that some impulses occur

compared to the signals collected when the gearbox is
healthy in Fig. 5(c), but the periodic impulsive components
are contaminated by heavy noises, thus the period of the
impulsive components are too obscure to identify directly.
According to the spectrum of the raw vibration signal
shown in Figs. 5(b) and 5(d), it reveals that the frequency
components are extraordinarily complicated, and the
planetary stage meshing frequency along with its side-
bands can even be negligible. Because the planetary gear
transmission operates at very low speed compared with the
parallel high-speed stage gear transmission, and various
amplitude modulations or frequency modulations inter-
ference the signal acquired by the accelerometer due to the
complex motion of planet gear, time varying vibration
transfer path, and the various vibration sources coupling
with each other.
We take a zoom-in picture of the spectrum of the raw

vibration signal in the low frequency region, to deeply
understand the dominant frequency components. The
result in Fig. 5(b) shows that two times the frequency
f3h 49.73 Hz and its harmonic frequencies nf3h (74.6,
99.45 Hz, etc.) dominate the spectrum, which may
demonstrate that the high-speed output shaft is misaligned.
The similar frequency components can be also observed in
the case with healthy gears shown in Fig. 5(d), but its
amplitude is relatively lower than other prominent
frequency peaks. Unfortunately, the misalignment of the
high-speed output shaft is inevitable in the laboratory
section, which results in the harmonic interference to the
detection of transient impulse, and affects the diagnosis
accuracy of gear faults consequently.
Based on the procedures of the proposed feature

extraction method, the kurtogram of the raw signal is
then computed using the filter bank approach [25], and
shown in Fig. 6(a). From Fig. 6(a), the frequency region
which possesses the maximum SK value is marked with
red dotted rectangle, and the optimal center frequency and
bandwidth are selected as 7338.67 and 341.3 Hz,

Table 3 Characteristic frequency in the wind turbine gearbox test rig

Stage Characteristic frequency Value/Hz

Low-speed fm1 34.874

fs 2.493

fc 0.441

fp 0.684

fpf 1.125

Middle-speed fm2 181.980

f2l 2.493

f2h 8.667

f2lf 2.493

f2hf 8.667

High-speed fm3 571.930

f3l 8.667

f3h 24.867

f3lf 8.667

f3hf 24.867

Table 2 Specifications about the accelerometers

Manufacturer Model Sensitivity/(mV$g–1) F.S. range/g Frequency range (�5%)/Hz Linearity

DYTRAN INST Inc. 3056B1 10 �500 1‒10000 �1%
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respectively. Then an optimal bandpass filter can be
designed according to the selected optimal center
frequency and bandwidth. Besides, the envelope of the
bandpass filtered signal is also illustrated in Fig. 6(b). In
the same way, we consider the case with healthy planet
gears for comparison, the kurtogram and the envelope
signal after filtering operation based on the optimal filter
parameters obtained in the kurtogram are also computed
and shown in Figs. 6(c) and 6(d), respectively.
In Fig. 6(b), we can observe that although the transient

impulses are extruded in the time domain and more
prominent than the healthy case shown in Fig. 6(d), the
period of transient impulses is still not clear and apparent.
To extract the periodic impulsive components further and
identify the repetitive frequency, we apply the time wavelet
energy spectrum analysis to the filtered signal, and the

obtained time wavelet energy spectrum is illustrated in
Fig. 7.
In Fig. 7(a), the fault characteristic frequency of planet

gear fpf 1.125 Hz and its harmonic frequencies nfpf
dominate the time wavelet energy spectrum of the filtered
signal. Namely, the repetitive frequency of periodic
transient impulsive components is successfully identified.
Considering the case with healthy planet gears, Fig. 7(b)
shows that the time wavelet energy spectrum is dominated
by three times of carrier rotating frequency 3fc and the
rotating frequency of the high-speed and the middle shaft
f3h, f3l. These dominant frequency components are
irrelevant to the planet gear fault.
To ensure the high precision and reliable validation of

our proposed method in the experimental applications,
another two measurements were performed on the same

Fig. 5 Raw vibration signal for planet gear with localized fault: (a) Waveform and (b) spectrum; raw vibration signal for healthy planet
gear: (c) Waveform and (d) spectrum
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operating condition, and the relevant results using our
proposed method and comparative methods are provided
in the Appendix.
To conclude, the repetitive impulse induced by tooth

breakage fault in a planet gear is still very obscure and its
fault characteristic frequency is hard to identify, due to
various demodulations and the strong interferences from
two parallel gear transmissions whose vibration level is
much higher than that of the planetary gear transmission.
The effectiveness of our proposed method based on SK-
TWES is verified by the experimental signal. Thus, the
proposed method realizes the fault diagnosis for planet
gear with a localized defect in the wind turbine gearbox
effectively.

3.3 Comparative analyses

In Section 3.2, the effectiveness of the proposed feature
extraction method based on SK and time wavelet energy
spectrum are validated by analyzing the experimental
vibration signal of planet gear with a local defect in the
wind turbine gearbox test rig. Furthermore, the following
comparative analyses are conducted with the conventional
envelope demodulation analysis, the envelope demodula-
tion combined with the kurtogram, and the time wavelet
energy spectrum analysis without any preprocessing
approach. These results of comparative studies are
illustrated in Figs. 8(a)–8(c).
Envelope demodulation analysis is a powerful technique

Fig. 6 Planet gear with a localized fault: (a) Kurtogram, (b) envelope of filtered signal based on kurtogram; healthy planet gears: (c)
Kurtogram, (d) envelope of filtered signal based on kurtogram
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and extensively applied to detect the impulsive compo-
nents in cases with high signal-to-noise ratio, such as the
vibration signal of rolling element bearings with race
defect. Meanwhile, it has a high capability of demodulat-
ing the amplitude modulation signal. The squared envelope
spectrum consists of three steps in general: First, obtain the
analytic signal z(t) of real signal x(t) using the Hilbert
transform which is essentially defined as the convolution
of real signal with 1=πt as the following equation,

y tð Þ ¼ 1

π
!

þ1

–1
xðτÞ
t – τ

dτ, (15)

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ aðtÞeiφðtÞ: (16)

Second, coupling the x(t) and y(t) in Eqs. (15) and (16),
we can calculate the instantaneous amplitude a(t) and
instantaneous phase φðtÞ of real signal x(t) in the following
form

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

q
,    φðtÞ ¼ arctanðyðtÞ=xðtÞÞ: (17)

Third, by performing the spectrum analysis on the
squared envelope a2(t) (namely, the square of instanta-
neous amplitude of signal x(t)), we can obtain the squared
envelope spectrum.
However, the result of squared envelope spectrum of the

measured raw signal in Fig. 8(a), shows that the
conventional envelope demodulation analysis fails to
identify the repetitive frequency of impulsive components
hidden in the noisy vibration signal, and the frequency f3l
8.67 Hz, f3h 24.87 Hz and their multiple frequencies nf3l,
nf3h dominate the squared envelope spectrum. The result
demonstrates that the modulations induced by the f3l and
f3h are evident and interference the detection of transient

impulses produced by localized planet fault in the wind
turbine gearbox.
Envelope demodulation combined with bandpass filter-

ing based on the kurtogram is a very attractive approach for
the feature extraction of impulsive components as well.
The kurtogram first provides the optimal filter parameters
for detecting the transients hidden in the noisy signal; then
envelope demodulation is applied to analyze the filtered
signal. From the squared envelope spectrum of the filtered
signal in Fig. 8(b), the fault characteristic frequency of
planet gear fpf 1.125 Hz and its harmonic frequencies nfpf is
prominent, but the existed deficiencies are as follows: 1)
The frequency offset component is significant, and the
signal-to-noise ratio in Fig. 8(b) is much lower than that of
Fig. 7(a); 2) the interference caused by the carrier rotating
frequency component fc 0.45 Hz is apparent as well. The
two efficiencies may interrupt the precise fault diagnosis
for planet gear with a local defect.
The time wavelet energy spectrum analysis without any

preprocessing approach is intended to validate the power-
fulness of spectral kurtosis to determine the optimal
frequency band in which the impulsive components locate.
In Fig. 8(c), the prominent frequencies are still the shaft
rotating frequency of the high-speed stage f3l, f3h, and their
multiples. Thus, the time wavelet energy spectrum without
any preprocessing approach cannot effectively implement
the feature extraction for planet gear with a local defect in
the wind turbine gearbox test rig.
To sum up, the proposed feature extraction method

based on SK-TWES has better performance at feature
extraction of faulty planet gear, compared with the other
three comparative methods. By applying the novel method
to analyze the experimental vibration signal of planet gear
with a localized fault, it is demonstrated that the proposed
method is not only capable of extracting the repetitive

Fig. 7 Time wavelet energy spectrum of filtered signal: (a) Planet gear with a localized fault; (b) healthy planet gears
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impulsive transients and identifying its frequency but also
robust to the strong noise masking effect and harmonic
interferences from high-speed transmission stages.

4 Conclusions

In this paper, we propose a novel feature extraction method
based on SK-TWES to overcome the deficiencies of
existing methods when extracting the fault feature of planet
gear with the localized defect. This approach combines the
SK-TWES analysis to enhance and extract a better planet
gear fault feature, i.e., the fault characteristic frequency.
The proposed method mainly considers that the SK is
sensitive to non-Gaussian transients in the non-stationary
signal, thus the kurtogram is exploited to facilitate the
design of optimal bandpass filter. Furthermore, Morlet
wavelet is selected as the mother wavelet due to its high
similarity to the impulsive component, and the time
wavelet energy spectrum analysis based on continuous
wavelet transform is introduced to identify the repetitive
frequency of impulses immersed in the noisy signal. The
experimental vibration signal of planet gear with a
localized fault in the wind turbine gearbox is used to
verify the effectiveness of the proposed approach. The
results demonstrate that the prominent fault characteristic
frequency and its harmonic frequency components are
clear, and the harmonic interferences induced by high-
speed transmission stages are well eliminated. Meanwhile,
the conventional envelope demodulation techniques and
time wavelet energy spectrum analysis without any
preprocessing approach, do not behave well in this
experimental application. Thus, the method based on SK-
TWES is proven to be a reliable and potential tool for
extracting the weak fault feature from various noises and
interferences, and it has superiority over the aforemen-
tioned conventional approaches, particularly for the fault
diagnosis of planet gear with a local defect in wind turbine
gearboxes.
However, our proposed method based on SK-TWES still

has a limited capability to extract the fault feature for
planet gear with incipient pitting or crack defect. The
authors will investigate the issues in their future research
work.
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Appendix

In this appendix, we supplement another two measure-
ments collected from the wind turbine gearbox test rig with
tooth breakage in a planet gear, the operating condition is
the same as what we have described before. The relevant
results using the proposed method and the comparative
methods are illustrated in the following Figs. A1 and A2.
Both of the two repetitive experiments and the correspond-
ing results demonstrate the effectiveness of our proposed
method based on SK-TWES and its superiority over the
comparative methods.

Fig. 8 Results of comparative studies: (a) The squared envelope
spectrum of raw vibration signals; (b) the squared envelope
spectrum of the filtered signal based on kurtogram; (c) the time
wavelet energy spectrum without any preprocessing approach
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Fig. A1 Results of measurement #2: (a) Raw vibration signal; (b) its spectrum; (c) Kurtogram; (d) envelope of filtered signal based on
kurtogram; (e) time wavelet energy spectrum of filtered signal; (f) the squared envelope spectrum of raw vibration signals; (g) the squared
envelope spectrum of the filtered signal based on kurtogram; (h) the time wavelet energy spectrum of raw signal without any preprocessing
approach
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Fig. A2 Results of measurement #3: (a) Raw vibration signal; (b) its spectrum; (c) Kurtogram; (d) envelope of filtered signal based on
kurtogram; (e) time wavelet energy spectrum of filtered signal; (f) the squared envelope spectrum of raw vibration signals; (g) the squared
envelope spectrum of the filtered signal based on kurtogram; (h) the time wavelet energy spectrum of raw signal without any preprocessing
approach
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