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Abstract As a widely used numerical method, boundary
element method (BEM) is efficient for computer aided
engineering (CAE). However, boundary integrals with
near singularity need to be calculated accurately and
efficiently to implement BEM for CAE analysis on thin
bodies successfully. In this paper, the distance in the
denominator of the fundamental solution is first designed
as an equivalent form using approximate expansion and the
original sinh method can be revised into a new form
considering the minimum distance and the approximate
expansion. Second, the acquisition of the projection point
by Newton-Raphson method is introduced. We acquire the
nearest point between the source point and element edge
by solving a cubic equation if the location of the projection
point is outside the element, where boundary integrals with
near singularity appear. Finally, the subtriangles of the
local coordinate space are mapped into the integration
space and the sinh method is applied in the integration
space. The revised sinh method can be directly performed
in the integration element. Averification test of our method
is proposed. Results demonstrate that our method is
effective for regularizing the boundary integrals with

near singularity.

Keywords computer aided engineering (CAE), boundary
element method (BEM), near singularity, sinh method,
coordinate transformation, integration space

1 Introduction

Computer aided engineering (CAE) has been widely used
in the field of airplanes, machinery, and petroleum, where
it provides analytical information in the product develop-
ment process in a timely manner. The quality of product
can be improved and production time can be shortened
significantly by implanting modern CAE techniques into
the manufacturing process. Thus, the product market
benefits from the CAE techniques and feedback is sent to
the manufacturing factory to refine the product quality [1].
The main numerical methods used in CAE include finite
element method (FEM) [2–7], boundary element method
(BEM) [7–11], etc. BEM is a more promising method,
which has a higher precision for flux and stress than FEM
in terms of the theory for differential and integral equations
[4–11]. However, another problem is encountered when
BEM is used in CAE analysis on thin bodies. The problem
is how to remove near singularity in boundary integrals
when using BEM [9–16]. Thus, this work focuses on
improving the original sinh method, to remove near
singularity and compute the integrals using Gaussian
quadrature directly and accurately. The goal of this paper is
to improve the application of BEM in CAE analysis.
Problems need to be simulated on thin bodies and

structures with features, like cracks, in many CAE analyses
using BEM in industrial engineering. Appropriate treat-
ment to remove the near singularity in the integrals is
indispensable in obtaining accurate results [9–16]. The
accurate and efficient evaluation of nearly singular
integrals is important for implementing BEM for CAE
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analysis. When the source point is close to the element in
BEM and the ratio between the source point and element is
very small, the integrals in this element are called nearly
singular integrals. The Gaussian quadrature cannot be
applied to integrals with singularity directly because of the
poor computational results. The origin of near singularity
comes from when the distance in the fundamental solution
is close to zero. The fundamental solution tends to be
infinite, and thus the standard Gaussian quadrature fails for
these type of integrals. The regularization of this type of
integrals to apply the standard Gaussian quadrature is
difficult. Thus, the removal of near singularity has attracted
the enthusiasm of many researchers. Many kinds of
methods have been proposed for the removal of near
singularity, such as the element subdivision method [9–
11], semi-analytical or analytical integral method [12–15],
distance transformation [16–19], PART transformation
[20,21], exponential transformation [22–25], and sinh
method [26–30]. Among these methods, sinh method is
widely used to deal with nearly singular integrals on linear
elements or in 2D BEM. We expand the sinh method to
problems on thin bodies in the 3D BEM, in the integration
space. Using our method, the upper and lower bounds of
the polar coordinates can be obtained easily.
In our method, the distance in the denominator of the

fundamental solution using the Taylor expansion by one
order is designed as an approximate expansion form. We
can obtain the simple and clear form of the fundamental
solution and the sinh method can be introduced. In this
step, the method to obtain the project point is very
important. Thus, we classify the method in two cases. The
Newton-Raphson (NR) method is employed to obtain the
projection point. The sinh method can be directly applied if
the projection point is inside the element where near
singularity appears. Otherwise, another point (nearest
point) is introduced. The sinh method can also be applied
if the nearest point is in the element or on the element edge.
The method to obtain the nearest point is as follows. First,
the projection point is located by the NR method. The
project point is inside the element if the projection point
coincides with the nearest point. Otherwise, the minimum
distance from the edge of the integration element to the
source point should be confirmed to obtain the nearest
point through a cubic equation. Moreover, we map the sub-
triangles in a local coordinate to another local integral
coordinate during the implementation of the sinh transfor-
mation. Thus, the upper and lower bounds of the pole in
the polar coordinates can be obtained easily. The proposed
method is validated by two numerical examples.
The contents of this paper are as follows. Section 2

provides a general form of the integrals with near
singularity. Section 3 describes the distance in the local
coordinate and introduces the sinh method. In Section 4,
the approach in obtaining the nearest point and the process
of implementing the sinh transformation are proposed.
Section 5 presents two numerical examples. Section 6

presents the conclusions.

2 General form of integrals with near
singularity

In this part, the general form of integrals with near
singularity in 3D BEM is described. First, take 3D
potential problems for examples. The well-known couple
boundary integral equations (BIEs) are as follows:

CðQÞuðQÞ ¼ !
Γ
uðPÞq*ðP,QÞdΓ –!

Γ
qðPÞu*ðP,QÞdΓ,

(1a)

qmðQÞ ¼ !
Γ
qðPÞ∂u

*ðP,QÞ
∂sm

dΓ –!
Γ
uðPÞ∂q

*ðP,QÞ
∂sm

dΓ,   

m ¼ 1,2,3: (1b)

In Eqs. (1a) and (1b), C is the coefficient (C = 1 for
internal points and C = 1/2 for smooth boundary points), u
is the displacement, q is the flux, Q is the source point, P is
the field point, sm and xm are the components of Q and P,
respectively. Specifically, u*ðP,QÞ is the fundamental
solution with near weak singularity, q*ðP,QÞ and
∂u*ðP,QÞ=∂sm are the gradients of the fundamental
solution with near strong singularity, and ∂q*ðP,QÞ=∂sm
is the gradient of fundamental solution with near hyper-
singularity. The expression can be found in Ref. [1]. The
displacement at the boundary nodes can be calculated by
Eq. (1a), while the flux in the domain can be calculated by
Eq. (1b). The discretize with boundary element and
elements Γn, n = 1, 2, …, N, are represented by shape
functions. Thus, the integral kernel in Eqs. (1a) and (1b)
will be with near singularity if the ratio between Point Q
and the edge length of Γn is very small. The near
singularity of the integral kernel in Eqs. (1a) and (1b) is
also different.
In our work, the sinh method is developed to regularize

the boundary integrals with different order of singularities.
We discuss details of the method in the next sections. After
the boundary is discretized, the integrals in Eqs. (1a) and
(1b) can be expressed clearly and generally in the
following form:

I ¼ !
Γn

f ðP,QÞ
rl

dΓ,   l ¼ 1,3,5, (2)

where I is the general form of the integral, r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 – x1Þ2 þ ðs2 – x2Þ2 þ ðs3 – x3Þ2

q
, f is smooth, com-

posed of shape functions and Jacobi, which can be directly
calculated by Gaussian quadrature and l is the order of the
distance r. The very small distance between PointsQ and P
compared with the size of Γ is considered only.
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3 Equivalence distance in the element local
coordinate and the sinh method

3.1 Equivalence form of the distance r in fundamental
solution

In Fig. 1, employing Taylor expansion by one order [16–
19] nearby the vertical Point Pc, which is the intersection
point of the vector n and the surface element, we can
obtain:

xk – sk ¼ xk – x
c
k þ xck – sk

¼ ∂xk
∂� j η1¼η0

�1¼�0
ð� – �0Þ þ

∂xk
∂η j η1¼η0

�1¼�0
ðη – η0Þ

þ r0nkð�0,η0Þ þ Oð�2Þ
¼�Akð�Þ þ r0nkð�0,η0Þ þ Oð�2Þ, (3)

where xck is the component of Point Pc, � and η are the local
coordinates, �0 and η0 is the local coordinate of the vertical
point, nk is the component of n, k = 1, 2, 3. Using polar
coordinate transformation at Pc in local system, � is the
polar, r0 is the distance between the source PointsQ and Pc,

Ak �ð Þ ¼ ∂xk
∂� j η¼η0

�¼�0
cos�þ ∂xk

∂η j η¼η0
�¼�0 sin�.

Employing Eq. (3), the square of the distance can be
obtained by Eq. (4).

r2 ¼ ðxk – skÞðxk – skÞ ¼ A2
kð�Þ�2 þ r20 þ Oð�3Þ: (4)

Substituting Eq. (4) into Eq. (2), the form of Eq. (2)
becomes:

I ¼ !
S

f ðP,QÞ
rl

dS

¼
X
i
!

�iþ1

�i
!

�2ð�Þ

�1ð�Þ
gð�,�Þ

ð�2 þ ω2ð�ÞÞl=2d�d�, (5)

where ω �ð Þ ¼ r0
Að�Þ, Að�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Akð�ÞAkð�Þ

p
, and gð�,�Þ is a

smooth function. �1ð�Þ and �2ð�Þ are the upper and lower

bounds, which need to be deduced.

3.2 Sinh method

In Refs. [19–24], the sinh transformation is introduced for
the integral as follows:

I ¼ !
Θ

0
!

Rð�Þ

0

rf ðrcos�,rsin�Þ
ðr2 þ b2Þl drd�: (6)

Apply the sinh transformation [17–22],

rðsÞ ¼ bsinhð�1s – η1Þ: (7)

Employing the following transformation, the intervals
½0,Rð�Þ� and ½0,Θ� can be mapped into ½ – 1,1�, giving

�1 ¼ – η1 ¼
1

2
arcsin

Rð�Þ
b

     and    � fð Þ ¼ Θ
2
ðfþ 1Þ: (8)

From Section 3.1 and Eq. (5), the following integral
should be calculated accurately to compute nearly singular
integrals directly.

Ii ¼ !
�iþ1

�i
!

�2ð�Þ

�1ð�Þ
gð�,�Þ

ð�2 þ ω2ð�ÞÞl=2d�d�: (9)

�1ð�Þ should be equal to zero, that is, the projection
point should be inside the integration element to apply the
original sinh transformation Eqs. (7) and (8). Otherwise,
the sinh transformation cannot be used directly. Thus, we
introduce the nearest point in this paper instead. The
location of the nearest point is in the element or element
edges. Thus, the original sinh transformation should be
refined as follows:

rðsÞ ¼ ωð�Þsinhð�1s – η1Þ: (10)

Mapping ½0,�2ð�Þ� and ½�m,�mþ1� into ½ – 1,1� respec-
tively gives

�1 ¼ – η1 ¼
1

2
arcsin

�2ð�Þ
ωð�Þ ,

� fð Þ ¼ ð�mþ1 – �mÞ
2

ðfþ 1Þ:
(11)

Using Eqs. (10) and (11), the refined sinh transformation
can be used directly to compute integrals with near
singularity. In the next section, how to find the nearest
point and implement the sinh transformation will be
introduced.

4 The nearest point and the sinh
transformation in local integral coordinate

4.1 Obtaining the nearest point

In Fig. 2, serendipity quadrilateral quadratic element [1] is

Fig. 1 Vertical distance r0, between the source point Q and the
integration element S
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taken as an example. P is the field point and Pc is the
projection point. The vertical distance r from the source
point Q to integration element S is represented as jP –Pcj.
For arbitrary P on S, we have

xkð�,ηÞ ¼
X8
j¼1

Njð�,ηÞxjk , (12)

where �, η are the local coordinates, xk is the coordinate
components of the field point and xjk are the coordinate
components of the element nodes, k = 1, 2, 3. Njð�,ηÞ is the
shape function of the 8-node quadrilateral element and j is
the number of shape function, j = 1, 2, …, 8.
Assume that the projection point Pc is located on the

boundary element S, the local coordinates in the ð�,ηÞ
space are ð�0,η0Þ, we have the Cartesian coordinates using
the local coordinate Pc ¼ ðx1ð�0,η0Þ,x2ð�0,η0Þ,x3ð�0,η0ÞÞ.
d is the distance between the source pointQ and integration
element S, employing the NR method and computing
d ¼ kQ –Pck. From the geometrical relationship in Fig. 1,
we can obtain

½xmð�0,η0Þ – sm�
∂xm
∂�

¼ 0

½xmð�0,η0Þ – sm�
∂xm
∂η

¼ 0

8>><
>>:

, (13)

where the tensor mark is used,
∂xm
∂�

¼ ∂xm
∂� j

η¼η0
�¼�0 ,

∂xm
∂η

¼ ∂xm
∂η j

η¼η0
�¼�0 , and m = 1, 2, 3.

If Q is considerably near boundary S, the distance
between Q and Pc is very small. The roots ð�0,η0Þ can be
obtained using NR method. Assuming

f1ð�,ηÞ ¼ ½xmð�,ηÞ – sm�
∂xm
∂�

,

f2ð�,ηÞ ¼ ½xmð�,ηÞ – sm�
∂xm
∂η

,
(14)

the following can be obtained:

F#ð�ðiÞ,ηðiÞÞ
�
Δ�ðiÞ,ΔηðiÞ

�T ¼ –Fð�ðiÞ,ηðiÞÞ, (15)

F �ðiÞ,ηðiÞ
� �

¼
f1
�
�ðiÞ,ηðiÞ

�

f2
�
�ðiÞ,ηðiÞ

�

2
64

3
75,

F# �ðiÞ,ηðiÞ
� �

¼
∂f1
∂�

∂f1
∂η

∂f2
∂�

∂f2
∂η

2
664

3
775
�¼�ðiÞ,η¼ηðiÞ

,

∂f1
∂�

¼ ½xmð�,ηÞ – ym�
∂2xm
∂�2

þ ∂xm
∂�

∂xm
∂�

,

∂f2
∂�

¼ ½xmð�,ηÞ – ym�
∂2xm
∂�∂η

þ ∂xm
∂�

∂xm
∂η

,

∂f1
∂η

¼ ½xmð�,ηÞ – ym�
∂2xm
∂�∂η

þ ∂xm
∂η

∂xm
∂�

,

∂f2
∂η

¼ ½xmð�,ηÞ – ym�
∂2xm
∂η2

þ ∂xm
∂η

∂xm
∂η

:

where i is the iterator, Δ� and Δη are the increments,
Δ� ¼ �ðiþ1Þ – �ðiÞ, Δη ¼ ηðiþ1Þ – ηðiÞ, and T is the transpose
symbol.
The effective evaluation of the location of Pc in the local

coordinate of the element is important for the implementa-
tion of the proposed scheme. Picking up the initial point is
crucial for NR method. In our method, we first assume that
the 8-node quadrilateral element is a 4-node quadrilateral
element using only the four nodes at the corners. Thus, we
obtain the initial point by using the NR method on the 4-
node quadrilateral element.
The position of Pc is judged. Pc is not the nearest point if

the location of Pc is outside of the element where near
singularity arises. The nodes of the original 8-node element

Fig. 2 Coordinate transformation from the ð�,ηÞ space to integration space ðα,βÞ
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are connected and the element is treated as a curved surface
element. The four edges of the element are considered and
the minimum distance between Q and the four edges is
determined. Thus, we can find one of the coordinates ð�,ηÞ
in the 8-node quadrilateral element. The edge is treated as a
3-node quadratic isoparametric element and the coordi-
nates of the edge are assumed as follows:

xkð�Þ ¼ N1ð�Þx1k þ N2ð�Þx2k þ N3ð�Þx3k ,

k ¼ 1, 2, 3, – 1£�1£1, (16)

where N1ð�Þ,N2ð�Þ, and N3ð�Þ are the shape functions,
which are widely used in 3-node quadratic isoparametric
elements. The nearest point in the � coordinate can be
obtained by solving the following cubic equation.

½xið�0Þ – si�
∂xi
∂�

¼ 0, i ¼ 1, 2, 3, (17)

where �0 is the parametric coordinate in the � coordinate.
Thus, the parametric of the coordinates in the ð�,ηÞ
coordinates can also be obtained.
Finally, the sub-triangle Δj in the local coordinate space

of the element is transformed according to Δj. The
improved sinh method can be used to regularize the
integrals with near singularity. We can employ the
Gaussian quadrature directly. The implementation of
element subdivision can be found in Ref. [25]. The details
of the processing of the numerical implementation of the
sinh method in the integration space will be discussed in
the next section.

4.2 Implementation of the sinh transformation in local
integral coordinate

A coordinate transformation from the ð�,ηÞ space to the
integral space ðα,βÞ is introduced to implement sinh
transformation. Figure 2 shows that the coordinate
transformation as follows:

� ¼ ð1 – α – βÞ�0 þ α�1 þ β�2,

η ¼ ð1 – α – βÞη0 þ αη1 þ βη2:
(18)

Equation (3) can be revised using Eq. (18) as follows:

xk – sk ¼xk – x
c
k þ xck – sk

¼∂xk
∂α

½αð�1 – �0Þ þ βð�2 – �0Þ�

þ ∂xk
∂β

½αðη1 – η0Þ þ βðη2 – η0Þ�

þ r0nkð�0,η0Þ þ Oð�2Þ
¼�Akð�Þ þ r0nkð�0,η0Þ þ Oð�2Þ: (19)

In Eq. (19),
∂xk
∂α

¼ ∂xk
∂�

∂�
∂α

þ ∂xk
∂η

∂η
∂α

,
∂xk
∂β

¼ ∂xk
∂�

∂�
∂β

þ
∂xk
∂η

∂η
∂β

,
∂xk
∂α

¼ ∂xk
∂α j β¼0

α¼0,
∂xk
∂β

¼ ∂xk
∂β j β¼0

α¼0.

The sinh transformation can be applied directly using the
polar transformation in the integration space ðα,βÞ. For
each sub-triangle Δj, ½�1,�2� ¼ ½0,π=2� and ½0,Rð�Þ� ¼
½0, ffiffiffi

2
p

=cosð� – π=4Þ�. Thus, this method can be easily
integrated into the BEM codes.

5 Numerical examples

5.1 One-eighth hollow sphere

The first case considers the one-eighth hollow sphere
potential problem. Two analytical solutions are imposed as
the displacement boundary on all faces for the convenience
of the comparison with the analytical results [11]. The two
analytical solutions are as follows:

uðx,y,zÞ ¼ xþ yþ z, (20)

uðx,y,zÞ ¼ xyþ yzþ zx: (21)

This example concerns a one-eighth hollow sphere. In
this example, all parameters are dimensionless. The inner
radius of the eighth hollow sphere is 3.96 and the outer
radius is 4.0. The wall thickness of the eighth hollow
sphere is thin compared with the inner and outer radii. The
near singularity of the integrals needs to be removed to
analyze this problem accurately. In this example, we use
the sinh method in the integration space as described in the
above section. A density of 1.14 and a heat conduction of 1
are assumed. The mesh model is shown in Fig. 3, and the
evaluation points are arranged in the boundary and
domain. The boundary evaluation points are located in
the inner and side surfaces of the parameter space [u, v], as
shown in Fig. 4, where u and v belong to [0, 1]. Parameter
u is from 0 to 1 and v = 0.5 in the inner and side surfaces. A
total of 176 elements and 531 nodes are employed. Figures
5 to 8 show the computational results of the domain and
boundary sample points.
Figure 5 shows that the computational results of the

domain sample points with a linear solution by the
proposed method agree well with the analytical solutions.
Compared with the analytical solutions, the largest error of
our method is about 0.5%. Figure 6 shows that the
computational results of the boundary sample points with a
linear solution by the proposed method agree well with the
analytical solutions. Compared with the analytical solu-
tions, the largest error is about 1%. Figure 7 shows that the
computational results of the domain sample points with a
quadratic solution by the proposed method agree well with
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Fig. 3 Meshes of the eighth hollow sphere. (a) External view; (b) internal view

Fig. 4 Domain and boundary evaluation points of the eighth hollow sphere

Fig. 5 Numerical solutions of domain sample points with linear solution
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Fig. 6 Numerical solutions of boundary sample points with linear solution

Fig. 7 Numerical solutions of domain sample points with quadratic solution
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the analytical solutions. Compared with the analytical
solutions, the largest error is about 0.3%. Figure 8 shows
that the computational results of the boundary sample
points with a quadratic solution by the proposed method
agree well the analytical solutions. Compared with the
analytical solutions, the largest error is about 0.4%.

5.2 Dirichlet problems on a hollow square

In this example, Dirichlet problems on a hollow square are
computed and all parameters are dimensionless. The mesh

model is illustrated in Fig. 9. The domain and boundary
evaluation points are illustrated in Fig. 10. The outer edge
length of the hollow square is 1 and the inner edge length is
0.99. A total of 300 8-node quadrilateral elements are used
and the total number of nodes is 1152. The evaluation
points are linearly distributed at the outer surface of the
hollow square. Figure 9 shows that u and v represent the
two directions of the surface of the hollow square.
Parameter u is from 0 to 1 and v = 0.5 in the parameter
space of the middle line. In addition, parameters u and v are
from 0 to 1 in the parameter space (u, v) of the diagonal

Fig. 8 Numerical solutions of boundary sample points with quadratic solution

Fig. 9 Meshes of the hollow square
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line. Dirichlet conditions are added on all the faces of the
hollow squares by the following cubic solution.

u ¼ x3 þ y3 þ z3 – 3yx2 – 3xz2 – 3zy2: (22)

The wall of the hollow square is thin compared with the
lengths of the inner and outer edges. The near singularity
of the integrals need to be removed to analyze the problems
accurately. The numerical results of the domain and
boundary evaluation points are illustrated in Figs. 11 and
12. Figure 11 shows that the numerical results by the
proposed method agree well with the analytical solutions.

Compared with the analytical solutions, the largest error is
about 0.6%. Figure 12 shows that the numerical results
obtained by our method agree well with the analytical
solutions. Compared with the analytical solutions, the
largest error is within 1%.

6 Conclusions

This work proposed a new implementation of the sinh
transformation in the integration space for 3D boundary

Fig. 11 Numerical solutions of domain sample points of cubic solution

Fig. 10 Domain and boundary evaluation points of the hollow square
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integrals with near singularity. Our goal was to improve the
engineering application of BEM in CAE analysis. The sinh

method was revised considering the r0=
ffiffiffiffiffiffiffiffiffiffiffi
A2
kð�Þ

q
by

obtaining the equivalence distance. With the nearest
point obtained by the NR method or by solving a cubic
equation, the revised sinh transformation was directly
performed in the integration space instead of the local
coordinate space. The near singularity on the near singular
subtriangles was reduced significantly by applying the
revised sinh transformation and the proposed improvement
approach. Our method was tested using numerical
examples of potential problems on thin bodies. Results
showed that our method is accurate and efficient.
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